
		  EUROSURVEILLANCE  Vol .  14 ·  Issue 26 ·  2  July  2009 ·  www.eurosurveillance.org	 1

R esearch  ar ti cles

S tat F l u  -  a  s tat i c  m o d e l l i n g  to o l  f o r  pa n d e m i c 
i n f l u e n z a  h o s p i ta l  l o a d  f o r  d e c i s i o n  m a k e r s

M Camitz (martin.camitz@ki.se)1,2

1.	Smittskyddsinstitutet (SMI, Swedish Institute for Infectious Disease Control), Solna, Sweden
2.	Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden

The emergence of a new influenza virus strain setting off a global 
epidemic can put considerable strain on the current hospital 
capacity. The task of estimating hospital load during an influenza 
pandemic event remains difficult, despite a number of tools that 
are publicly available for decision makers today. The estimate 
depends on a multitude of parameters, each with associated 
uncertainties. We provide a new tool, StatFlu, combining advances 
in static modelling using historic influenza data with a pedagogical 
interface designed to highlight propagation of parameter settings 
and uncertaintiesin the output. StatFlu provides graphs of the 
load on hospital wards as well as primary care units as a function 
of time, aiding the user in decision making. Here we present the 
model and software. We also demonstrate it with an example and 
compare the results with a similar tool.

Introduction
Many successful models using dynamic simulations to estimate 

the effect of an influenza pandemic have been presented and have 
been essential in providing the knowledge needed for pandemic 
preparedness [1-9]. All models have their inherent ailments and 
there is always a great deal of uncertainty in the estimates they 
are able to produce. This depends on the data used to calibrate 
the model as well as the assumptions made by the model itself. 
The virulence of a new viral strain can only be guessed at. Contact 
patterns and other social dynamics contribute a similar uncertainty. 
Conveying the difficulties of modelling and the effect of the many 
uncertainties in the estimates provided should be a primary 
objective for modellers.

From the attack rate estimates that dynamic models produce 
it is possible to estimate the hospital load, using assumptions of 
how many of the clinically ill are expected to seek medical care. 
This could be done by extrapolation from historic data on past 
epidemics or pandemics. It is this last step that is the focus of 
many static models.

Many publicly available software applications use static 
modelling. Whether using simulation output or presumed attack 
rate scenarios, these models translate outbreak data into variables 
of interest, such as hospital load, cost of treatment or loss of 
lives. Static models have the advantage that assumptions about 
social networks and similar factors are already implicit in the data, 
which makes them very reliable. Generally, fewer assumptions are 
made which need to be accounted for and the results are more 
transparent. The two main sources of uncertainty in static models 
are in the parameters of the extrapolation and in how historic 

data from a particular region and time is relevant and plausible in 
another region and another time. The first of these uncertainties 
can be handled using statistical methods. All models described in 
this paper have this in common.

A notable example of a static modelling approach available on 
the internet is FluSurge [10], released by the United States (US) 
Centers for Disease Control and Prevention (CDC), which can be 
used to project the total hospital load over the duration of the 
pandemic. This software, its predecessor without time projection 
– FluAid [11], as well as slightly adapted versions thereof, have 
been used by authors in published articles predicting hospital load 
in several regions and countries [12-17].

The StatFlu project was initiated to bridge the gap between 
researcher and decision maker and to replace FluSurge, amending 
several of its flaws, to be detailed below. StatFlu is currently in use 
at the National Board of Health and Welfare in Sweden. The excess 
hospital and primary care load due to a pandemic is calculated 
without intermediate steps using a closed formula, at a resolution 
of one day. The full variance of the possible scenarios generated by 
the uncertainties in the input is displayed using a colour gradient 
in the plots. We have built our model with a bottom-up approach, 
incorporating the time-distribution from the start. We also allow 
the user to specify the age-dependent risk of contracting infection, 
relative to the other age groups, rather than a distribution of the 
attack rate among age groups, making the model independent of 
differences in age distribution.

Using StatFlu, the user can immediately see the effects that 
changing assumptions in attack rate, average susceptibility of age 
groups, duration of the pandemic and length of hospital stay will 
have on the hospital load and primary care visit frequency. The 
uncertainties of other parameters in the model, in particular the risk 
of hospitalisation of infected individuals, are taken into account by 
use of a Monte Carlo-type sensitivity analysis [18-20]. The output 
estimates of 10,000 such simulations are collected and presented 
so that probable and less probable outcomes are apparent. The 
objective is for the user to acquire an intuitive understanding for 
the assumptions behind the estimates. 

StatFlu can be downloaded and used freely from 
www.s-gem.se/statflu.
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Previous research
Meltzer et al. used Monte Carlo methods to express the uncertainty 

in a study to evaluate the economic impact of a pandemic influenza 
outbreak in the US [21]. Using predefined probability distributions 
they could model a range of estimates. Essential parameters for 
age group-specific attack rates were collected from various studies 
of outbreaks of seasonal and pandemic influenza. Parameters were 
assumed to be either triangular or uniform in their uncertainty 
distributions. The distributions were randomly sampled and used 
to calculate mean economic impact. Mean hospital admittance and 
mortality was calculated with 90% confidence bounds. They also 
compared results with and without the use of vaccination.

A similar setup was used in France by Doyle et al. with slightly 
different background variables and with a focus on hospital 
admittance and mortality [22]. Many parameters were taken from 
the study by Meltzer et al. Also in this study the authors compared 
scenarios with and without the use of intervention programmes, in 
this case both vaccination and antiviral pharmaceuticals.

Van Genugten et al. used detailed national data collected from 
seasonal influenzas [23]. Their approach was a scenario analysis. 
This approach is more pedagogical and the results are more readily 
applicable. The lack of sensitivity analysis means that only the 
expected outcome is shown of each scenario. Information on the 
variability of the output is not provided. This may or may not be 
problematic depending on the parameter values used.

A missing piece in the first two studies mentioned above is how 
the hospital load varies over time. It is important to point out that 
the predicted increase in patient load during a pandemic, whatever 
the degree of uncertainty, will not happen in one day. The frequency 
of visits will follow the epidemic incidence curve, which means 
that the estimated total increase cannot directly be translated into 
a required capacity.

Reasonable adjustments have been made to amend this. 
Bonmarin et al. [24] published a follow-up calculation to the 
French study, assuming the shape of the time function would be 
similar to that of previous seasonal influenza outbreaks as gathered 
from sentinel data. Van Genugten et al. included a time plot in the 
original study where the estimated attack rate was distributed along 
a Gaussian (normal) curve [23]. FluSurge also plots the output on 
a time axis, although it is not clear what the rationale behind their 
choice of algorithm is.

In the Results section of this paper, we compare output from 
StatFlu and FluSurge. In our opinion, the latter is flawed. We are 
concerned about the appearance of the admissions plot as well 
as some of the calculations concerning the death rate described 
in the manual [25]. Most importantly, however, FluSurge will give 
unexpected results unless the age group proportions in the target 
country or region matches those of the United States. Both Doyle 
et al. [22] and van Genugten et al. [23] have used data from 
Meltzer et al. without the flaw.

It should also be noted that the contribution of static 
models to understanding the effect of vaccination and antiviral 
pharmaceuticals is questionable. Usually, the effectiveness of the 
drug is quoted and used simply as a reduction factor on final 
outcome [21-23]. However, as with any intervention strategy, 
antiviral drugs (as prophylaxis or therapy) as well as vaccination, 
can at best completely halt the spread, but may also have an 
insignificant impact. The end result is in part due to chance, 
but more specifically, each prevented case will not spread the 
disease further and one dose can have a wide-reaching effect in 
the transmission chain. At the very least a pharmaceutical effect 
should be used, covering both the effectiveness of the drug and 
the dynamic effects. Due to the difficulty in this, we decided not 
to include the feature in the currently available release of StatFlu. 
However, users should be cautioned against the assumption that 
antiviral drugs and vaccines are not effective.

T a b l e  1

Variables used in StatFlu, their sources and implementation

Variable Description Source Uncertainty Implementation/treatment

Gross attack rate Fraction of population infected User-specified Hypothetical User-specified 5-50%

Duration of epidemic From first infected to last User-specified Hypothetical User-specified 10-150 days

Population Population in age groups 0-19, 20-
64, >64, by region Population register [37] High certainty Fixed, specified in text file

Duration of hospital visit Average length of treatment at 
hospital User-specified Attainable, partly 

hypothetical
User-specified for all ages 1-14 
days

Age group-dependent 
relative risk of infection User-specified Hypothetical Specified for age group relative 

to the other age groups

Size of risk group Fraction of age group at elevated 
risk for complications Provided by [35] Definition-dependent, 

attainable in theory
ca. 2% for the whole population; 
specified in text file

Risk of hospitalisation Risk per age and risk group of 
hospitalisation given infection

Provided by [30,32,33,38] and 
expert opinion, see Table 3 in [38] 

Uncertain, dependent 
on risk group definition

Sampled from beta-
distribution; hard-coded

For primary care load only

Primary care visits Yearly primary care visits per 
region under normal circumstances Provided by [39] High certainty Fixed, editable in text file

Hospitalisations associated 
with influenza-like illness

Hospital patients coded with 
influenza Provided by [35] Highly uncertain, 

coding-dependent Fixed, editable in text file

Risk of primary care visit Risk per age and risk group of 
hospitalisation given infection

Provided by [21,32,40] and expert 
opinion, see Table 3 in [38]

Uncertain, dependent 
on risk group definition

Sampled from beta-distribution, 
hard-coded

Fear factor Deterrence from primary care due 
to pandemic User-specified Hypothetical User-specified 0-40%
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Both Meltzer et al. and Doyle et al. provide estimates of incidence 
reduction following either vaccination or antiviral drugs. Wallinga 
et al. [26] have developed the model by van Genugten et al. with a 
dynamic model approach, further developed by Mylius et al. [27].

Aims of the StatFlu project
Our priorities in developing StatFlu were:
1. Pedagogical input and output,
2. Full time resolution,
3. Transparency,
4. Visualised variance/uncertainty combined with scenarios 

         analasys,
5. Independence from age distribution.

In our opinion, this work represents an improvement over previous 
attempts in terms of presentation and, in some aspects, of validity. 
It should be pointed out that the outcome is still highly uncertain 
and the intention with StatFlu is to highlight the uncertainty, not 
conceal it. There is still a danger that the user over-interprets the 
results. StatFlu is a tool for aiding intelligent decision-making, and 
the results must always be interpreted by the user based on input 
and experience.

In a recent version of the model an addition was made to 
provide figures for primary care load whereby we also explored 
the possibility of a decrease in load due to public awareness of 
transmission risk within the health care system. We call this the 
fear factor. Studies conducted during the epidemic of severe acute 
respiratory syndrome (SARS) support such assumptions [28,29]. 
A reduction in visits as large as 35% was seen in Taiwan during 
following the peak of the epidemic.

Methods
A detailed description of the model is given in a separate section 

at the end of the article.

Data and input
As much of the required epidemiological data is not available 

in Sweden, as far as we know, we have incorporated many of the 
figures found in Meltzer et al. [21], and references therein, into 
StatFlu, as we regarded this paper to be the standard in the field 
[30-34]. Results can therefore be compared with that of other 
studies based on the same parameters, differences resulting 
primarily from differences in demographics and less from 
differences in epidemiological assumptions. A summary of the 
variables used in StatFlu is given in Table 1.

Regarding the size of the risk groups in Sweden, we used the 
Swedish Hospital Discharge Diagnosis Register [35] for a rough 
estimate of the prevalence of certain chronic diseases including 
heart, kidney and lung disease that increase the risk of developing 
complications and being hospitalised subsequent to an influenza 
infection. These data are stratified by age, county and the number 
of distinct diagnoses. Our results may be considered low compared 
to estimates in other countries. 

In the estimation of the number of primary care visits we used 
data from the Swedish Hospital Discharge Diagnosis Register 
on influenza diagnosis in each county during a normal influenza 
season. We also included estimates on the total primary care visits, 
taken from Otterblad Olausson [36].

Estimates from Meltzer et al. used in our model included the risk 
of being hospitalised and visiting primary care depending on age 
group and risk group. We use the estimated lower and upper bounds 
including the conversion factor used to convert from population risk 
to risk among afflicted [21].

The users themselves enter the population size and demographics 
by selecting one of the predefined counties or the whole country. 
It is also possible to customize the demographics with data from 
other countries or regions by editing a text file. The user also sets 
the duration of the pandemic, the average duration of a hospital 
visit, the fear factor, and, as discussed in the introduction, the age 
group-dependent relative risk of infection. The user has at their 
disposal a flexible graphical user interface functional under the 
Windows operating system.

Table 1 shows the input variables used in the model, the details 
of which are described below in the Model section.

We used Swedish risk group estimates. Depending of the fear factor, in this 
case 20%, the curve may initially decrease due to deterrence of visiting the 
facilities for other reasons than severe influenza illness. 

F i g u r e  2

Example of primary care load output from StatFlu, i.e. visit 
frequency per day 
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F i g u r e  1

Example of hospital load output from StatFlu, i.e. 
simultaneously occupied hospital beds 

We used Swedish risk group estimates. Blue lines indicate 95% confidence 
intervals.
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Results 
Output of StatFlu and comparison with FluSurge
We provide here (Figure 1) sample outputs from StatFlu based 

on the whole Swedish population, using Swedish values for risk 
group distribution as described above, an attack rate of 25%, a 
duration of 90 days of the epidemic, and 10 days average time in 
hospital (full colour figures are available from the StatFlu website, 
www.s-gem.se/statflu). We also used the values from Meltzer et al. 
for age group-dependent relative risk of infection [21]. The most 
probable scenario estimates the number of simultaneously occupied 
beds to about 7,500 at the peak of the outbreak, at 28 days. 

Figure 2 shows the primary care visit load, i.e. the number of 
visitors per day. We set the fear factor to 20%, resulting in an 
initial decrease in the patient rate. 23 days into the outbreak, 
the increased rate of patients is just short of 50,000 in the most 
probable scenario.

For comparison with FluSurge we chose the same settings 
between the two applications as far as was possible. This included 
population size, attack rate, hospital visit duration and duration 
of pandemic. In StatFlu, we used values from Meltzer et al. for 
age group-dependent relative risk of infection [21]. We also used 
the risk group partition from Meltzer et al. In FluSurge we set 
the probability for intensive care unit and ventilator requirements 
to =0, because the types of care are not differentiated in the 
current version of StatFlu. The results are slightly higher than in 
the previous scenarios modelled for Sweden, probably due to the 
size of the risk groups (see Discussion).

Table 2 shows the weekly admission rate as modelled in 
FluSurge. The last row shows the number of patients in hospital, 
and these values can be compared to the plotted output from 
StatFlu in Figure 2. 

The two applications give similar estimates, as is to be expected 
in this comparison scenario. The daily distribution of admissions 
given by FluSurge is the interpolated curve in Figure 3. 

Figure 4 shows the corresponding plot from StatFlu accomplished 
by setting the duration of stay =1.

The results provided by StatFlu represent an improvement 
over FluSurge in terms of graphic display of the load and the 
uncertainty, the daily resolution of the results and the robustness 
of the calculations.

Discussion
Regarding the size of the risk groups in Sweden, we used the 

Swedish Hospital Discharge Diagnosis Register [35] for a rough 
estimate of people inflicted with certain chronic diseases including 
heart, kidney and lung disease. Persons so diagnosed were assumed 
to have an increased risk of developing complications and being 
hospitalised subsequent to an influenza infection. We calculated 
that roughly 2% of the population belong to the high-risk group. 
This in contrast to 15% in Meltzer et al. and 10% in van Genugten 
et al. [21,23]. The difference has to do with limiting the number 
of diseases included in the query, including persons over the age 
of 64 years based only on the discharge data in the high-risk group 
and not including pregnant women, infants and institutionalised 
persons. Meltzer et al., for example, included by default 40% of 
the population above the age of 65 years.

All individuals registered at a Swedish hospital during 2006 
with one or more of a predetermined set of symptoms or diseases 
were counted. Ultimately, our goal was to sample the entire 
population that had at one point in time carried such disease, i.e. 
the prevalence. The prevalence is generally very hard to estimate 
accurately without conducting a large scale study. We restricted our 
method to taking hospital discharge frequency to be an estimate 
of the prevalence. The sample period of one year was chosen 
arbitrarily. An extension of the sampling period would probably 
yield a higher number of cases but would also make it likely that a 
significant number is lost due to death during the sampling period.

It might be considered a flaw that we used many epidemiological 
parameters from an American study, as the relevant figures should 
reflect conditions for the nation in which they are applied. But 
the figures in Meltzer et al. [21] are boundary values reflecting a 
range of possible values. Based on these values we performed an 
uncertainty analysis as described above. As a benefit we have the 
opportunity to compare results with Meltzer et al. and all others 
using the same values.

Model 
Occupancy
We postulated that the pandemic incidence is normally 

(Gaussian) distributed over time, adopted from [23]. Notation is 
according to. 

This gives a symmetrical distribution with thin tails at either 
end. Adjusting the appearance to a more recognisable form can 
be accomplished by time substitution with a cubic spline, as 

T a b l e  2

Tabular weekly output data from FluSurge

Weeks 1 2 3 4 5 6 7 8 Total

Weekly admissions 2,027 3,379 5,068 6,420 6,420 5,068 3,379 2,027 33,789

Minimum scenario 893 1,489 2,233 2,829 2,829 2,233 1,489 893 14,889

Maximum scenario 2,667 4,446 6,669 8,447 8,447 6,669 4,446 2,667 44,458

Peak admissions/day 1,000 1,000

No. of influenza patients in hospital 2,027 4,299 6,602 8,721 9,438 9,182 7,296 5,038

The row “Number of patients in hospital”, corresponds to the curve from StatFlu plotted in Figure 2.
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explained below. As the incidence is normally distributed, so is 
the number of daily admissions. The procedure gives the curves a 
more recognisable form but may give false confidence in the output. 

As the incidence is normally distributed, so is the number 
of daily admissions. We have complete control of the mean and 

standard deviation of this distribution. The mean m is the point 
in time when the pandemic is expected to reach its peak. μ is the 
standard deviation and controls the horizontal distribution over the 
duration of the outbreak. A is a normalising constant. The duration 
of the pandemic, the average length of each hospitalisation and 
the risk of admission, given symptoms, are assumed independent 
of the attack rate. All these parameters are assumed given at the 
start and can be altered by the user.

The number of admissions during the period t1 till t2 is normally 
distributed according to

(1)

The total admittance during the pandemic, S, is the integral 
taken over the whole time axis which is shown to be .

The Gaussian is defined on an infinite axis in both directions, 
but we took the end of the epidemic te to be the point in time when 
the number of remaining admissions drops <1, i.e.

(2)

Symmetry similarly defines the start of the pandemic t0. Setting 
the peak of the epidemic to μ = te/2 and t0=0, σ can be extracted 
by solving the integral.

The hospital load was considered by introducing the average 
duration of each hospital visit into the model and calculating the 
number of simultaneously occupied hospital beds, the occupancy. 
Let τ be the average duration of each hospital visit. The number 
of simultaneously occupied hospital beds, the occupancy B(t), is 
then given by

(3)

Time substitution
The Gaussian distribution, though a good starting point and easy 

to manipulate mathematically, is decidedly not realistic enough 
with its symmetric shape. Epidemics are not symmetric. The most 
familiar shape is one that climbs quickly, almost exponentially, and 
reaches a peak before declining with a long tail. This is the shape 
that is generated by the standard SIR (Susceptible – Infectious – 
Recovered) model [41]. To accommodate the user’s expectations, 
we choose to manipulate the form to resemble something recognised 
from classical epidemic models, using a one-to-one function t � = 
g(t)  on the interval [t0,te]. This function must obey

g(t0) = 0
g(te) = te 
g’(t) = 1, t ≤ 0 and t > te 

in order not to change the tail values. The definite solution to 
the integral (1) now must carry with it a correction e. We chose a 
piecewise continuous spline:

F i g u r e  4

Daily admission rate in StatFlu along a more realistic 
epidemic curve, to be compared with Figure 3 
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F i g u r e  3

Hospital load in comparison scenario from StatFlu, to be 
compared to the output from FluSurge in Table 2 
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F i g u r e  5

The new incidence curve, a normal distribution with time 
substitution t �=g(t).

In
ci

de
nc

e

Incidence function

Time

1

0.2

0.4

0.6

0.8

0
0 0.2 0.4 0.6 0.8 1

AS σπ2=



6 	 EUROSURVEILLANCE  Vol .  14 ·  Issue 26 ·  2  July  2009 ·  www.eurosurveillance.org

g(t) = t,				    t ≤ t0 and t ≥ te
g(t) = -2.9t3 + 1.8t2 + t,		  t0 < t ≤ .4te
g(t) = 1.9t3 - 1.7t2 + t +.50,		  .4te < t ≤ .74te
g(t) = 8.2t3 + .21t2 +.53t +.73,		  .74te < t ≤ .94te
g(t) = -112t3 + .5.1t2 +1.6t +.91,	 .94te < t ≤ te
 
A correction was calculated numerically for feasible integer 

values of te ensuring that the total number of cases remains 
constant. The resulting distribution is depicted in Figure 5.

The other definitions in the previous sections were redefined by 
replacing t with t�.

The time substitution is implemented in the current release of 
StatFlu without the possibility to turn it off. This possibility will be 
an important amendment to upcoming releases, to make sure the 
user recognises the artificiality of this approach. Otherwise, there 
is a danger of too much confidence in the graph.

Monte Carlo simulation
The uncertainty in the risk of succumbing to illness upon 

infection and being admitted to hospital is modelled using a beta-
distribution over a given uncertainty interval (see introduction). 
The beta-distribution was chosen for its applications in Bayesian 
sensitivity analyses [42], opening the possibility of creating a 
distribution based on point value estimates of risks from an expert 
panel. The intervals are specific for each combination of age group 
and risk group, six in total. 10,000 random values are picked from 
each distribution producing a value for the total admittance, S, 
according to equation (1). This value in turn is used to calculate 
according to equation (2).

It should be noted that the values from the size distributions 
are coupled, i.e. not considered independent. More specifically 
this entails that a single value is picked randomly from a uniform 
distribution and then transformed to each of the six beta-
distributions, giving rise to six different value of risk for admission. 
The admittance is calculated separately and then added. The 
purpose of the coupling is done to minimise the variance and is 
justified by the fact that the uncertainty in the risk of admission 
originates in our ignorance. It is less probable that we overestimate 
the risk for one group and at the same time underestimate it for 
another [18-20,42]. 

Numerical model
A number of measures have been taken to maximise the speed of 

calculation, making StatFlu quite efficient. Despite the complexity 
of the numerical calculations, it is the graphic output that proves 
to be the major bottle neck.

σ is calculated for 10,000 values of admittance originating from 
a beta-distribution. First the attendance values are sorted. A large 
repository of random beta distributed values comes pre-calculated 
for each age/risk group and σ according to equation (2) is solved 
numerically by StatFlu using binary search. A standardised normal 
distribution is read from file as a lookup table with a resolution of 
10-4 for parameter t<10. The table is searched using binary search 
down to the two closest t values and then linearly interpolated 
between them. The s values are calculated from both ends of the 
sorted list. The results of the previous calculation can thereby be 
exploited to narrow even further the binary search interval.

The σ values are then binned to desired resolution. The central 
values in the bins are what produces the plotted curves, in other 
words the integration in equation (3) is made for these central 
values only. The integrations are carried out with Simpson’s formula 

with a resolution of hospital visit length τ =1 day. By saving 
intermediate partial results, all the integrations can be carried out 
in a single sweep.

Primary care and fear factor
StatFlu also outputs the expected increase in primary care visits 

during an influenza pandemic. These calculations work along the 
same lines as hospital load. The main difference is that a visit 
to a primary care unit does not have duration as such. We have 
also included the concept of deterrence from approaching the 
health care system as a consequence of a pandemic scare, the so 
called fear factor, α. Studies conducted during the SARS-epidemic 
support such assumptions [28,29]. A reduction in visits as large 
as 35% was seen in Taiwan following the peak of the epidemic. 
The effect of the fear factor is to attenuate the increase of primary 
care visits. The fear factor is set by the user, between 0% and 
40%. The total resulting reduction is distributed over the whole 
duration, linearly increasing up to the peak of the pandemic and 
then decreasing to zero again.

If μ0 is the probability of visiting a primary care unit given 
disease, excluding those with influenza, μi0 is the same risk 
including influenza, and N and Ni is the population at risk of 
disease including and excluding influenza, the total number of 
primary care visits can be expressed as:

(4)		  n0 = (N - Ni) μ0 + Niμi0.

We might as well assume that the whole population is at risk for 
disease, thereby setting N to the population size. We also know the 
frequency of primary care visits [36]. The frequency of primary care 
visits due to symptoms of influenza-like illness (ILI) is estimated 
using the number of admitted with ILI symptoms and the associated 
risk given in Meltzer et al. [21]. The unknown risk mi0 can now be 
extracted from the above expression (4).

During a pandemic we assume that m0 and indeed also mi0 are 
valid, modified by the fear factor a:

(5)		  np = (N - Nip) μ0α + Nipμi0α. 

As detailed in the section on Monte Carlo simulation, we form a 
beta-distribution for the uncertainties in m0 and mi0. The difference 
in primary care visits in the pandemic versus non-pandemic case is 
np - n0. This value will be different for all combinations of age group 
and risk group. We calculate, as before, each of these separately 
and then sum them up. The result is treated in the same way as 
the total admittance S in the subsection on occupancy, including 
time substitution and distribution over time. The difference is that 
the visit does not have duration in time in the sense that the value 
on the graph should be interpreted as visits per day. Hospital visit 
duration τ is always set =1.

What remains to be explained is how the fear factor a is treated 
over time. To assume a constant fear factor would merely offset the 
output curve downwards – a clearly unrealistic immediate cut in 
primary care visit frequency from the first day of the pandemic. We 
have opted for a model where the reduction is increases linearly to 
peak at the same time as the incidence, and then decreases to zero 
again. To this end we calculate the total reduction due to the fear 
factor and distribute it accordingly over time. Finally we subtract 
this function from the output number of primary care visits. The fear 
factor model makes it possible for the curve to increase initially, but 
to decrease, even below zero, towards the epidemic peak.
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