
www.eurosurveillance.org

Vol. 15  |  Weekly issue 10  |  11 March 2010

E u r o p e ’ s  l e a d i n g  j o u r n a l  o n  i n f e c t i o u s  d i s e a s e  e p i d e m i o l o g y,  p r e v e n t i o n  a n d  c o n t r o l

Editorials 

A perspective on emerging mosquito and phlebotomine-borne diseases in Europe  2
by G Hendrickx, R Lancelot

Review articles 

West Nile virus in Europe: understanding the present to gauge the future  4
by P Reiter

Yellow fever and dengue: a threat to Europe?  11
by P Reiter

Rift Valley fever - a threat for Europe? 18 
by V Chevalier, M Pépin, L Plée, R Lancelot

Leishmaniasis emergence in Europe  29
by PD Ready

Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review  40
by J Depaquit, M Grandadam, F Fouque, P Andry, C Peyrefitte

Perspectives 

Crimean-Congo hemorrhagic fever in Europe: current situation calls for preparedness  48
by HC Maltezou, L Andonova, R Andraghetti, M Bouloy, O Ergonul, F Jongejan, N Kalvatchev, S Nichol, M 
Niedrig, A Platonov, G Thomson, K Leitmeyer, H Zeller



2 www.eurosurveillance.org

Editorials

A perspective on emerging mosquito and phlebotomine-
borne diseases in Europe

G Hendrickx (info@avia-gis.be)1, R Lancelot2

1. Avia-GIS, Agro-Veterinary Information and Analysis, Zoersel, Belgium
2. CIRAD, French Agricultural Research Centre for International Development, UMR CMAEE (Control of emerging and exotic animal  
 diseases), Montpellier, France

Citation style for this article: 
Citation style for this article: Hendrickx G, Lancelot R. A perspective on emerging mosquito and phlebotomine-borne diseases in Europe. Euro Surveill. 
2010;15(10):pii=19503. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19503

This article has been published on 11 March 2010

Emerging infectious diseases are of increasing con-
cern worldwide and in particular in Europe. In a review, 
Jones et al. have shown that between 1940 and 2004, 
the majority of emerging infectious diseases occurred 
in areas with both a high mobility and high density of 
population, notably in Western Europe. Furthermore, 
nearly a third (29%) of the recorded events related to 
emerging infectious diseases were due to vector-borne 
diseases during the decade 1990-2000[1]. 

This issue of Eurosurveillance presents a series of 
review articles with a particular focus on arthropod-
borne diseases transmitted by mosquitoes and phle-
botomine sandflies. Each of the papers addresses a 
series of issues of common interest such as the rel-
evance of the disease in the given context, its trans-
mission and  epidemiology, including  the current 
geographical distribution, and clinical symptoms, 
diagnostic methods, treatment strategies and preven-
tion methods. Furthermore, the papers describe fac-
tors triggering changes in distribution of the vectors 
and disease and risk prediction models. 

A review on West Nile virus by Reiter includes a fresh 
and innovative viewpoint on the epidemiology and 
transmission of the disease [2], and the same author 
contributed further with a twin-review on two dis-
eases which have much in common: yellow fever and 
dengue [3]. Most importantly, both have a history of 
occurrence in Europe and vectors and pathogens are 
spreading through increased movement of persons and 
transport of goods. Chevalier et al. present a review on 
Rift Valley fever a mosquito-borne disease at Europe’s 
fringes. The epidemiology of Rift Valley fever is fasci-
nating because of its complex cycle where the virus 
may remain dormant for many years and outbreaks 
involve both vector related and direct transmission. 
The disease may become a risk in the future in coun-
tries bordering the Mediterranean Sea, mainly through 
increased livestock trade.

Two authors have contributed reviews on viruses trans-
mitted by phlebotomine sandflies. Ready has written 

about Leishmania, a parasite of particular relevance 
to Europe because it is currently established around 
the Mediterranean Sea, but known to be spreading 
north [4]. Depaquit et al. have contributed a review on 
a number of less well known Phlebo-, Vesiculo- and 
Orbiviruses such as Sandfly fever Sicilian and Naples 
virus, Toscana virus Chandipura virus and others that 
are transmitted by sandflies in Europe and more spe-
cifically around the Mediterranean Sea [5]. The paper 
summarizes the current knowledge on these viruses 
which have a potential to spread throughout the dis-
tribution zone of their phlebotomine vectors in Europe. 
Both reviews provide a series of maps displaying 
country based information on the distribution of the 
disease.

In addition to these papers, the issue features a per-
spective paper by Maltezou et al. presenting the 
present situation of Crimean-Congo hemorrhagic fever, 
a tick-borne disease, in Europe and emphasizing rele-
vant aspects for preparedness concerning the potential 
spread of this disease in Europe in the future [6].

As will become clear from reading these reviews, often 
crucial knowledge is still missing which is needed to 
anticipate, prevent or prepare for the establishment 
and spread of vector-borne diseases. One of these is 
reliable information on the continent wide distribu-
tion of potential disease vectors. National presence-
absence maps, as shown by Ready [4] and Depaquit 
[5] are a first step in this direction and need further 
refinement.

In 2007-08, the European Centre for Disease Prevention 
and Control funded the V-borne project with the aim to 
identify and document vector-borne diseases relevant 
for public health in Europe, provide an overview of 
the existing relevant resources, carry out a qualitative 
multi-disciplinary risk assessment within the limits of 
the available information and data, and identify priori-
ties for future prevention and control of vector borne 
diseases in Europe. Building on the expertise from 
this network, ECDC created a European network for 
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arthropod vector surveillance for human public health, 
the VBORNET in 2009 [7]. The network will establish 
pan-European state of the art maps of validated vec-
tor distributions that can be used as basis for risk 
assessment studies thus contributing to preparedness 
for the emerge or re-emerge of vector-borne disease in 
Europe.
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The appearance of West Nile virus in New York in 1999 
and the unprecedented panzootic that followed, have 
stimulated a major research effort in the western hem-
isphere and a new interest in the presence of this virus 
in the Old World. This review considers current under-
standing of the natural history of this pathogen, with 
particular regard to transmission in Europe.

Background 
West Nile virus (WNV) is by far the most widely distrib-
uted arbovirus. It belongs to the Japanese encephalitis 
antigenic complex of the family Flaviviridae, trans-
mitted in an avian cycle by ornithophilic mosquitoes, 
chiefly of the genus Culex [1]. Mammals can also be 
infected, but are considered dead end hosts because 
viraemia is generally too low to infect mosquitoes [2].

Mosquitoes acquire infection by feeding on a virae-
mic host. Virus passes through the gut wall into the 
haemolymph, the ‘blood’ of the insect, after which rep-
lication occurs in most of the internal tissues. When 
the salivary glands are infected, the virus can pass to a 
new host via saliva injected into the skin by the insect 
when it takes a blood meal. The period from the infec-
tive blood meal to infectivity, the extrinsic incubation 
period, lasts 10-14 days depending on temperature. 
Ornithophilic vectors that also bite and infect mam-
mals, including humans, are termed bridge vectors. 

Human infections attributable to WNV have been 
reported in many countries in the Old World for more 
than 50 years [3-5]. In recent years these have included 
Algeria 1994 (eight deaths) [6], Romania 1996-2000 
(21 deaths) [7], Tunisia 1997 (eight deaths) [8], Russia 
1999 (40 deaths) [9], Israel 2000 (42 deaths) [10], and 
Sudan 2004 (four deaths) [11]. By far the largest out-
breaks occurred in Bucharest in 1996 (393 hospitalised 
cases, 17 deaths) and Volgograd in 1999 (826 hospital-
ised cases, 40 deaths). Both occurred in urban areas 
and were associated with cellars flooded with sewage-
polluted water in poorly maintained apartment blocks, 
a highly productive breeding site for an effective vec-
tor, Culex pipiens [7,9,12]. Outbreaks on this scale have 
also occurred in Israel [13]. All three sites are on major 
migratory routes of birds that overwinter in Africa.

In its original range, WNV is enzootic throughout Africa, 
parts of Europe, Asia and Australia, but it received lit-
tle attention until 1999, when a topotype circulating 
in Tunisia and Israel appeared in the Bronx, New York 
[14,15], probably imported in a live bird. The epizootic 
that followed was spectacular and unprecedented: 
within five years, the virus appeared ubiquitous, some-
times common, in nearly all counties of every state east 
of the Rocky Mountains, as well as parts of western 
Nevada and southern California. Sizeable outbreaks 
were also observed in six Canadian provinces. It is now 
widely established from Canada to Venezuela. To date 
(1999-2009), 29,606 clinical cases and 1,423 deaths 
have been reported in humans, and more than 27,000 
cases in horses, with a case fatality rate of about 33% 
[16]. Two thirds of the horse population in the United 
States are now vaccinated, but no vaccine is available 
for humans.

The virus
Two lineages of WNV are widely recognised that are 
about 30% divergent [14]. Lineage I includes WNV 
strains from Africa, the Middle East, Europe, India, 
Australia (formerly Kunjin virus) and the Americas. 
The close relationship between isolates from Kenya, 
Romania and Senegal are evidence of the geographic 
mobility of the virus in migratory birds [17]. The virus 
isolated in the Bronx, New York in 1999 was closely 
related to Lineage I strains circulating in Israel and 
Tunisia a year earlier [18] and most probably imported 
in a wild bird. Until recently, all isolates of Lineage II 
were from Sub-Saharan Africa and Madagascar, but in 
2004, it was isolated from a goshawk in Hungary, and 
from several birds of prey in 2005 [19]. 

At least five new lineages have been proposed for 
strains isolated in central Europe, Russia and India [20-
23]. This is not surprising, given that the original range 
of the virus spans Europe, Africa, Asia and Australia, 
the increasing accessibility of sequencing technol-
ogy, and the enormous interest in the virus since its 
appearance in North America. Lastly, a new genotype 
was identified in the US in 2003 and may now be the 
dominant strain in North America [24,25]. 
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Pathology
Only a small portion of human infections are sympto-
matic, with the headache, tiredness, body aches and 
swollen lymph glands typical of many febrile diseases. 
Occasionally there is an abdominal rash. About one 
in 150 patients develop one or multiple indicators of 
neuro-invasive disease; neck stiffness, stupor, diso-
rientation, coma, tremors, convulsions, muscle weak-
ness, and paralysis. This can occur in people of any age, 
but those over 50 years are at highest risk [26]. In the 
past five years, 4.8% of laboratory-confirmed clinical 
infections reported in the US were fatal. Symptomatic 
infections in horses are also rare and generally mild, 
but can cause neurologic disease including fatal 
encephalomyelitis [27]. 

In the Old World, mortality in birds associated with 
WNV infection is rare [28], although significant num-
bers of storks and domestic geese died during epizoot-
ics in Israel [29]. In striking contrast, the virus is highly 
pathogenic for New World birds; the appearance of 
large numbers of dead or dying birds is often an indica-
tor of local transmission [30]. In the early days follow-
ing appearance of the virus in the US, it appeared that 
members of the crow family (Corvidae) were particu-
larly susceptible, but virus has been detected in dead 
and dying birds of more than 250 species – with virae-
mia as high as 109 pfu/ml – as well as various species 
of mammals and even in alligators [1]. In rural Europe, 
in the absence of large-scale bird mortality, neurologic 
symptoms in horses are often the sole indication of 
local presence of the virus. 

Vectors
Mosquitoes of the genus Culex are generally considered 
the principal vectors of WNV, both in the Old World and 
in the Americas. Studies with bird-baited traps in the 
wetlands of Mediterranean Europe indicate four such 
species are dominant. For example, in a region of the 
Danube delta that has enormous populations of resi-
dent and migrant birds, 82% of mosquito captures in 
2008 (>10,000 mosquitoes, 17 species) were of three 
species: Cx. pipiens (44%), Cx. torrentium (27%) and 
Cx. modestus (11%). Coquillettidia richardii (14%) and 
Anopheles maculipennis (3%) made up all but 1% of the 
remaining species (F-L Prioteasa, personal communica-
tion). In contrast, Cx. modestus and C. richardii were 
the dominant species captured on humans in the same 
area (35% and 34%, respectively), while Cx. pipiens 
was one of five species that contributed less than 2% 
of the catch. On the other hand, 93% of all mosquitoes 
captured by bird-baited traps in a village were Cx. pipi-
ens, 5% were Cx. torrentium, and neither Cx. modestus 
nor C. richardii were present. Similarly, in many urban 
areas, Cx. pipiens is the dominant species, and blood-
meal analysis confirms that it is highly ornithophilic 
[31]. These data illustrate the complex relationship 
between abundance, species composition, host pref-
erence and vector competence. It has been suggested 
that a decline in bird populations in the autumn migra-
tion season augments the incidence of mammal-biting, 

but this is not borne out by field studies in Chicago, 
Illinois, an area of intense transmission [32]. 

In a study in the Danube delta study WNV was indi-
cated by RAMP kit (Response BiomedicaL Corporation, 
Canada; a commercial kit based on WNV-specific anti-
bodies with high specificity and sensitivity, [33,34]) 
in 14 pools of mosquitoes: 11 of Cx. pipiens, two of
Cx. torrentium and one of An. maculipennis (F-L 
Prioteasa, personal communication). In a laboratory 
study of mosquitoes from the Rhone delta, France, 
infection and transmission rates were 89.2% and 
54.5%, respectively, for Cx. modestus, and 38.5% and 
15.8%, respectively, for Cx. pipiens [35,36]. Coupled 
with this high potential as a vector, Cx. modestus is 
abundant in reed-beds that are very probably an impor-
tant ecotope for WNV transmission.
 
In New York following the appearance of the virus in 
the US, WNV RNA was detected in three pools of over-
wintering Cx. pipiens, and virus was isolated from 
one of these [37]. In the Czech Republic, virus was 
detected in overwintering Cx. pipiens by PCR, but not 
confirmed by isolation (Z Hubalek and Iwo Rolf, per-
sonal communication), and in the Danube delta region, 
four pools of Cx. pipiens and one of An. maculipennis 
tested positive by RAMP (F-L Prioteasa, personal com-
munication). These results, although not confirmed by 
virus isolation, are particularly interesting because a 
field study of Culex species in Massachusetts, US, con-
firmed that females do not feed on blood before over-
wintering (P. Reiter, unpublished data). This implies 
that these insects acquire their infection by vertical 
transmission between generations via the egg stage. 
Moreover, in the spring of the year of the study, a few 
days after mosquitoes had exited their overwintering 
sites, a number of WNV-positive crows were collected 
in a neighbouring states, circumstantial evidence that 
infected overwintering females had transmitted virus 
to these birds in their first (post-winter) blood meal. 
Lastly, WNV has been isolated from male Cx. pipiens in 
Connecticut, US, further evidence of vertical transmis-
sion [38], and from larvae of Cx. univittatus s.l. in the 
Rift Valley, Kenya [39].

Transmission between vertebrates
In a landmark study, 25 bird species representing 
17 families and 10 orders were exposed to WNV by 
infectious mosquito bite. Only four of 87 individuals 
did not develop a detectable viraemia [40]. The most 
competent species, judged by magnitude and dura-
tion of viraemia, were passerines (perching birds, 11 
species, including members of the crow family) and 
charadriiformes (a wader and a gull). In surviving 
birds, the infection persisted in certain organs in 16 
of 41 infected birds until euthanised on day 14 after 
infection. In addition, five of 15 species (representing 
11 families) became infected when virus was placed in 
the back of the oral cavity (either in suspension or as 
a single infected mosquito) and crows were infected 
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when fed a dead infected sparrow. Furthermore, virus 
was observed in the faeces of 17 of 24 species and in 
the oral cavity of 12 of 14 species for up to 10 days after 
infection. Moreover, contact transmission between 
cage mates was observed in four species. In summary, 
birds can be infected by a variety of routes other than 
mosquito bites, and different species may have differ-
ent potential for maintaining the transmission cycle. 

In the light of this complexity, the spectacular con-
quest of the New World by WNV demands attention. 
Mosquito-borne transmission involves both the extrin-
sic and intrinsic incubation periods; even at high ambi-
ent temperatures this takes a minimum of 10-14 days, 
so it is hard to imagine that the virus could have tra-
versed an entire continent in a period of four or five 
summers by this mechanism alone. Importation by 
infected migrant birds returning from their overwinter-
ing grounds could explain the distribution. Indeed, a 
new region of transmission, separate from the northern 
states, did appear in Florida and adjoining states two 
years after the initial New York infestation, presumably 
introduced by infected migrant birds, but thereafter the 
virus progressed rapidly westward along a broad front 
stretching from Canada to the Gulf of Mexico [41]. By 
2003, by far the majority of counties east of the Rocky 
Mountains had reported confirmed WNV-positive dying 
birds. 

An alternative explanation for dispersal rests on oral 
infection: crows are scavengers and feed on carrion, 
including dead crows. They are social birds, roost in 
large crowded colonies, have a wide daily dispersal 
range of up to 20 km in all directions, and their feed-
ing grounds overlap with crows from other roosts. They 
also exhibit “kin-based cooperative breeding” in which 
grown offspring remain with their parents to rear new 
young [42]. It is conceivable that: (i) crows that die away 
from their roost relay virus by oral infection to birds 
from neighbouring roosts; (ii) faecal-oral transmission 
is significant in crowded roosts, (iii) crows feeding on 
carcasses of other infected species/animals introduce 
the infection to others in their roosts, and (iv) virae-
mic adult and juvenile birds infect nestlings per os. In 
this way, bird-to-bird transmission, particularly among 
social birds, could be a major, even the principal driver 
of amplification and dispersal, with mosquito-borne 
transmission active at the local level. Modelling stud-
ies give some support for this hypothesis [43].

There is also good evidence that oral and faecal-oral 
infection may be important in transmission dynamics 
in other species. In the New World, mortality in many 
species of raptors is out of all proportion to their abun-
dance in nature [44-46]. Fatal infections in Imperial 
Eagles in Spain and goshawks in Hungary [47], high 
seroprevalence in kestrels in Egypt [48], and high mor-
tality in flocks of domestic geese in Israel [49] and 
Hungary [47] point to the same mechanism. 

Oral infection is not limited to consumption of dead 
or dying birds. For example, adult hamsters are read-
ily infected by ingestion of infected material as well as 
by mosquito bite [50]. In these animals, virus is rapidly 
cleared from the blood, but can survive in the central 
nervous system for at least 86 days [51]. Moreover, as 
a chronic renal infection, virus is excreted in the urine 
for at least eight months [52]. Thus, even if viraemia 
in mammals is insufficient to infect mosquitoes, it may 
still contribute to infection of scavengers and raptors. 
Circumstantial evidence for this may be the high mor-
tality of owls, which largely feed on nocturnal rodents 
and other small mammals. For example, an epizootic 
of 64 dead or dying Great Horned Owls received by a 
wildlife rehabitation centre in Ohio in the space of six 
weeks was attributed to WNV [53], and there are simi-
lar reports from other sites in the US. Lastly, large die-
off in an alligator farm in Georgia has been attributed 
to the alligators’ diet of horse meat [54]. 

In the 1950s, up to 100% of hooded crows (Corvus cor-
one sardonius) and more than 80% of the human popu-
lation sampled in a group of villages at the southern 
end of the Nile delta, 50 km north of Cairo, Egypt, were 
seropositive for WNV, and more than 80% of the human 
population were also seropositive [55]. Laboratory 
studies confirmed that the birds were highly suscep-
tible to WNV infection with consistently high titres of 
viraemia. The African species is not markedly social in 
habits, but it may be that, as in the New World, car-
rion feeding contributes to the high infection rate, and 
it is tempting to speculate that the virus is particularly 
adapted to corvids and raptors. Moreover, these birds 
feed by tearing shreds of meat from carrion or prey and 
packing them into a large storage bolus in the crop, 
after which fragments of the bolus are moved, piece 
by piece, to the stomach. Virus will be destroyed by 
the low pH of the stomach, but presumably until then, 
infection can occur by contact with the walls of the 
crop. 

The contrast in pathogenicity between the Old and the 
New World is indicative of a long association between 
the virus and its avian hosts in its original range. 
Indeed, bird species with low mortality in the Americas 
are those that, like the virus, are exotics imported from 
the Old World. In this context, there is a clear parallel 
with another Old World flavivirus, yellow fever virus, 
which was transported to the Americas from Africa in 
the slave trade. In its original range, infections in wild 
primates, the enzootic hosts, are asymptomatic, but 
in the Americas, the virus is lethal to monkeys; local 
inhabitants recognise an epizootic when the rain for-
est goes ‘silent’ because of mass mortality among 
Howler monkeys. In both cases, the introduction of 
an exotic zoonotic virus that is not pathogenic in its 
original range (presumably because it has a long his-
tory of contact with its hosts) has had a catastrophic 
impact on the local fauna in its new habitat. This is an 
important point: it is probably inappropriate to suggest 
that WNV will emerge as a serious pathogen in the Old 
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World on the basis of what has happened in the past 
decade in the Americas.

Bird migration
In a serosurvey along the entire Nile valley, from south-
ern Sudan to the Nile delta, seropositive humans were 
present at 39 of 40 locations [48]. The river is one of 
the world’s major routes for migrating birds, and the 
continuation of this flyway into Europe, via the Levant, 
the Bosporus and into eastern Europe, is a pathway 
with a consistent history of equine and human cases of 
WNV. Indeed, more than 130 records of suspected and 
confirmed WNV infection, dating back to the 1950s, 
have recently been collected from archives of health 
reports in Romania (G. Nicolescu, personal communi-
cation). It is interesting, however, that although the 
seasonal pattern of West Nile fever cases in Egypt and 
Romania is roughly synchronous, the seroprevalence 
data suggest a much higher and more consistent rate 
of transmission south of the Mediterranean. Moreover, 
the Nile valley study, there was little indication of sig-
nificant mortality in humans; WNV appeared to be a 
childhood infection and the majority of people in older 
cohorts, who are more vulnerable to central nervous 
system complications, were already immune.

In a study of 25 species of birds captured in the 
Guadilquivir delta, southern Spain, trans-Saharan 
migrant species had higher seroprevalence and 
higher antibody titres than resident and short-dis-
tance migrants, evidence that the migrants are prima-
rily exposed to WNV in areas with higher circulation 
of virus, rather than in Europe. Indeed, a study in 
Senegal, where several of these species overwinter, 
revealed seroprevalence in horses as high as 90% [56], 
recalling the high seroprevalence observed along the 
river Nile [48]. An interesting point regards infections 
in horses: morbidity and mortality has not been docu-
mented in Egypt or Senegal, perhaps an indication of 
innate immunocompetence in areas of high circulation. 
The same may to apply to Romania, which has a popu-
lation of about a million horses but little evidence of 
symptomatic infections. 

Transport of virus
As already stated, commonality between viral 
sequences in different geographic areas is clear evi-
dence of transportation in birds. This raises the ques-
tion: how is it possible that a bird, in which viraemia 
lasts at most seven our eight days, can carry virus over 
distances of thousands of kilometres in a flight that 
lasts many weeks? The simplest explanation is that 
migrants en route have refuelling stops where they rest 
and feed before continuing their journey; at these sites, 
virus could be transmitted between migrants, and to 
local resident species, so that stopovers become foci 
of infection. This is plausible at certain sites, for exam-
ple at desert oases, but transmission in, for example, 
the Nile valley occurs in mid-summer, after the pas-
sage of spring migrants [48]. An alternative explana-
tion is that ectoparasites, such as hippoboscids and 

ticks, may constitute the real reservoir, carrying the 
virus on their avian hosts, and somehow transferring 
it to new birds at the migration destination. Lastly, it 
has been suggested that migration is stressful, and 
that this stress may cause a recrudescence of virus in 
birds with chronic infection. There is no physiological 
evidence for such stress, and indeed corticosterone 
levels rise after migration is complete [57]. Moreover, it 
is unlikely that viraemia in immunocompromised birds 
would attain levels sufficient to infect mosquitoes. A 
more likely possibility is that latent virus enters the 
transmission cycles when migrants are consumed by 
scavengers or raptors, or when feeding their young.

Vector control
In the US, ultra-low-volume fogging with adulticidal 
aerosols of insecticides delivered from road vehicles is 
widely used to combat WNV vectors and nuisance mos-
quitoes in residential areas. Unfortunately, the efficacy 
of this technique is affected by spacing between build-
ings, distance between roads, amount and type of veg-
etation, wind, convection and many other factors, and 
realistic field evaluations have given markedly variable 
results [58,59]. Moreover, aerosols do not affect the 
aquatic stages of the insects, and mortality of adults is 
restricted to those that are in flight and exposed in the 
short time, a matter of minutes, that the aerosol is air-
borne in lethal concentrations. For this and many other 
reasons, the epidemiological impact of fogging is hard 
to assess [60], and may be minor at best.

In Europe, most transmission is associated with wet-
land areas of high biodiversity where, apart from dif-
ficulty of access, the use of insecticides is undesirable. 
In urban areas, a logical approach is the elimination 
of larval habitat. Graded drainage systems and other 
measures of basic sanitation are key to eliminating 
the problem at source, but this is not always straight-
forward. For example, water in catch-basins (settling 
tanks below street-drains) can be a major source of 
Cx. pipiens during dry weather, but they are difficult to 
treat effectively because they are flushed by rainfall. 
The problem in poorly constructed apartment build-
ings, such as occurred in Bucharest, will require major 
reconstruction. 

Weather and WNV recrudescence
A great deal of attention has been paid to the potential 
impact of climate change on the prevalence and inci-
dence of mosquito-borne disease [61]. Given that WNV 
is rarely evident in the Old World, however, it is hard 
to assess the role of climatic factors in its transmis-
sion. In this context it is therefore pertinent to review 
knowledge about Saint Louis encephalitis virus (SLEV), 
a closely related counterpart in the New World that has 
been the subject of research in the Americas since the 
1930s, for the similarities to WNV are striking:

•	  Both are flaviviruses in the Japanese encephalitis 
complex. 
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•	  Both are transmitted between birds by orni-
thophilic mosquitoes, mainly of the genus Culex. 

•	  Transmission of SLEV is rarely evident because 
infections in birds are asymptomatic, as is the 
case with WNV in the Old World. 

•	  As in Europe, urban epidemics of Saint Louis 
encephalitis have occurred in areas of poor sani-
tation, where sewage-polluted ditches and other 
collections of organically rich water lead to large 
numbers of Culex mosquitoes. 

•	  Infection of humans and horses can cause encepha-
litis, sometimes fatal. 

•	  Mammals appear to be dead-end hosts; viraemia is 
insufficient to infect mosquitoes. 

In common with WNV and indeed many other arbovi-
ruses, SLEV can remain undetected over long periods 
of time. It is only at erratic intervals, sometimes sepa-
rated by several decades,  that a sudden recrudescence 
is observed, occasionally developing into a significant 
epizootic. For example, the last major outbreak of 
Saint Louis encephalitis in North America was in 1976, 
yet despite a massive increase in surveillance of mos-
quitoes and birds for WNV (with simultaneous testing 
for SLEV), only a few small outbreaks have been docu-
mented in the past 25 years. 

Attempts have been made to associate Saint Louis 
encephalitis outbreaks with specific weather condi-
tions. In regions of the US where Cx. pipiens and a sec-
ond species, Cx. restuans, are the principal vectors, a 
pattern of mild winters, cold wet springs and hot dry 
summers has been associated with epizootics and 
human cases [62]. In the period since the first major 
epidemics to be recognised (more than 1,000 cases in 
St. Louis, Missouri, in neighbourhoods with primitive 
sanitation and extensive sewage-polluted ditches in 
1932 and 1933) the pattern holds true for some, but by 
no means all outbreaks, nor for years with such con-
ditions but no outbreaks. Hot dry summers are liable 
to result in large accumulations of organically pol-
luted stagnant water, favoured breeding habitat for 
Cx. pipiens, but although a number of summers have 
fitted this description since the appearance of WNV, 
and despite an enormous increase in vigilance for 
WNV, evidence of SLEV transmission has been unusu-
ally low. Similarly in Europe, the summers of 1996 and 
1999 were unusually hot and dry and coincided with 
outbreaks in Bucharest and Volgograd, but even hot-
ter and drier years have occurred since then without 
any accompanying transmission. In short, the causes 
for recrudescence of both viruses remain enigmatic, 
and it may well be impossible to associate periods of 
transmission with specific patterns of weather. Indeed, 
given that the cradle of transmission is almost certainly 
south of the Sahara, we may need to look to the African 
continent for clues; transmission in Europe may repre-
sent the tip of the iceberg which has its main mass in 
the tropics. 

Future of WNV in Europe
As already stated, the spectacular panzootic of WNV 
in the Americas has drawn attention to this virus, 
and it has been suggested that it is also an emerg-
ing pathogen in the Old World. It is important to put 
this into perspective: even if we include the urban out-
breaks in Romania and Russia, less than 200 deaths 
in humans have been recorded over the past decade, 
and the number of equine cases is in the same order of 
magnitude. While it is true that an increasing number 
of small outbreaks, mainly among horses, have been 
reported, at least part of this increase was probably 
due to increased awareness of the virus, and major 
improvements in surveillance and diagnostic facilities. 

One point is clear: the importation and establishment 
of vector-borne pathogens that have a relatively low 
profile in their current habitat is a serious danger to 
Europe and throughout the world. It is a direct result of 
the revolution of transport technologies and increasing 
global trade that has taken place in the past three dec-
ades. Modern examples include the global circulation 
of dengue virus serotypes [63], the intercontinental 
dissemination of Aedes albopictus and other mosqui-
toes in used tires [64,65], the epidemic of chikungunya 
virus in Italy [66], and the importation of bluetongue 
virus and trypanosomiasis into Europe [67,68]. Thus, if 
for example SLEV were to be introduced into the Old 
World, there is every reason to believe that it would 
spark a panzootic analogous to that of WNV in the 
western hemisphere. In short, globalisation is poten-
tially a far greater challenge to public health in Europe 
than any future changes in climate [69].
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The introduction and rapidly expanding range of Aedes 
albopictus in Europe is an iconic example of the grow-
ing risk of the globalisation of vectors and vector-
borne diseases. The history of yellow fever and dengue 
in temperate regions confirms that transmission of 
both diseases could recur, particularly if Ae. aegypti, 
a more effective vector, were to be re-introduced.  The 
article is a broad overview of the natural history and 
epidemiology of both diseases in the context of these 
risks.

Background
There is logic in dealing with yellow fever and dengue 
together, for they have much in common:

•	  Both are caused by viruses of the family 
Flaviviridae, genus Flavivirus. 

•	  Both viruses are strictly primatophilic – they only 
infect primates, including man. 

•	  In their original habitat, both are zoonotic infec-
tions transmitted by forest-dwelling mosquitoes. 

•	  Both can cause haemorrhagic illness in humans, 
often with fatal consequences. 

•	  Both owe their importance as human pathogens to 
two forest mosquitoes that have become closely 
associated with the peridomestic environment. 

•	  The viruses and their urban vectors owe their 
worldwide distribution to transportation of goods 
and people. 

•	  Both diseases have a history of transmission in 
temperate regions, including Europe. 

According to the World Health Organization, there are 
currently 200,000 worldwide cases and 30,000 deaths 
from yellow fever per year, 90% of them in Africa [1],  
and as many as 50 million cases of dengue [2]. 

Epidemics of yellow fever, sometimes catastrophic, 
were once common in North America as far north as 
New York and Boston (Table), and in European ports 
as far north as Cardiff and Dublin [3]. Large epidemics 
of dengue occurred in the same regions from the 18th 
century onwards. A massive epidemic, estimated at 
one million cases, with at least 1,000 deaths, occurred 
in Greece in 1927-28 [4,5]

Aedes aegypti, the primary urban vector for both 
viruses, was once established as far north in Europe 
as Brest and Odessa (Figure 1). It disappeared from 
the entire Mediterranean region in the mid-20th cen-
tury, for reasons that are not clear. Ae. albopictus, gen-
erally regarded as a less important vector of dengue 
[7], is also capable of transmitting yellow fever. It was 
introduced to Europe in the 1970s, is well established 
in at least twelve countries (Figure 2) [8], and is likely 
to spread northwards, perhaps as far as Scandinavia. 

The number of persons who visit countries endemic for 
dengue and yellow fever is continually rising [11,12]. It 
is therefore cogent to consider whether introduction 
of these viruses is likely to lead to autochthonous and 
even endemic transmission in Europe.

Transmission
Five factors are key to the epidemiology of vector-borne 
diseases: the ecology and behaviour of the host, the 
ecology and behaviour of the vectors, and the degree 
of immunity in the population. A holistic view of this 
complexity is key to assessing the likelihood of trans-
mission in Europe [13].

Origin of the viruses
There is little doubt that the yellow fever virus (YFV) 
originated in Africa, and that viruses circulating in the 
New World are of African origin. Curiously, yellow fever 
has never been recorded in Asia, although Ae. aegypti 
is widespread there.

There are four antigenically distinct DENV serotypes 
that cause very similar disease in humans. It is widely 
accepted that all four are of Asian origin [14], although 
DENV-2 is enzootic in Africa [15].

Zoonotic vectors and hosts
In the Old World, the sylvatic vectors of yellow fever 
and dengue are canopy-dwelling mosquitoes of the 
genus Aedes and three subgenera, Stegomyia, Finlaya, 
and Diceromyia, that feed exclusively on monkeys. In 
the Americas, the principal zoonotic vectors of yellow 
fever are Sabethes and Haemogogus species; both are 
also strictly primatophilic [3]. 
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Sylvatic transmission to humans
Sylvatic infections are acquired when humans enter 
woodland where there is zoonotic transmission. In 
recent years, a number of unvaccinated tourists have 
died of yellow fever after visiting enzootic areas [16,17]. 

Vector-host specificity
Host specificity is a characteristic of many vectors; it 
is conceivable that it improves the chances of locating 
hosts. This may be particularly useful in the sylvatic 
environment, where bands of monkeys roam between 
established sleeping sites. 
The specificity of DENV and YFV to primatophilic vec-
tors may have evolved to exploit this relationship, 
and/or to surmount barriers to infection in the insect. 

Whatever the reason, given the absence of wild pri-
mates, it is unlikely that any vector species native to 
Europe is able to transmit these viruses. 

Peridomestic transmission
Neither YFV nor DENV would have major importance as 
human pathogens in the absence of two mosquito spe-
cies, Ae. (Stegomyia) aegypti and Ae. (S.) albopictus, 
both of which have become closely associated with the 
peridomestic environment. Infected humans return-
ing from an enzootic area may initiate transmission to 
humans in human settlements if either of these spe-
cies is present (although to date, no yellow fever infec-
tions have been attributed to Ae. albopictus). 

Table 
Major epidemics of yellow fever in North America, north of Mexico 

Year Year
1668 New York, Philadelphia and other settlements 1803 Boston, Philadelphia
1690 Charleston 1804 Philadelphia
1691 Boston 1805 Philadelphia
1693 Charleston, Philadelphia, Boston 1807 Charleston
1694 Philadelphia, New York, Boston 1811 New Orleans, Florida, New Jersey
1699 Charleston, Philadelphia 1817 New Orleans, Charleston, Baltimore
1702 New York 1819 New Orleans, Charleston, Baltimore, Philadelphia, New York
1703 Charleston 1820 New Orleans, Philadelphia

1728 Charleston 1821
New Orleans, Mississippi Valley, Alabama, Charleston, 
Baltimore, Philadelphia, New York, Boston

1732 Charleston 1822 New Orleans, New York
1734 Charleston, Philadelphia, New York, Albany, Boston 1823 Key West
1737 Virginia 1824 New Orleans, Charleston
1739 Charleston 1825 Mobile, Natchez, Washington
1741 Virginia, Philadelphia, New York 1827 New Orleans, Mobile
1743 Virginia, New York 1828 New Orleans, Memphis
1745 Charleston, New York 1829 Key West, Mobile, Natchez
1747 New Haven 1837 New Orleans, Mobile, Natchez
1748 Charleston 1839 Galveston, Mobile, Charleston
1751 Philadelphia, New York 1841 Key West, New Orleans
1762 Philadelphia 1843 Galveston, Mobile, Mississippi Valley, Charleston
1778 Philadelphia 1847 New Orleans, Mobile, Natchez
1780 Philadelphia 1852 Charleston
1783 Baltimore 1853 New Orleans
1791 Philadelphia, New York 1854 New Orleans, Mobile, Alabama, Charleston
1792 Charleston 1855 Mississippi Valley, Norfolk
1793 Philadelphia 1856 New Orleans, Charleston
1794 Philadelphia 1858 Charleston
1795 Philadelphia 1867 Key West, Galveston, New Orleans, Mobile, Philadelphia
1796 Philadelphia 1870 New York
1797 Philadelphia 1873 New Orleans, Mississippi Valley, Alabama, Memphis
1798 Philadelphia 1876 Charleston
1799 Philadelphia 1877 Port Royal SC

1800 Philadelphia 1878
New Orleans, Memphis, Mississippi Valley to St Louis, Chat-
tanooga, many other cities

1801 Norfolk, New York, Massachussetts 1879 Memphis
1802 Philadelphia 1905 New Orleans

Reproduced from [6] with permission from Environmental Health Perspectives.



13www.eurosurveillance.org

Dengue is endemic in many urban and rural popula-
tions throughout the tropics. ‘Virgin soil’ epidemics in 
large cities are often explosive. In 1988, for example, 
there were an estimated 420,000 cases in four months 
in the coastal city of Guayaquil, Ecuador [18] 

The large urban outbreaks of yellow fever that were 
common until the early 20th century remain a real 
and constant danger in enzootic countries that do not 
enforce routine vaccination. Moreover, it is reasonable 
to assume that areas that are prone to dengue trans-
mission are equally prone to yellow fever, so areas 
without history of the latter, including those in south-
east Asia, may well be at risk.

Vectors 
The yellow fever mosquito, Aedes aegypti
Ae. aegypti is the quintessential urban vector of yellow 
fever and dengue. It is a remarkable species because 

Figure 2
Current (2009) distribution of Aedes albopictus in Europe by administrative unit  

Orange: overwintering expanding populations; purple: populations only observed indoors (in glass houses); green: not detected in past 5 
years; pale yellow: no recent data on mosquito fauna; blue: no information on any mosquito studies; white: not included in this study.
Source: [10].

Figure 1
Historical distribution of Aedes aegypti 

Dark grey areas: maximum range distribution of Ae. aegypti, black 
lines: January 10°C isotherm in the northern hemisphere; mid grey 
lines: the July 10°C isotherm in the southern hemisphere. 
The distribution limit broadly fits the 10°C isotherm in the southern 
hemisphere, but far less so in the northern hemisphere. 
Source: adapted from a map published by Christophers [9].
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the ‘domesticated’ form is rarely found more than 100 
m from human habitation and feeds almost exclusively 
on human blood. Nevertheless, like its forest ances-
tor, it remains day-active with a preference for heavy 
shade. It freely enters homes and other buildings and 
spends much of its time hidden in dark places, often 
among clothing, a stable microclimate with few preda-
tors. Its human host is abundant and lives under the 
same roof, an arrangement that minimises the hazards 
of questing for a blood meal. It lays eggs in man-made 
objects that contain water, from discarded tires and 
buckets to the saucers under flowerpots and water-
storage barrels. In short, humans are the perfect host: 
they provide safe shelter, plentiful food and abundant 
sites for procreation. Indeed, in most cities of the trop-
ics, homes are so close together and breeding sites so 
abundant that they can be regarded as a single factory 
for mosquitoes in an urban jungle. In the past three 
decades, attempts to reduce populations of the spe-
cies have rarely been successful and never sustained 
[19,20].

The Asian Tiger mosquito, Aedes albopictus
Ae. albopictus is often abundant in the peridomestic 
environment, particularly in areas with plentiful veg-
etation. However, in addition to humans, it feeds freely 
on animals and birds, and so can exist far from human 
habitation. Since non-primates are not susceptible to 
the viruses, such blood meals do not contribute to the 
transmission cycle, and for this reason, Ae. albopictus 
has generally been regarded as a secondary vector [7]. 
Nevertheless, dengue epidemics have been recorded in 
places where Ae. albopictus is the only vector [21], and 
in recent years, the species has proved highly effective 
in urban transmission of another African sylvatic virus, 
chikungunya virus [22,23].

Globalisation of vectors and viruses 
Aedes aegypti
Ae. aegypti and yellow fever arrived in the New World 
together, as passengers in the slave trade. Slave 
ships generally made the passage from Africa to the 
Americas in four to six weeks. The virus was enzootic 
in regions where the slave caravans captured local 
inhabitants, and urban transmission was rife in the 
ports of dispatch. The casks used for shipboard stor-
age of water must have been prolific breeding sites for 
the mosquito, and the slaves were an abundant source 
of blood. With the slaves and the mosquito came the 
virus, and it was not uncommon for ships to arrive 
in port with large numbers of dying persons aboard, 
hence the yellow flag of quarantine. 

In the United States, the species has been recorded 
from 21 states (Alabama, Arkansas, Florida, District of 
Colombia, Georgia, Illinois, Indiana, Kansas, Kentucky, 
Louisiana, Maryland, Missouri, Mississippi, New York, 
North Carolina, Ohio, Oklahoma, South Carolina, 
Tennessee, Texas, and Virginia) [24]. In many of these, 
winter temperatures below -20°C are not unusual. 
Presumably the mosquitoes survive in sheltered sites, 

for they are not resistant to freezing. Thus there is no 
obvious climatic reason why the species, were it to 
be re-introduced, could not survive in most areas in 
Europe.

Aedes albopictus
In its original range, Ae. albopictus was present from 
Beijing and northern Japan to tropical Asia [25]. In 
1983, however, the mosquito was found in Memphis, 
Tennessee [26], and, two years later, a survey revealed 
that it was widely distributed, often common, in the 
southern United States. Investigation revealed a glo-
bal trade in used tyres that were frequently infested 
with eggs and larvae of the species [27]. Japan was the 
principal exporter, and a study of winter diapause at 
various latitudes in Asia confirmed that the day-length 
that triggered diapause was identical in the southern 
United States and in southern Japan [28]. The mosquito 
is now widespread in the United States, and is a major 
nuisance species as far north as Nebraska and Illinois, 
where winter snowfall can be well above 200 cm, aver-
age January night-time temperatures are -10ºC, and 
temperatures as low as -33ºC have been recorded. It 
is also established in Mexico and all the countries of 
Central and South America except Chile. In Africa it is 
well established in Nigeria, Gabon, Equatorial Guinea 
and Cameroon [29,30], and in Europe it has been 
reported from 16 countries [8]. Recent infestations in 
the Netherlands have been traced to imports of ‘lucky 
bamboo’ from sub-tropical China [31], but these mos-
quitoes do not appear to have survived the winter, per-
haps because they have no winter diapause.

Clinical features 
Yellow fever
As with most viral diseases, yellow fever can present 
with a wide spectrum of symptoms, from mild to fatal. 
In clinical cases, there is generally a sudden onset of 
fever with severe headache, arthralgias, and myalgia. 
The striking yellowing of the eyes and skin, caused by 
hepatic dysfunction, may appear on the third day and 
indicates a poor prognosis. The fever often follows a 
‘saddleback’ curve, with a brief drop in temperature 
and symptoms after the third day, followed by a return 
with increased severity that can lead to spontaneous 
haemorrhage (‘coffee ground’ vomit), delirium, renal 
failure, coma and death. Fatality rates of clinical cases 
can be as high as 80% [3], on a par with Ebola, Marburg 
and other haemorrhagic viral infections.

Dengue 
As many as 80% of all dengue infections are asymp-
tomatic. Among clinical cases, early stages are similar 
to those of yellow fever, although with excruciating 
arthralgia and myalgia, hence the term ‘break-bone 
fever’. Fever and other symptoms rarely last more 
than seven days, but convalescence can be prolonged 
and debilitating. The later stages of the illness often 
include a widespread rash [32].
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A portion of dengue cases, usually less than 5%, can be 
severe and a fraction of these may be fatal [33]. Severe 
dengue, commonly referred to as dengue haemorrhagic 
fever/dengue shock syndrome (DHF/DSS) to distinguish 
it from ‘classic’ dengue, is associated with spontane-
ous haemorrhage and an increase of vascular perme-
ability that can lead to life-threatening hypovolemic 
shock. The causes of this condition have been debated 
for decades, but remain unresolved [34-36]. A widely 
held but hotly contested hypothesis is that after infec-
tion with one serotype, secondary infections by one or 
more of the others can precipitate the syndrome by a 
process referred to as antibody-dependent enhance-
ment, but the occurrence of severe dengue in epidem-
ics of primary infection, such as the Greek epidemic 
and a recent epidemic in Cape Verde [37], contradicts 
this hypothesis. An associated controversy is the valid-
ity of graded sets of criteria to categorise severity that 
are recommended by the World Health Organization, 
and these have been revised several times in recent 
years [38]. Both issues are of prime importance for the 
management and treatment of patients. 

It is a common misconception that DHF/DSS first 
appeared in the 1950s in south-east Asia. It is certainly 
true that the syndrome became a serious public health 
problem in that period, but it was not a new phenome-
non: significant mortality associated with haemorrhagic 
symptoms had been described in the earliest epidemic 
of dengue-like disease on record, in Philadelphia in 
1789, as well as in later epidemics in East Africa and in 
Australia [14,39]. Moreover, as already mentioned, at 
least 1,000 people died in the Greek epidemic in 1927-
28. In the years after the Second World War, however, 
rapid expansion of densely populated urban areas, 
coupled with enormous infestations of Ae. aegypti, led 
to a massive increase in the prevalence and incidence 
of the disease in south-east Asia, so a plausible expla-
nation for the emergence of this ‘new’ syndrome is that 
escalating numbers of classic infections simply led to 
an increased awareness of the relatively rare manifes-
tations – the ‘iceberg effect’. 

Treatment
There is no specific treatment for yellow fever or den-
gue virus infections; supportive therapy is the only 
option, although there is active research into antiviral 
drugs against these diseases [40]. For dengue fevers, 
intravenous fluids are used to counter haemoconcen-
tration, and platelet transfusions in the event of severe 
thrombocytopaenia [41]. Strict avoidance of anticoagu-
lants, including aspirin, is important.

Prevention
Vaccination 
Yellow fever
A safe, effective yellow fever vaccine, based on a live 
attenuated strain, has been available for more than half 
a century, and mass vaccination is a highly effective 
approach to prevent urban transmission, but the inci-
dence of the disease, particularly in Africa, confirms 

that coverage is inadequate, and there is a real and 
present danger of a major urban epidemic. Moreover, 
there is good reason to believe that the 2.5 billion peo-
ple who live in regions at risk of dengue infection are 
also at risk of yellow fever; if so, then, given the lax 
attitude towards vaccination of travellers in most coun-
tries, the danger of a catastrophic epidemic beyond 
regions generally associated with transmission is also 
real, and this could include parts of Europe infested 
with Ae. albopictus. If such an event were to occur, cur-
rent stocks of vaccine would probably be inadequate to 
respond to worldwide demand.

Dengue 
No vaccine against dengue is available, but attenuated 
virus vaccines and second-generation recombinant 
vaccines are in active development [42]. A large-scale 
trial (phase IIb) of a chimeric tetravalent vaccine [43] 
has been under way since February 2009 [44]. If suc-
cessful, then a vaccine might be licenced within five 
years.

Vector control
At the beginning of the 20th century, urban yellow fever 
was eliminated from many countries by energetic cam-
paigns to eliminate Ae. aegypti breeding sites. After 
the Second World War, focal application of the syn-
thetic pesticide dichlorodiphenyltrichloroethane (DDT) 
to infested containers and their surroundings was an 
outstanding success; according to the Pan American 
Health Organization, the species was eradicated from 
22 countries in the Americas [45]. The reason for the 
efficacy of this method has only recently become 
apparent: ‘skip-oviposition’ (the deposition of small 
numbers of eggs in many different sites) made it highly 
probable that they would encounter treated sites [19]. 
No substitute for DDT is currently available, so many 
authorities resort to spraying insecticidal aerosols 
(ultra-low-volume) of organophosphates or pyrethroids 
from hand-held machines, road vehicles or aircraft. 
Unfortunately, the method is expensive and gener-
ally ineffective, at least against Ae. aegypti, because 
the species spends much of its time indoors at sites 
that are inaccessible to the aerosol [20,46]. Moreover, 
even if a large number of mosquitoes were to be elimi-
nated by this treatment, the impact on adult mosquito 
populations would probably be too short for an effec-
tive impact on transmission [47]. Although the World 
Health Organization recommends that health authori-
ties evaluate the technique under local circumstances 
[6], their principal strategy is community-based source 
reduction, the elimination of breeding sites by the com-
munity. Unfortunately, there is no evidence that this 
approach has been successful in any part of the world. 

Control of Ae. albopictus is probably even more diffi-
cult than for Ae. aegypti, given its ability to breed away 
from human habitation, but insecticidal aerosols may 
be more effective  for Ae. albopictus because the mos-
quito tends to rest outdoors.
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The future in Europe
Dengue is essentially an urban disease because of 
the urban ecology of its vectors and the behaviour of 
its hosts. Rapid urbanisation has made it an increas-
ingly serious public health problem in the tropics [48]. 
Millions of people travel from the tropics to Europe 
and North America each year (for example, 1.2 million 
people who live in the UK visit the Indian subcontinent, 
with average stays of 29 days) and, after malaria, den-
gue infection is the second most frequent reason for 
hospitalisation after their return [11,12]. 

The history of dengue and yellow fever in Europe 
is evidence that conditions are already suit-
able for transmission. The establishment of 
Ae. albopictus has made this possible, and the possibil-
ity will increase as the species expands northwards, or 
if Ae. aegypti is re-established. The epidemic of chikun-
gunya in northern Italy in 2007 [8,49] confirms that 
Ae. albopictus is capable of supporting epidemic trans-
mission, although laboratory studies indicate that the 
strain of virus involved was particularly adapted to this 
species [50,51]. Nevertheless, it is not unreasonable 
to assume that climatic conditions that permit malaria 
transmission will also support transmission of yellow 
fever and dengue, in which case transmission could 
extend into northern Europe [52].

Lastly, it is widely stated that the incidence of vector-
borne diseases will increase if global temperatures 
increase. While there is no doubt that temperature 
and rainfall play a role in their transmission, it is clear 
that many other factors are involved [6]. A more urgent 
emerging problem is the quantum leap in the mobil-
ity of vectors and pathogens that has taken place in 
the past four decades, a direct result of the revolution 
of transport technologies and global travel [53]. The 
potential impact of this globalisation of vector-borne 
diseases is a challenge for the future.
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Rift Valley fever (RVF) is a severe mosquito-borne 
disease affecting humans and domestic ruminants, 
caused by a Phlebovirus (Bunyaviridae). It is wide-
spread in Africa and has recently spread to Yemen 
and Saudi Arabia. RVF epidemics are more and more 
frequent in Africa and the Middle East, probably in 
relation with climatic changes (episodes of heavy rain-
fall in eastern and southern Africa), as well as inten-
sified livestock trade. The probability of introduction 
and large-scale spread of RVF in Europe is very low, 
but localised RVF outbreaks may occur in humid areas 
with a large population of ruminants. Should this hap-
pen, human cases would probably occur in exposed 
individuals: farmers, veterinarians, slaughterhouse 
employees etc. Surveillance and diagnostic methods 
are available, but control tools are limited: vector con-
trol is difficult to implement, and vaccines are only 
available for ruminants, with either a limited efficacy 
(inactivated vaccines) or a residual pathogenic effect. 
The best strategy to protect Europe and the rest of the 
world against RVF is to develop more efficient surveil-
lance and control tools and to implement coordinated 
regional monitoring and control programmes.

Relevance of Rift Valley fever to public 
health in the European Union 
Rift Valley fever (RVF) is a zoonotic disease of domestic 
ruminants and humans caused by an arbovirus belong-
ing to the Phlebovirus genus (family Bunyaviridae). It 
causes high mortality rates in newborn ruminants, 
especially sheep and goats, and abortion in pregnant 
animals. Human infection by the RVF virus (RVFV) may 
result from mosquito bites, exposure to body fluids of 
livestock or to carcasses and organs during necropsy, 
slaughtering, and butchering [1].

The public health impact of RVF can be severe. In Egypt 
in 1976, 200,000 people were infected and 600 fatal 
cases officially reported, among others in the River 
Nile delta [2]. Over 200 human deaths were reported in 
Mauritania in 1987 [3]. In 2007-2008, 738 human cases 
were officially reported in Sudan, including 230 deaths 

[4]. It is likely that the number of cases was underre-
ported because RVF mostly affects rural populations 
living far from public health facilities. The occurrence 
of RVF in northern Egypt is evidence that RVF may occur 
in Mediterranean countries, thus directly threatening 
Europe.  In the Indian Ocean, RVF has been introduced 
in the French island of Mayotte, with several clinical 
cases reported in humans [5]

Transmission, epidemiology 
and clinical symptoms
The RVFV transmission cycle involves ruminants and 
mosquitoes. Host sensitivity depends on age and ani-
mal species [6] (Table 1). Humans are dead-end hosts. 
The epidemiological cycle is made more complex by 
direct transmission from infected ruminants to healthy 
ruminants or humans, by transovarian transmission 
in some mosquito species, and by a large number of 
potential vectors with different bio-ecology [6]. The 
existence of wild reservoir hosts has not been clearly 
demonstrated to date (Figure 1).

Transmission mechanisms 
The bite of infected mosquitoes is the main transmission 
mechanism of RVF in ruminants during inter-epizootic 
periods. More than 30 mosquito species were found to 
be infected by RVFV [6,7] (Table 2), belonging to seven 
genera of which Aedes and Culex are considered as the 
most important from the point of view of vector com-
petence (other genera are Anopheles, Coquillettidia, 
Eretmapodite, Mansonia and Ochlerotatus). 

In mosquitoes, transovarian RVFV transmission has 
been observed in Aedes mcintoshi. It appears to be a 
likely phenomenon in several other species, including 
the widespread Ae. vexans species complex. In some 
of these Aedes species, infected, diapaused eggs may 
survive in dried mud during inter-epizootic and/or dry/
cold periods [8] and hatch infected imagos.

Ruminant-to-human transmission is the main infection 
route for humans, although they can also be infected 
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by mosquito bites [9]. Body fluids such as the blood 
(during slaughtering and butchering), foetal mem-
branes and amniotic fluid of viraemic ruminants are 
highly infective for humans. Fresh and raw meat may 
be a source of infection for humans, but the virus is 
destroyed rapidly during meat maturation. Empirical 

field observations indicate that ruminants can also 
become infected by contact with material containing 
virus (e.g. fetus and fetal membranes after abortion), 
however, this route of transmission has not yet been 
confirmed [10].

Table 1
Species susceptibility and sensibility to the Rift Valley fever virus

Mortality >70% Mortality 10-70% Severe disease with low 
fatality rate (<10%) Antibody production Not susceptible

Lamb Sheep Human Camel Bird
Kid Calf Cattle Horse Reptile

Puppy Some rodents Goat Cat Amphibian
Kitten African Buffalo Dog
Mouse Asian Buffalo Swine

Rat Monkey Donkey
Rabbit

Reproduced from Lefèvre et al. [5] with permission from the publisher (Lavoisier, France)

Figure 1
Epidemiological cycle of Rift Valley fever
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Table 2
Arthropods naturally infected by Rift Valley fever virus

Genus Species Country (year)
Aedes (Aedimorphus) cumminsii Kenya (1981-1984)

Burkina Faso (1983)
dalzieli Senegal (1974, 1983)

dentatus Zimbabwe (1969)
durbanensis Kenya (1937)

ochraceus Senegal (1993)
tarsalis Uganda (1944)

vexans arabiensis
Senegal (1993)

Saudi Arabia (2000)

Aedes (Neomelaniconion) circumluteolus
Uganda (1955)

South Africa (1955, 1981)

mcintoshi
Zimbabwe (1969)

South Africa (1974-1975)
Kenya (1981-1984)

palpalis Central African Republic (1969)
Ochlerotatus (Ochlerotatus) caballus South Africa (1953)

caspius Suspected, Egypt (1993)
juppi South Africa (1974-1975)

Aedes (Stegomya) africanus Uganda (1956)
demeilloni Uganda (1944)

Aedes (Diceromya) furcifer group Burkina Faso (1983)

Anopheles (Anopheles) coustani
Zimbabwe (1969)

Madagascar (1979)
fuscicolor Madagascar (1979)

Anopheles (Cellia) chrityi Kenya (1981-1984)
cinereus South Africa (1974-1975)
pauliani Madagascar (1979)

pharoensis Kenya (1981-1984)
Culex (Culex) spp. Madagascar (1979)

antennatus
Nigeria(1967-1970)
Kenya (1981-1984)

neavi South Africa (1981)
pipiens Egypt (1977)

poicilipes Senegal (1998, 2003)

theileri
South Africa (1970)
Zimbabwe (1969)

tritaeniorhynchus Saudi Arabia (2000)
vansomereni Kenya (1981-1984)

zombaensis
South Africa  (1981)

Kenya (1981-1984, 1989)
Culex (Eumelanomya) rubinotus Kenya (1981-1984)
Eretmapodites chrysogaster Uganda (1944)

quinquevittatus
South Africa (1971)
Kenya (1981-1984)

Coquillettidia fuscopennata Uganda (1959)
grandidieri Madagascar (1979)

Mansonia (Mansoniodes) africana
Uganda (1959, 1968)

Central African Republic (1969)
Kenya (1989)

uniformis
Uganda (1959)

Madagascar (1979)
Other diptera Culicoides spp. Nigeria (1967)

Adapted from [1].
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Direct human-to-human transmission has not been 
reported, and RVF is not considered to be a nosocomial 
disease. Transplacental RVFV transmission may occur 
in vertebrates, including humans. It results in abortion 
and high newborn mortality rates [11]. 

Rodents may be infected during epizootic periods [12-
15] but their epidemiological role in virus transmission 
and maintenance is not clear. Bat species also have 
been suspected [16]. Finally, wild ruminants may play 
a role in the epidemiology of RVF in areas where their 
population density is high [17]. 

Clinical features 
Animals
Clinical manifestations vary depending on age and 
animal species. In sheep, a fever of up to 41-42°C is 
observed after a short incubation period. Newborn 
lambs (and sometimes kids) usually die within 36 to 
40 hours after the onset of symptoms, with mortality 
rates sometimes reaching 95%. Older animals (from 
two weeks to three months-old) either die or develop 
only a mild infection. In pregnant ewes, abortions are 
frequent, ranging from 5% to 100%. Twenty per cent of 
the aborting ewes die. Vomiting may be the only clini-
cal sign presented by adult sheep and lambs older than 
three months. However, these animals may experience 
fever with depression, haemorrhagic diarrhoea, blood-
stained muco-purulent nasal discharge, and icterus. 
Case-fatality rates vary between 20% and 30%. Adult 
goats develop a mild form of the disease, but abor-
tions are frequent (80%). Mortality rates are generally 
low [10]. Calves often develop acute illness, with fever, 
fetid diarrhoea, and dyspnoea. Mortality rates may 
vary from 10% to 70%. Abortion is often the only clini-
cal sign and mortality rates are low (10-15%). 

Humans
In most cases, human infections remain unapparent, or 
with mild, influenza-like symptoms. However, infected 
people may experience an undifferentiated, severe, 
influenza-like syndrome and hepatitis with vomit-
ing and diarrhoea. Complications may occur. Severe 
forms are manifested in three different clinical syn-
dromes. The most frequent one is a maculo-retinitis, 
with blurred vision and a loss of visual acuity due to 
retinal haemorrhage and macular oedema. Encephalitis 
may also occur, accompanied by confusion and coma. 
This form is rarely fatal but permanent sequelae are 
encountered. The third and most severe form is a 
haemorrhagic fever, with hepatitis, thrombocytopenia, 
icterus, and multiple haemorrhages. This form is often 
fatal [10,18,19]. Human case-fatality rates have been 
lower than 1% in the past, however, an increase has 
been reported since 1970 [19]. In the RVF epidemic in 
Saudi Arabia in the year 2000, the fatality rate reached 
14% [20].

Diagnostic methods
RVFV presents a high biohazard for livestock farmers, 
veterinarians, butchers, slaughterhouse employees, 
and laboratory staff handling infected biological sam-
ples. International public health agencies have set a 
bio-safety level (BSL) of BSL3 for facilities in Europe 
handling the virus and of BSL4 for facilities in the 
United States (US).

Appropriate diagnostic samples are peripheral blood 
collected on EDTA, plasma or serum of infected animals 
or patients, and the liver, brain, spleen or lymph nodes 
of dead animals. When samples can be conveyed rap-
idly to a diagnostic laboratory (<48 hours), they should 
be stored at a temperature below +4 °C. When this is 
not the case, samples should be frozen at -20 °C (or 
below). Small fragments of organs may be stored in a 
10-20% glycerol solution 

Virus isolation can be performed in suckling or weaned 
mice by intracerebral or intraperitoneal inoculation 
or in a variety of cell cultures including Vero, BHK21, 
or mosquito line cells. RVFV can be identified in cell 
cultures by immunofluorescence, virus neutralisation 
test, reverse transcriptase polymerase chain reaction 
(RT-PCR), and/or genome sequencing. Virus isolation 
is the gold standard for RVF diagnosis. However, its 
sensitivity is rather low: RVFV isolation is not easy to 
achieve. Alternatively, the detection of RVFV ribonu-
cleic acid (RNA) can be done using RT-PCR performed 
on RNA extracted directly from biological samples 
[21]. Results are available within a few hours, which 
makes RT-PCR the priority test when a case of RVF is 
suspected.

Serological tests to detect antibodies against RVFV 
include the virus neutralisation test (VNT), and enzyme-
linked immunosorbent assays (ELISA). VNT is very spe-
cific, cross reactions with other Phleboviruses being 
limited [22;23]. It is the gold standard serological test. 
However, it is costly, time consuming, and requires a 
BSL3 or 4 laboratory.

(Indirect) immunoglobulin (Ig) detection ELISAs are 
quick, sensitive and specific. They are progressively 
replacing VNT [24]. A competition ELISA (cELISA) is also 
commercially available to detect IgG and IgM. It allows 
serological diagnosis in ruminants and humans. At the 
earliest, it can detect antibodies as soon as four days 
following infection or vaccination in animals reacting 
very early, and eight days post-vaccination for 100% 
of animals [25]. More recently, another indirect ELISA 
based on a recombinant RVFV nucleoprotein has been 
developed. Its sensitivity is 98.7% and specificity 
99.4% [26-28].

The cELISA has been evaluated with human and animal 
sera collected in Africa, and also with sera from French 
livestock (cattle, sheep and goats) to check their spe-
cificity with European ruminant breeds which turned 
out to be excellent with a predictive negative value of 
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100% (n = 502), 95% confidence interval: 99.3 to 100% 
[29].

Treatments
There is no specific treatment for either humans or 
animals. 

Prevention 
Vaccines
A human vaccine (inactivated with beta-propiolactone) 
has been produced in the US and was used to protect 
laboratory staff and military troops. However, its pro-
duction has been stopped [30].

Given that domestic ruminants are involved in the epi-
demiological cycle and that humans mostly become 
infected after contact with viraemic animals, the vacci-
nation of ruminants is the method of choice to prevent 
human disease. Both live and inactivated vaccines are 
available for livestock. 

The Smithburn vaccine is a live attenuated vaccine. It 
is inexpensive to prepare and immunogenic for sheep, 
goats, and cattle. It protects these species against 
abortion caused by a wild RVFV, and post-vaccinal 
immunity is life long. However, it has a residual patho-
genic effect and may induce foetal abnormalities and/or 
abortion in ruminants. It is also pathogenic for humans 
(febrile syndrome). Despite these drawbacks, it is rec-
ommended by the Food and Agriculture Organization 
of the United Nations (FAO) [31] and remains the most 
widely used vaccine against RVF in Africa. 

The inactivated RVF vaccine provides a lower level 
of protection and its production is more expensive. 
Moreover, it requires at least two inoculations and 
frequent booster shots to induce the desired level of 
protection, rendering it inappropriate in countries 
where large portions of ruminant herds are nomadic. 
However, it was used by the Israeli veterinary services 
to prevent RVF introduction to Israel after the 1977-
1978 epidemic in Egypt [32], as well as by the Egyptian 
veterinary services to prevent re-introduction of RVF 
from Sudan after an epidemic hit that country in 2007.

Other candidate vaccines are being evaluated such as 
the so-called “clone 13” which is an attenuated strain of 
RVFV that was isolated from a moderately ill patient in 
the Central African Republic [33]. This vaccine induces 
neutralising antibodies against RVFV. New-generation 
vaccines are also under study: recombinant vaccines 
using a poxvirus or an Alphavirus-based vector [34,35] 
and DNA vaccines [34*,36*]. However, these vaccines 
are still in the preliminary stages of development.

Smithburn and inactivated vaccines are produced and 
commercially available in Egypt, South Africa, and 
Kenya. There is no Community pharmaceutical leg-
islation prohibiting companies from producing RVF 
vaccines on EU territory and there is no obligation to 
notify such production to the European Commission. 

Moreover, quoting Council Directive 2001/82/EC (EC 
2OO1b), “in the event of serious epizootic diseases, 
Member States may provisionally allow the use of 
immunological veterinary medicinal products without a 
marketing authorisation, in the absence of a suitable 
medicinal product and after informing the Commission 
of the detailed conditions of use (article 8)” [37*].

Insecticide treatments
Larvicide treatments may provide a control alternative 
where mosquito breeding sites are well identified and 
cover limited surface areas. Both Methoprene, a hor-
monal larval growth inhibitor, and Bacillus thuringien-
sis israeliensis (BTI) preparations, a microbial larvicide, 
are commercially available and can be used success-
fully to treat temporary ponds and watering places 
where mosquitoes proliferate. Adulticide treatments 
(e.g. using pyrethroids) are expensive and difficult to 
implement. Moreover, because this usually involves 
treating large areas, the environmental and ecological 
consequences may be important.

Other measures
Preventive measures should also include restrictions 
on animal movements, the avoidance or control of 
the slaughter and butchering of ruminants, the use of 
insect repellents and bed nets during outbreaks, infor-
mation campaigns, and increased and targeted surveil-
lance of animals, humans and vectors.

Current geographical distribution
RVF is either enzootic, or is reported in most sub-Saha-
ran African countries, Egypt and Madagascar (Figure 
2). 

During the first large epidemic, reported in Egypt in 
1977-1978, over 600 people died of RVF [39]. The epi-
demic reached the Mediterranean shore (Nile delta) but 
did not spread to neighbouring countries. In September 
2000, RVF was detected for the first time outside of 
the African continent in Saudi Arabia and Yemen, and 
led to human deaths and major livestock losses [40]. 
By the end of 2006, the disease had re-emerged in 
Kenya [41], followed by Tanzania and Somalia [42]. 
Another large epidemic hit the Sudan in 2007 in the 
Nile Valley around Khartoum [4]. In May 2007, RVF 
was diagnosed on the French island of Mayotte in a 
young boy who had been evacuated from Anjouan, one 
of the other islands of the Comoros archipelago. The 
RVFV was probably introduced there by the trade of 
live ruminants imported from Kenya or Tanzania during 
the 2006-2007 epidemics. Studies conducted after this 
first human case was reported have shown that 10% of 
cattle had antibodies against RVFV (ELISA, IgG and/or 
IgM) - without any clinical suspicions reported by the 
public and private veterinary services. A retrospective 
study was then conducted in 2008, using blood sam-
ples collected from clinically suspected human cases 
of dengue or chikungunya illness who had tested neg-
ative for these two diseases, between 1 September 
2007 and 31 May 2008. Ten human RVF cases were 
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found (including IgM- and/or RT-PCR-positive sam-
ples), seven of them (70%) occurring from January to 
April, during the hot, rainy season [5]. This study has 

demonstrated that RVF had been circulating in Mayotte 
at least since early 2007, probably introduced there by 
the illegal importation of live infected ruminants from 
other Comoros islands.

In 2008, a RVF epidemic occurred in Madagascar with 
over 500 human cases [43]. Several outbreaks were 
reported in South Africa in late 2007 and 2008 without 
any reported human cases [44]. 

Factors of change
Factors that could cause a change in the epidemiol-
ogy of RVF are summarised in Table 3. Irrigated areas, 
including rice fields, constitute favourable breeding 
sites for many mosquito species. Dambos are tempo-
rary surface water bodies found in semi-arid eastern 
Africa. With heavy rainfall and consecutive flooding, 
considerable mosquito proliferation may occur (mostly 
Aedes and Culex spp.). Wadi are temporary rivers 
encountered in arid areas (e.g. Yemen or Saudi Arabia): 
when they stop flowing, surface water remains avail-
able in ponds and mosquitoes may proliferate.

Livestock trade and the Mediterranean region
Livestock trade and transport may affect the geograph-
ical distribution of RVF and contribute to a large scale 
– sometimes continental - spread of the disease and to 
the introduction of the virus into disease-free areas via 
livestock movements. RVF cases were reported in irri-
gated areas of the Sudan during the 1970s. Antibodies 
were detected in camels that crossed the border from 
Sudan to Egypt, suggesting that infected camels may 
have introduced RVFV into Egypt [39]. 

Figure 2
Geographical distribution of Rift Valley fever

Source: United States Centers of Disease Control and Prevention 
[38*].
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Table 3
Main outbreaks of Rift Valley fever and factors causing them

Year Country Ecosystem Vector Hosts Triggering factor
1975 South Africa ? ? ? ?
1976 Sudan Irrigated area ? Small ruminants Irrigation (?)

1977 Egypt Irrigated area Culex pipiens Small ruminants, camels, 
humans Irrigation, cattle trade

1987 Mauritania, Senegal Irrigated area Culex pipiens Small ruminants, cattle, 
camels, humans ?

1993 Egypt Irrigated area ? Small ruminants, humans Irrigation
1997 Egypt Irrigated area ? Small ruminants, humans Irrigation

1997-1998 Kenya Dambos
Aedes spp.

Culex zombaensis
Small ruminants Rainfall

2000 Yemen, Saudi Arabia Wadi
Aedes vexans

Culex tritaeniorhynchus
Small ruminants, cattle, 

camels, humans Rainfall and virus introduction

2006-2007 Kenya, Tanzania, 
Somalia Dambos ? Small ruminants, cattle, 

humans Rainfall

2007 Sudan Irrigated area ? Small ruminants, cattle, 
humans ?

2007-2008 Mayotte Island ? Small ruminants, cattle, 
humans Virus introduction

2008 Madagascar Rice field in 
highlands

Culex?
Anopheles?

Small ruminants, cattle, 
humans ?
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During the outbreak in Saudi Arabia in 2000, six viral 
strains of RVFV were isolated from Aedes mosquitoes. 
These strains were genetically close to the strain iso-
lated in Kenya (1997-1998), suggesting that the virus 
was probably introduced into Saudi Arabia from the 
Horn of Africa by ruminants [45]. It remains unknown 
whether the virus has survived in Saudi Arabia since 
2000. In any event, the risk of re-introduction from the 
Horn of Africa is high. During the period of religious 
festivals in Mecca, 10 to 15 million small ruminants are 
imported from there to Saudi Arabia.

A similar pattern in sheep trade is observed between 
sub-Saharan Africa and northern Africa. In the coming 
years, the Muslim feasts of Eid-ul-Fitr and Eid al-Adha 
will occur between September and November, i.e. when 
the activity of mosquito populations is high (end of the 
rainy season in Sahelian Africa) [46].

Therefore, the introduction of RVF-infected animals on 
the eastern and southern shores of the Mediterranean 
Sea is a likely event. Once introduced there, RVFV may 
find ruminant hosts, as well as competent mosquito 
species [47]. However, because livestock trade from 
northern Africa and the Middle East to Europe is forbid-
den, the introduction of RVF-infected animals to Europe 
looks unlikely [48].

Climate
Climate warming is likely to have an impact on the 
geographical distribution of RVF. Higher temperatures 
increase mosquito feeding frequency and egg produc-
tion and decrease the duration of their development 
cycle, as well as the extrinsic incubation period of RVFV 
in mosquitoes. Therefore, higher temperatures associ-
ated with increased rainfall may result in higher vector 
densities and vector competence and, subsequently, a 
higher RVFV transmission rate. In addition, transovar-
ian transmission processes could be altered.

If the virus were introduced to northern Africa or south-
ern Europe, mosquitoes such as Ae. vexans could play 
a role as vectors in many Mediterranean countries. 
Several Ochlerotatus species, which breed in wetlands, 
might also be able to transmit the virus. Culex pipiens, 
a ubiquitous species, is locally abundant (in wetlands, 
rice fields, irrigated crops, sewers etc) and may act 
as an amplifier in the biological cycle. Increased tem-
peratures could also have an impact on the vector 
competence and capacity of other endemic European 
mosquito species [49], although this is difficult to 
quantify (it has already been proved in controlled con-
ditions with other arboviruses). Indeed, if introduced, 
several potential vector species that have so far not 
been investigated may become involved in the trans-
mission of the RVFV.

In East Africa, RVFV causes major epidemics at irreg-
ular intervals of 5-15 years. Climate models for this 
region predict an increase in the mean annual rainfall 
as well as an increase in the frequency and intensity 

of extreme rainfall events [50]. These changes may 
induce more severe and more frequent outbreaks in 
East Africa, which would thus represent a high risk 
area for neighbouring regions with livestock trade rela-
tionships such as the Indian Ocean islands.

Vectors
The flight capacities of Aedes and Culex mosquitoes 
are somewhat limited, ranging from a few hundred 
meters to more than 10 km [51,52]. However, these dis-
tances are long enough to allow a local spread of RVF. 

Wind transportation of infected mosquitoes has been 
reported for other arboviruses [53,54]. Presently, no 
information is available for RVFV vectors. Passive 
transportation of infected mosquitoes in boats or 
planes travelling from Africa has been reported for 
Anopheles mosquitoes infected by Plasmodium para-
sites [55]. However, for RVFV to be introduced this way, 
such infected mosquitoes would need to find suscep-
tible hosts to initiate a local cycle. This event looks 
unlikely.

Predictive models 
Risk mapping 
East Africa (Kenya)
In Kenya, a correlation has been demonstrated between 
heavy rainfall events and the occurrence of RVF out-
breaks. Maps of remotely sensed rainfall as well as 
vegetation index maps have been used together with 
ground data to monitor and predict vector population 
dynamics and RVFV activity and have established a 
correlation between these two parameters. The main 
advantage of remote sensing for the prediction of RVF 
occurrence in East Africa is the relatively low cost. It 
is readily available on a country and regional basis 
and its use may allow preventive measures to be taken 
such as the vaccination of susceptible livestock and 
the control of mosquito larvae [56,57].

Predictive models have been improved over the past 
decade through the addition of Pacific and Indian 
Ocean surface temperature anomalies and rainfall and 
normalised difference vegetation index (NDVI) data. An 
accuracy of 95-100% was estimated for the prediction of 
Kenyan epizootics of RVF, with a lead time of two to five 
months [57]. The FAO has used the technology to warn 
countries facing an increased risk of RVF. However, the 
geographic scope of these models is limited because 
ecological and epidemiological processes are different 
in other areas of Africa [58]. The outlook for the use 
of these models is even worse for the Mediterranean 
basin and Europe where climate determinants differ 
significantly from those of East Africa and the potential 
ecological and epidemiological processes are unknown 
as the disease has never been reported in these areas.

West Africa (Senegal)
RVF is endemic in the Ferlo area (northern Senegal) 
[59]. This area is characterised by a temporary pond 
ecosystem. These ponds are filled at the beginning 
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of the rainy season (July) and dry up from October to 
January, according to their size and the intensity of 
rainfall, and are favourable environment to the devel-
opment of Aedes mosquito populations.

However, the East African model can not be applied 
in West Africa: abundant rainfall is not often associ-
ated with RVF outbreaks. The epidemiological process 
leading to RVF epidemics looks much more complex, 

Table 4
Competent mosquito vectors of Rift Valley fever virus with known distribution in the European Union and candidate 
countries

Country Aedes vexans vexans Ochlerotatus caspius Culex theileri Culex pipiens Culex perexiguus

Austria X X ? X ?

Belgium X X ? X ?

Bulgaria X X X X X

Croatia1 X X ? X ?

Cyprus ? X ? X ?

Czech Republic X X ? X ?

Denmark X X ? X ?

Estonia X X ? X ?

Finland X X ? X ?

France (mainland) X X X X ?

France (Corsica) X X X X ?

Germany X X ? X ?

Greece X X X X X

Hungary X X X X ?

Ireland ? X ? X ?

Italy (mainland) X X X X X

Italy (Sardinia) X X X X ?

Italy (Sicily) X X X X X

Latvia X X ? X ?

Lithuania X X ? X ?

Luxembourg ? ? ? ? ?

Former Yugoslav Republic of Macedonia1 X X X X X

Malta ? X ? X ?

The Netherlands X ? ? X ?

Poland X X ? X ?

Portugal X X X X X

Romania X X X X ?

Slovakia X X X X ?

Slovenia X X ? X ?

Spain (mainland) X X X X X

Spain (Balearic Islands) X ? ? X ?

Sweden X X ? X ?

Turkey1 X X X X X

United Kingdom X X ? X ?

X: vector present; ?: unknown to the authors, or not found yet.
1EU candidate country.
Adapted from [1]. 
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involving the joint dynamics of hosts movements (tran-
shumance), host immunity, and a vector population 
with brief activity during the rainy season.

In this region, the risk of transmission was shown to 
be heterogeneous and linked to pond type [59]. A very 
high spatial resolution remote sensing image was used 
to characterise the temporary ponds and their environ-
ment and derive indices linked to mosquito biology 
[60]. However, this work is not advanced enough to be 
used in surveillance programmes.

Risk analysis for Europe
A detailed, qualitative risk analysis was performed in 
2005 by The European Food Safety Authority (EFSA) 
[1]. The main conclusions of this study are summarised 
below. 

Ruminant importations
The importation of infected ruminants is the greatest 
hazard for RVF introduction to the European Union (EU). 
Clinical signs may not be observed rapidly in livestock 
living in remote, humid areas such as the Camargue 
region in France or the Danube delta in Romania. Such 
a scenario would allow RVFV to amplify and endemic 
foci to develop, if suitable ecological and entomologi-
cal conditions were met [1]. 

Official RVF-free status is required for a country to 
export livestock and livestock meat to the EU. Such 
a status depends on a country’s ability – relying on 
observable evidences - to implement an efficient dis-
ease surveillance system and willingness to report pos-
sible RVF outbreaks. These constraints are the same as 
for foot-and-mouth disease and other epizootic dis-
eases. They were instituted in 1972 (directive 72/462/
CEE [61], later modified to be more stringent). The prac-
tical consequence is that any introduction of live rumi-
nants and their products from Africa and the Middle 
East to the European Union is forbidden. However, 
illegal and unknown ruminant importations probably 
occur between the Middle East and central Europe, and 
between northern Africa and southern Europe. This is 
also a major component of the risk of introduction of 
many other important animal and zoonotic diseases, 
like peste des petits ruminants, foot–and-mouth dis-
ease, bluetongue disease, Crimean-Congo haemor-
rhagic fever, etc. For instance, a risk analysis has 
recently been conducted to assess the risk of introduc-
tion of peste des petits ruminants virus (a Morbillivirus) 
from Maghreb to France. The conclusion was that the 
risk was extremely low, ranging from 0 to 2 on a scale 
from 0 (impossible event) to 9 (certain event) [48]. 

Vectors
Several potential RVFV vectors are present in the EU 
(Tables 4 and 5). Differences in climate, seasonal varia-
tions of vector and host density, and genetic drift may 
result in differences in vector competence (the bio-
logical suitability of the vector to transmit the patho-
gen) and vectorial capacity (external factors such as 

number and lifespan of the vector, feeding preferences 
of the host) compared with the situation in Africa. 
Nevertheless, there is almost no doubt that several 
of the mosquito species in the EU, e.g. Cx. pipiens, 
would be competent vectors for RVF [62]. Moreover, 
the introduction and spread of new vector species 
represents a further risk. For example, Ae. albopictus 
can transmit RVFV [62-64], and many epidemiological 
concerns arise from this species’ current distribution 
in Europe: Albania, Bosnia and Herzegovina, Croatia, 
Italy (including Sicilia and Sardinia), south eastern con-
tinental France and Corsica, limited areas of Germany 
(north of the Alps), Greece, Monaco, Montenegro, the 
Netherlands (green houses), San Marino, Slovenia, 
eastern Spain, southern Switzerland, and the Vatican 
city [65].

Virus survival 
Blood, organs, fresh meat, fetal fluids and tissues as 
well as hides all represent a serious hazard to at-risk 
occupational groups (farmers, veterinarians, slaugh-
terhouse employees, butchers, etc). The virus persists 
in the liver, spleen and kidneys, but rapidly disappears 
from meat as the pH decreases with meat maturation. 
The importance of blood, bone and offal meal products 
as a vehicle for RVFV has not been evaluated [4]. Milk 
is not considered to constitute a risk. However, due to a 
lack of data, transmission by ingestion of milk can not 
be definitively ruled out. 

Accidental RVF infections have been recorded in labo-
ratory staff handling blood and tissues from infected 
animals. 

Conclusion
Several national and Commission-supported analyses 
have been conducted to assess the risk of the intro-
duction and spread of RVF within the EU. The conclu-
sions have been that the overall risk was low. However, 
the recent reappearance of RVF in East Africa, includ-
ing Sudan, the Nile Valley, and the Indian Ocean, has 
shown that the RVFV is very active and sensitive to 
climate and other environmental as well as socio-eco-
nomic changes. These changes, together with grow-
ing human populations and an associated increased 
demand for meat, will promote greater controlled and 
uncontrolled movements of livestock. Consequently, 
the Mediterranean basin, central Europe, and the 
Middle East will probably be increasingly exposed to 
the risk of introduction of RVF. It is important to pro-
mote risk analyses that rely on accurate estimations 
of livestock movements between endemic and RVF-
free areas. Moreover, high-risk ecosystems should be 
catalogued and the data updated on a regular basis to 
account for environmental changes. This latter activ-
ity has been initiated under the EU-funded Emerging 
Diseases in a changing European eNvironment (EDEN) 
project and should be continued once the project ends 
in 2010. Research programmes are needed to better 
characterise the bionomics of RVFV vectors in Europe 
and to develop RVFV introduction, installation, and 
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spread models to improve disease surveillance and 
provide more efficient decision-making tools.

Furthermore, more efficient vector and disease control 
methods are needed to enable the implementation of 
efficient contingency plans:

- For vector control, a systematic assessment of exist-
ing methods and tools should be undertaken (labora-
tory and field experiments) and research programmes 
developing new technologies should be supported, 
including options for the development of genetically 
modified mosquitoes designed either to reduce popu-
lation sizes or to replace existing populations with vec-
tors unable to transmit the disease.
- For disease control in European ruminants, the exist-
ing vaccines should be tested, preferably in collabo-
ration with pharmaceutical companies. Because the 
cheapest and most efficacious existing vaccine (the 
Smithburn RVFV strain) has residual pathogenic effects 
in ruminants and humans, research on new-generation 
vaccines (e.g. recombinant, or reverse-genetic vac-
cines) should also be supported, both for human and 
animal populations.
- Because a large-scale RVF epidemic appears unlikely 
in Europe (where a low proportion of people have direct 
contact with ruminants and their body fluids), human 
vaccination should target the population subgroups at 
high risk of exposure (farmers, veterinarians, slaugh-
terhouse employees, butchers etc), once human vac-
cines have been developed.
- Finally, the most relevant long term strategy is to 
control RVF where it is endemic. A substantial effort is 
needed to better understand the bio-ecology of RVFV 
vectors and viruses and epidemiological processes in 
Africa, to develop predictive and quantitative risk mod-
els and maps, and to implement risk-based surveil-
lance and control methods.
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Leishmaniasis emergence in Europe is reviewed, 
based on a search of literature up to and including 
2009. Topics covered are the disease, its relevance, 
transmission and epidemiology, diagnostic methods, 
treatment, prevention, current geographical distribu-
tion, potential factors triggering changes in distribu-
tion, and risk prediction. Potential factors triggering 
distribution changes include vectorial competence, 
importation or dispersal of vectors and reservoir 
hosts, travel, and climatic/environmental change. The 
risk of introducing leishmaniasis into the European 
Union (EU) and its spread among Member States was 
assessed for the short (2-3 years) and long term (15-20 
years). There is only a low risk of introducing exotic 
Leishmania species because of the absence of proven 
vectors and/or reservoir hosts. The main threat comes 
from the spread of the two parasites endemic in the EU, 
namely Leishmania infantum, which causes zoonotic 
visceral and cutaneous leishmaniasis in humans and 
the domestic dog (the reservoir host), and L. tropica, 
which causes anthroponotic cutaneous leishmania-
sis. The natural vector of L. tropica occurs in southern 
Europe, but periodic disease outbreaks in Greece (and 
potentially elsewhere) should be easily contained by 
surveillance and prompt treatment, unless dogs or 
other synanthropic mammals prove to be reservoir 
hosts. The northward spread of L. infantum from the 
Mediterranean region will depend on whether cli-
mate and land cover permit the vectors to establish 
seasonal biting rates that match those of southern 
Europe. Increasing dog travel poses a significant risk 
of introducing L. infantum into northern Europe, and 
the threat posed by non-vectorial dog-to-dog trans-
mission should be investigated.

Leishmaniasis
Leishmaniasis (or ‘leishmaniosis’) is a complex of 
mammalian diseases caused by parasitic protozo-
ans classified as Leishmania species (Kinetoplastida, 
Trypanosomatidae) [1,2]. Natural transmission may 
be zoonotic or anthroponotic, and it is usually by the 
bite of a phlebotomine sandfly species (order Diptera, 
family Psychodidae; subfamily Phlebotominae) of 
the genera Phlebotomus (Old World) and Lutzomyia 
(New World) [2,3]. Primary skin infections (cutane-
ous leishmaniasis) sometimes resolve without treat-
ment, with the host developing acquired immunity 

through cellular and humoral responses [4], but the 
infection can spread to produce secondary lesions in 
the skin (including diffuse cutaneous leishmaniasis), 
the mucosa (muco-cutaneous leishmaniasis) and the 
spleen, liver and bone marrow (visceral leishmaniasis, 
which is usually fatal if untreated) [1]. Worldwide, at 
least 20 Leishmania species cause cutaneous and/or 
visceral human leishmaniasis (HumL) [1,5]. Most foci 
occur in the tropics or subtropics, and only zoonotic 
L. infantum is transmitted in both the eastern and 
western hemispheres [5] (Table 1). 

Worldwide and European 
relevance of leishmaniasis
The World Health Organization (WHO) reports that 
the public health impact of leishmaniasis worldwide 
has been grossly underestimated for many years [1]. 
In 2001 and 2004, Desjeux reported that in the previ-
ous decade endemic regions had spread, prevalence 
had increased and the number of unrecorded cases 
must have been substantial, because notification was 
compulsory in only 32 of the 88 countries where 350 
million people were at risk [5,6]. About two million 
new cases of HumL (half a million visceral) are consid-
ered to occur every year in the endemic zones of Latin 
America, Africa, the Indian subcontinent, the Middle 
East and the Mediterranean region [1].

Risks of emergence or re-emergence of leishmaniasis 
in Europe are associated with three main scenarios:

1) the introduction of exotic Leishmania species or 
strains into Europe via the increasing worldwide trav-
elling of  humans [6] and domestic dogs [7], 

2) the natural spread of visceral and cutaneous leish-
maniasis caused by L. infantum and L. tropica from 
the Mediterranean region of Europe, where these 
species are endemic [1,8,9], to neighbouring temper-
ate areas where there are vectors without disease [2], 

3) the re-emergence of disease in the Mediterranean 
region of Europe caused by an increase in the number 
of immunosuppressed people. 

The high prevalence of asymptomatic human carriers 
of L. infantum in southern Europe [10-13]  suggests that 
this parasite is a latent public health threat. This was 
demonstrated by the increase of co-infections with 
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human immunodeficiency virus (HIV) and Leishmania 
that has been observed since the 1980s [14], with 
leishmaniasis becoming the third most frequent oppor-
tunistic parasitic disease after toxoplasmosis and 
cryptosporidiosis [15].

Disease transmission and epidemiology
Visceral leishmaniasis (VL) is usually fatal if untreated, 
and so it is distinguished from cutaneous leishmaniasis 
(CL) in all sections of the current review. If untreated, 
uncomplicated CL is often disfiguring, but not fatal. 
In contrast, muco-cutaneous and diffuse cutaneous 
disease can lead to fatal secondary infections even 
if treated. Patient immunodeficiency is one factor for 
this, but in Latin America these diseases are associ-
ated with regional strains of the L. braziliensis and
L. mexicana species complexes [1,5].

A female sandfly ingests Leishmania while blood-feed-
ing, and then transmits the infective stages (usually 
accepted to be the metacyclic promastigotes) during a 
subsequent blood meal [16]. The infective promastig-
otes inoculated by the sandfly are phagocytosed in the 
mammalian host by macrophages and related cells, in 
which they transform to amastigotes and often provoke 
a cutaneous ulcer and  lesion at the site of the bite. 

There are only two transmission cycles with proven 
long-term endemism in Europe [2,17]: zoonotic visceral 
and cutaneous HumL caused by L. infantum throughout 
the Mediterranean region; and, anthroponotic cutane-
ous HumL caused by L. tropica now occurring sporadi-
cally in Greece (Table 1, Figure 1).  

Worldwide, most transmission cycles are zoonoses, 
involving reservoir hosts such as rodents, marsupials, 
edentates, monkeys, domestic dogs and wild canids 
[2,5,6,18] (Table 1). However, leishmaniasis can be 
anthroponotic, with sandflies transmitting parasites 
between human hosts without the involvement of a 
reservoir host. Anthroponotic transmission is char-
acteristic of species of the L. tropica complex and, 
except for L. infantum, of the L. donovani complex. 
One species (L. donovani sensu stricto) or two species 
(L. donovani and L. archibaldi) cause periodic epidem-
ics of anthroponotic visceral leishmaniasis (‘Kala-azar’) 
in India and northeast Africa, respectively [19]. Sandfly 
vectors of both complexes (L. donovani and L. tropica) 
are abundant in southern Europe.

The domestic dog is the only reservoir host of major 
veterinary importance, and in Europe there is a 
large market for prophylactic drugs and treatment of 
canine leishmaniasis (CanL) caused by L. infantum [2]. 
Domestic cats might be secondary reservoir hosts of 
L. infantum in southern Europe [13], because they are 
experimentally infectious to sandflies [20] and natural 
infections can be associated with feline retroviruses 
[21].

Fewer than 50 of the approximately 1,000 species of 
sandflies are vectors of leishmaniasis worldwide [3]. 
This is due to the inability of some sandfly species to 
support the development of infective stages in their 
gut [16] and/or a lack of ecological contact with reser-
voir hosts [22]. Our understanding of the fundamentals 
of leishmaniasis epidemiology has been challenged 
in the last 20 years. Firstly, HIV/Leishmania co-infec-
tions were recorded in 35 countries worldwide, and 
widespread needle transmission of L. infantum was 
inferred in southwest Europe [15], where Cruz et al. 
demonstrated Leishmania in discarded syringes [23]. 
Secondly, leishmaniasis has become more apparent 
in northern latitudes where sandfly vectors are either 
absent or present in very low densities, such as in the 
eastern United States (US) and Canada [24] as well as 
in Germany [25-27]. Most infections involve CanL, not 
HumL, and this might be explained by dog importation 
from, or travel to, endemic regions, followed by verti-
cal transmission from bitch to pup or horizontal trans-
mission by biting hounds [24]. Vertical transmission of 
HumL from mother to child has rarely been reported 
[28].

Diagnostic methods
Most diagnoses are only genus-specific, being based 
on symptoms, the microscopic identification of para-
sites in Giemsa-stained smears of tissue or fluid, and 
serology [18,29]. Consequently, the identity of some 
causative agents has only been known relatively 
recently, following typing performed during limited eco-
epidemiological surveys. For example, it was thought 
that all cutaneous leishmaniasis cases in Europe were 
caused by L. tropica, until Rioux and Lanotte reported 
L. infantum to be the causative agent in the western 
Mediterranean region [30].

Rioux and Lanotte used multi-locus enzyme electro-
phoresis (MLEE) to identify Leishmania species and 
strains [30], which remains the gold standard [1,18]. 
However, MLEE requires axenic culture [31] in which 
one strain can overgrow others in mixed infections. It 
is therefore more practical to identify the isoenzyme 
strains (or zymodemes) by directly characterising the 
enzyme genes [32]. Other molecular tests have been 
used to identify Leishmania infections in humans, 
reservoir hosts and sandfly vectors [33], including in 
the Mediterranean region [34], but there has been no 
international standardisation [29]. However, PCR of the 
internal transcribed spacer of the multi-copy nuclear 
ribosomal genes is often used [34,35]. A set of care-
fully chosen criteria must accompany PCR-based diag-
nosis, especially for immunocompromised patients 
[14,15]. Monoclonal antibodies have long been avail-
able for the identification of neotropical species [36] 
and the serotyping of Old World species [37] but they 
are not widely used.

Most sensitive molecular techniques indicate only the 
presence of a few recently living Leishmania, not that 
the parasites were infectious. Therefore, serology is 
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often more informative [29]. However, antigens pre-
pared in different laboratories can cause test varia-
tion for the frequently used methods [29]: the indirect 
fluorescent antibody test (IFAT), the enzyme-linked 
immunosorbent assay (ELISA), the indirect haemagglu-
tination assay (IHA) and the direct agglutination test 
(DAT). Some antigens are stable and produced com-
mercially, such as the recombinant (r) K39 for a dipstick 
or strip test. Multi-centre studies of ‘Kala-azar’ diag-
nostics [38] showed that both the freeze-dried DAT and 
the rK39 strip test could exceed the 95% sensitivity and 
90% specificity target, but only for the strains found in 
some regions. Antibody detection tests should comple-
ment other diagnostic tests, because they do not usu-
ally distinguish between acute disease, asymptomatic 
infections, relapses and cured cases [38].

Delayed hypersensitivity is an important feature of 
all forms of human leishmaniasis [4] and is often 
measured by the leishmanin skin test (or Montenegro 
reaction) [29]. False-positivity is approximately 1% in 
otherwise healthy people. Other problems with this 
test include the absence of commercially available 
leishmanins, that there is complete cross-reactivity 
among most species and strains of Leishmania, and 
that for VL its applicability is limited to the detection 
of past infections, because a complete anergy is found 
during active disease.

Treatment
Pentavalent antimonials were the first-choice drugs 
for leishmaniasis worldwide [39,40]. Miltefosine, 
Paromomycin and liposomal Amphotericin B are 
gradually replacing antimonials and conventional 
Amphotericin B in some regions [40,41], especially 
where there is drug resistance or the need to develop 
combination therapy to prevent the emergence of 
resistance to new drugs [41].

Highly active anti-retroviral therapy (HAART) treat-
ment has reduced the incidence of co-infections with 
Leishmania and HIV by preventing an asymptomatic 
infection with L. infantum from becoming symptomatic, 
but unfortunately it is not good at preventing visceral 
leishmaniasis relapses. The benefits of treatment are 
not as clear-cut as they are for other opportunistic dis-
eases [42].

Prevention
Most research on vaccines is strategic, not applied, for 
example targeting secretory-gel glycans of Leishmania 
[43] and some sandfly salivary peptides [44], both of 
which are injected into the mammalian host by the 
female sandfly during blood feeding. Therapeutic vac-
cine trials continue to use killed cultured parasites 
(often with BCG as adjuvant) in combination with anti-
leishmanial drugs but with only 0-75% efficacy [45]. 
One second generation recombinant vaccine contains a 
trifusion recombinant protein (Leish-111f), and some of 
its epitopes are shared by L. donovani and L. infantum 
[46].

Research and development of vaccines against CanL 
has been stimulated by the economic importance of 
dogs and their role as reservoirs of HumL caused by
L. infantum in the Americas and the Mediterranean 
region. Leishmune is the first licensed vaccine against 
CanL. It contains the fucose-mannose ligand (FML) 
antigen of L. donovani and has a reported efficacy of 
76-80% [47]. The industrialised formulation of FML-
saponin underwent safety trials in Brazil [48]. The 
vaccine LiESAp-MDP (excreted/secreted antigens with 
adjuvant) was reported to have an efficacy of 92% 
when tested on naturally exposed dogs in the south 
of France [49,50]. More recently, a modified vaccinia 
virus Ankara (MVA) vaccine expressing recombinant 
Leishmania DNA encoding tryparedoxin peroxidase 
(TRYP) was found to be safe and immunogenic in out-
bred dogs [51].

One means of controlling transmission is to reduce 
the biting rate of peri-domestic sandfly vectors of vis-
ceral HumL and CanL. This has been effective locally, 
by using repellents [52], insecticide-impregnated nets 
and bednets [52], topical applications of insecticides 
[53] and deltamethrin-impregnated dog collars [54,55]. 
The latter are favoured by many dog owners in south-
ern Europe.

Current geographical distribution 
Outside the European Union
Table 1 (updated from Ready [2]) relates the distribu-
tions of each form of HumL to causative species and 
known reservoir hosts [1,5,6,17,18]. Most VL foci occur 
in India and neighbouring Bangladesh and Nepal, 
and in Africa (Sudan and neighbouring Ethiopia and 
Kenya), where anthroponotic ‘Kala-azar’ is caused by 
L. donovani and in north-eastern Brazil and parts of 
Central America, where zoonotic infantile visceral 
leishmaniasis is caused by L. infantum. Most CL foci 
occur in Latin America, North Africa, and the Middle 
East, and muco-cutaneous and diffuse cutaneous dis-
ease are frequent in South America [56].

Inside the European Union: main biomes
Only two transmission cycles have been endemic in the 
European Union (EU) for a long time, and both are wide-
spread in the adjoining Middle East and in North Africa: 
zoonotic cutaneous and visceral leishmaniasis caused 
by L. infantum throughout the Mediterranean region 
and anthroponotic cutaneous leishmaniasis caused 
by L. tropica, which occurs sporadically in Greece and 
probably neighbouring countries and poses a high 
risk of introduction by migrants and travellers into the 
rest of the EU [2,6,17] (Table 1, Figure 1). The former is 
endemic and sandfly-borne only in the Mediterranean 
region of the EU (‘Mediterranean forests’ biome), 
where its epidemiological significance is clear from 
published serological surveys [7,8]. However, the vec-
tors of L. infantum [57] (Figure 2, Table 2, updated from 
Ready [2]) are also abundant in the adjoining parts of 
the temperate region (Temperate broadleaf forests’ 
biome), in northern Spain [58] and central France [59], 
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and small numbers occur as far north as Paris [60] and 
the upper Rhine valley in Germany [26]. The occurrence 
of ‘vectors without disease’ poses a significant risk for 
the emergence of leishmaniasis in temperate regions 
of Europe [2].

Potential factors triggering changes in 
distribution 
Climate change
Most transmission of Leishmania is by the bite of per-
missive sandflies, and so climate change might affect 
leishmaniasis distribution directly, by the effect of 
temperature on parasite development in female sand-
flies [16], or indirectly by the effect of environmental 
variation on the range and seasonal abundances of the 
vector species. Female sandflies seek sheltered resting 
sites for blood meal digestion, and in southern Europe 
the temperatures of these micro-habitats are buffered 
but vary significantly with the external air temperature 
[2].

Based on molecular markers, European vectors of 
leishmaniasis have extended their ranges northward 
since the last ice age (approximately 12,000 years ago) 
[61,62], and the mapping of statistical measures of cli-
mate has permitted transmission cycles to be loosely 
associated with some Mediterranean bioclimates [63]. 
However, bioclimate zones and their vegetation indica-
tors vary regionally, and ongoing climate change may 
alter the patterns of land cover and land use. The geo-
graphic information system (GIS)-based spatial model-
ling of the Emerging Diseases in a changing European 
Environment (EDEN) project is permitting an analysis of 

changes in climate and land cover [64] and their effects 
on sandflies.

The project ‘climate Change and Adaptation Strategies 
for Human health in Europe’ (cCASHh) concluded: 
“There is no compelling evidence, due to lack of histor-
ical data, that sand fly and VL distributions in Europe 
have altered in response to recent climate change” [9]. 
There is now a published analysis of the northward 
spread of CanL and its vectors in Italy [65], but an asso-
ciation with climate change was only surmised. 

Capacity and competence of vectors in Europe
Vectorial capacity has only been calculated indirectly. 
The average number of gonotrophic cycles (i.e. egg 
development following a bloodmeal) completed by  
P. ariasi in the south of France was only a little greater 
than one [66]. Therefore, relatively small changes 
in temperature could have a large effect on vectorial 
capacity, because transmission occurs only during the 
second or subsequent bloodmeals and temperature 
affects the level of activity of the sandfly and therefore 
the frequency of the bloodmeals.

Alone, PCR detection of a natural infection of 
Leishmania in a sandfly does not identify a vector. It 
only indicates that the sandfly has fed on an infected 
mammalian host [35] because many parasites do not 
survive in a non-permissive sandfly after bloodmeal 
defecation [16].

Vectorial competence has been tested [67] or inferred 
based on finding naturally infected females of the more 
abundant human-biting species [3,57,68], from which it 

Figure 1
Distribution by country of Leishmania species transmitted by phlebotomine sandflies in Europe up to 2009 

Left panel: L. infantum; right panel: L. tropica.
Grey: absent; dark grey: present; white: sporadic or untyped infections; black untyped infections. 
Presence in North Africa and Middle East not depicted.
Source: V-borne project; reproduced with permission from the European Centre of Disease Prevention and Control. 
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Figure 2
Distribution of vectors of leishmaniasis in European countries up to 2009 

From left to right and top to bottom: (a) Phlebotomus ariasi, (b) P. perniciosus, (c) P. sergenti, (d) P. perfiliewi, (e) P. neglectus, (f ) P. tobbi. 
Dark grey: present; light grey: absent; black: old record.  
Presence in North Africa and Middle East is not depicted.
Source: V-borne project; reproduced with permission from the European Centre of Disease Prevention and Control.
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is concluded that the principal vectors of L. infantum in 
the Mediterranean region are members of the subge-
nus Larroussius (Table 2, Figure 2). The vectorial com-
petence of Phlebotomus (Transphlebotomus) mascittii 
should be tested because this species is now known 
to be widespread in northern France, Belgium and 
Germany [69]. However, low rates of biting humans and 
autogeny (the ability to produce eggs without a blood-
meal) cast doubt on its epidemiological importance [2]. 
Based on distribution and vectorial competence else-
where, P. sergenti sensu lato is likely to be the main 
vector of L. tropica in southern Europe [3].

Importation or dispersal of 
vectors and reservoir hosts
The importation or inter-continental dispersal of vectors 
is unlikely because sandflies are not as robust as some 
mosquitoes and are not known to be wind-dispersed 
[3]. Any importations are unlikely to be significant 
for several reasons: The natural vectors of Old World 
leishmaniasis are already abundant in Mediterranean 
Europe (Table 2, Figure 2); most American sandflies are 
believed to be poor vectors of Old World Leishmania 
species [3]; and Leishmania species native to the 
Americas have hosts that do not occur in Europe [56].

The vector of L. major in North Africa and the Middle 
East is P. papatasi, which is locally abundant in south-
ern Europe. However, the natural reservoir hosts of 
this parasite are usually gerbil species not present in 
EU countries [18] and the risks of them dispersing into 
southern Europe or surviving accidental/deliberate 
release by humans have not been assessed. 

Importance of travel within Europe (mainland 
and overseas territories) and internationally
Travel has led to increasing numbers of HumL cases that 
need to be treated, e.g. in France [70], Germany [25], 
Italy [71] and the United Kingdom [72]. Leishmaniasis 
in Guyana (overseas region of France) is a major source 
of exotic cases imported to mainland France, and 
L. infantum has travelled in the reverse direction in a 
dog [73]. Isoenzyme [12] and molecular markers [32,34] 
can sometimes identify the origins of Leishmania 
strains.

Travel poses the risk of the emergence in southern 
Europe of anthroponotic L. donovani [74] and L. tropica 
(see above), and the introduction to northern Europe of 
L. infantum in dogs taken to the Mediterranean region 
on holiday or rescued from there as strays [7].

Table 2
European distributions of sandfly vectors of human leishmaniasis up to 2009 (unproven role throughout range) 

Leishmania species L. tropica species complex 
- Greece only L. major

L. infantum (= L. chagasi in 
Neotropics) - Mediterranean 

region only

L. infantum (= L. chagasi in 
Neotropics) - Mediterranean 

region only

Human disease (Diffuse and muco-) 
cutaneous leishmaniasis Cutaneous leishmaniasis Cutaneous leishmaniasis Visceral leishmaniasis

EU biome Mediterranean forests Absent Mediterranean forests, Tem-
perate broadleaf forest

Mediterranean forests, Tem-
perate broadleaf forest

EU: Cyprus P. sergenti s.l. P. papatasi P. perfiliewi s.l., P. tobbi P. perfiliewi s.l., P. tobbi

EU: France P. sergenti s.l. P. papatasi P. ariasi, P.perniciosus, 
P. perfiliewi ? P. ariasi, P. perniciosus

EU: Germany No vectors No vectors P. perniciosus P. perniciosus

EU: Greece P. sergenti s.l. P. papatasi P. perfiliewi s.l., P. tobbi P. perfiliewi, P. tobbi, 
P. neglectus

EU: Hungary No vectors? No vectors? P. neglectus, P. perfiliewi ? P. neglectus, P. perfiliewi ?

EU: Italy P. sergenti s.l. P. papatasi P. ariasi       P. perfiliewi, 
P. perniciosus, P. neglectus

P. ariasi, P. perfiliewi, 
P. perniciosus,P. neglectus

EU: Malta P. sergenti s.l. P. papatasi P. perfiliewi, P. perniciosus, 
P. neglectus

P. perfiliewi, P. perniciosus, 
P. neglectus

EU: Portugal P. sergenti s.l. P. papatasi P. ariasi, P. perniciosus P. ariasi, P. perniciosus
EU: Romania No vectors? P. papatasi P. perfiliewi, P. neglectus P. perfiliewi
EU: Spain P. sergenti s.l. P. papatasi P. ariasi, P. perniciosus P. ariasi, P. perniciosus
EU candidate: Former Yu-
goslav Republic of Mace-
donia

P. sergenti s.l. P. papatasi P. perfiliewi, P. tobbi, 
P. neglectus

P. perfiliewi, P. tobbi, 
P. neglectus

EU candidate: European 
Turkey (Asiatic Turkey) (P. sergenti s.l.) (P. papatasi) (P. perfiliewi s.l., P. tobbi,      

P. neglectus)
(P. perfiliewi s.l., P. tobbi, 

P. neglectus)

Other Europe: Albania P. sergenti s.l. P. papatasi P. perfiliewi, P. tobbi, 
P. neglectus

P. perfiliewi, P. tobbi, 
P. neglectus

Other Europe: Switzer-
land No vectors No vectors P. perniciosus P. perniciosus

Adapted from a contribution [2] published in the OIE (World Organisation for Animal Health) Scientific and Technical Review: In Climate 
change: the impact on the epidemiology and control of animal diseases (S. de la Roque, ed.). Rev Sci Tech Off Int Epiz. 2008;27(2):399-412.
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Changes in environments (e.g. urbanisation, 
deforestation) and socio-economic patterns
Deforestation and urbanisation are known to affect 
leishmaniasis worldwide [6] because of the associa-
tions of many vectors and reservoirs with natural or 
rural areas. Based on the EDEN partners’ findings, 
most Mediterranean regions have at least one vector 
associated more closely with rural or peri-urban zones 
[64]. From 1945, most of the socio-economic changes 
favoured a reduction in ‘infantile visceral leishmania-
sis’ (caused by L. infantum) in southern Europe, includ-
ing better nutrition, widespread insecticide spraying 
(against malaria-transmitting mosquitoes), better 
housing and a reduction in the rural population. The 
last 20 years have seen changes that have increased 
contact with the Mediterranean vectors, including more 
holidays and second homes for northern Europeans, 
unforeseen modes of transmission (among intravenous 
drug users), and immunosuppression (HIV/Leishmania 
co-infections). The latter is highest in south-western 
Europe [15].

Risk prediction models 
The logic of visceral leishmaniasis control
Based on compartmental mathematical (R0) models, 
Dye [75] concluded that insecticides can be expected 
to reduce the incidence of HumL caused by L. infantum 
even more effectively than they reduce the incidence of 
CanL, but only where transmission occurs peridomes-
tically and the sandfly vectors are accessible to treat-
ment, as in parts of Latin America. For control of HumL 
and CanL in Europe, Dye [75] concluded that a dog vac-
cine is highly desirable, because sandfly vectors here 
are less accessible to insecticide treatment. In Europe, 
CanL is a veterinary problem with socio-economic 
importance and a vaccine is more likely to be afforded 
than elsewhere.

Risk assessment of introduction, 
establishment and spread in the European 
Union (EU) for the short term (2-3 years)
‘Oriental sore’ caused by L. tropica is usually anthro-
ponotic, and it is sporadically endemic in Greece and 
endemic in neighbouring countries to the EU. The 
principal vector (P. sergenti s.l.) is locally abundant in 
southern Europe, where new foci could be initiated by 
people infected in North Africa and the Middle East, 
including members of the European armed forces based 
in Iraq and Afghanistan [76,77]. Recently, L. donovani 
has been introduced to Cyprus [74]. Good surveillance, 
followed by prompt diagnosis and treatment should be 
extended to all areas of high risk, in order to help pre-
vent the emergence of anthroponotic leishmaniasis.

Cutaneous leishmaniasis caused by the Old World par-
asite L. major has a low risk of emergence as a sandfly-
borne disease in southern Europe in the short and long 
term, even though its principal vector (P. papatasi) is 
locally abundant, because its main gerbil reservoir 
hosts are absent.

Cutaneous leishmaniases caused by the American par-
asites of the L. braziliensis and L. mexicana complexes 

have low risks of emergence as sandfly-borne diseases 
in southern Europe in the short and long term because 
of the absence of their exotic vectors and mammalian 
reservoir hosts.

However, all these parasites pose a significant risk 
of introduction to Europe by intravenous drug users 
(IVDUs) and the establishment of local transmission 
by syringe needles, especially if these patients have 
HIV co-infections. This is based on the experience with 
endemic visceral leishmaniasis caused by L. infantum 
[15,42].

Risk assessment of introduction, 
establishment and spread in the European 
Union for the long term (15-20 years)
Leishmania infantum is currently the only signifi-
cant causative agent of visceral and cutaneous HumL 
endemic in Europe. Its high prevalence in asympto-
matic humans and in the widespread reservoir host 
(the domestic dog) means there is a high risk of emer-
gence in parts of Europe further north, as demon-
strated in northern Italy [65]. In addition to risk factors 
[78] and statistical models [64] with associated risk 
maps, EDEN is producing R0 mathematical models as 
part of research to explain why large regions of tem-
perate Europe have sandflies without HumL in the 
presence of imported CanL. Some of the key data come 
from questionnaires to veterinary clinics, validated by 
prospective serological surveys of CanL, from north-
ern and southern areas with a wide range of disease 
prevalence.

Increasing dog travel poses a significant risk of intro-
duction of L. infantum into northern Europe from the 
Mediterranean region. There is also a risk of estab-
lishment of non-vector transmission and spread as 
has been observed in North America [24]. Non-vector 
transmission might explain the autochthonous cases 
of CanL in Germany [25, 26].

L. tropica has been isolated from both the domestic 
dog and the black rat [5,8], and so the risk of introduc-
tion and spread of CL caused by this parasite in the 
EU should be re-assessed if either these mammals or 
related synanthropic species were found to be reser-
voir hosts (rather than dead-end hosts) in the disease 
foci in North Africa and southwest Asia [35].

Assessment of whether the existing 
data sources are adequate and, if not, 
identification of missing key data needed 
for conducting risk assessment studies
Research data about leishmaniasis and its spatial 
distribution in Europe and the Mediterranean region 
are being enhanced [79] and made accessible online 
by EDEN and another EU-funded project, LeishRisk, 
which has collaborated with the WHO to produce an 
E-compendium, a compilation of peer-reviewed litera-
ture on leishmaniasis epidemiology [1,80].
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However, public health and veterinary surveillance data 
are more fragmentary, which undoubtedly caused the 
public health impact of leishmaniasis to be underesti-
mated for many years in Europe as well as worldwide 
[1]. The WHO has concluded that more surveillance is 
necessary in Europe to assess an emergence of leish-
maniasis [9], but the partners of the EDEN leishmaniasis 
sub-project have stressed the need for better coordina-
tion of existing surveillance, including linking human 
health and veterinary data for the zoonotic disease. 
Currently (EDEN partners, personal communications), 
HumL is notifiable in Greece, Italy, Portugal and Turkey, 
and in endemic autonomous regions in Spain. CanL is 
notifiable in Greece and at municipality level in the 
endemic regions of the four other countries mentioned 
above. Neither disease is notifiable in France. At inter-
national level, WHO organised a meeting of Eurasian 
countries in 2009 (J. Alvar, personal communication), 
aimed at standardising surveillance and reporting, and 
CanL is reported as a listed disease (‘other diseases’) 
of the World Organisation for Animal Health (OIE) [81]. 
The monitoring of dog travel [7] should continue to be 
improved and standardised.
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Phlebotomine sandflies are known to transmit leish-
maniases, bacteria and viruses that affect humans 
and animals in many countries worldwide. These 
sandfly-borne viruses are mainly the Phlebovirus, the 
Vesiculovirus and the Orbivirus. Some of these viruses 
are associated with outbreaks or human cases in the 
Mediterranean Europe. In this paper, the viruses trans-
mitted by Phlebotomine sandflies in Europe (Toscana 
virus, Sicilian virus, sandfly fever Naples virus) are 
reviewed and their medical importance, geographical 
distribution, epidemiology and potential spreading 
discussed. Data on vertebrate reservoirs is sparse for 
sandfly fever viruses. The factor currently known to 
limit the spread of diseases is mainly the distribution 
areas of potential vectors. The distribution areas of 
the disease may not be restricted to the areas where 
they have been recorded but could be as wide as 
those of their vectors, that is to say Larroussius and
P. papatasi mainly but not exclusively. Consequently, 
field work in form of viral isolation from sandflies 
and possible reservoirs as well as laboratory work to 
establish vectorial competence of colonised sandflies 
need to be encouraged in a near future, and epidemio-
logical surveillance should be undertaken throughout 
the European Union.

Introduction
During the last decade, several cases of infections due 
to Toscana virus have been recorded in Europe (Italy, 
France, Spain, and Portugal). A few studies focusing 
on the viruses transmitted by Phlebotomine sandflies 
have been carried out. This review summarises the 
data related to arthropod-borne viruses transmitted by 
Phlebotomine sandflies in Europe.

Phlebotomine sandflies are the vectors of the 
Leishmania, pathogens that cause diseases called 
leishmaniases in more than 80 countries in the Old and 
New World. Sandflies are also vectors of other human 
pathogens such as Bartonella and viruses belonging 

to three different genera: (i) the Phlebovirus (family 
Bunyaviridae) including sandfly fever Sicilian virus, 
sandfly fever Naples virus, Toscana virus and Punta 
Toro virus; (ii) the Vesiculovirus (family Rhabdoviridae) 
including Chandipura virus [2-3] and (iii) the Orbivirus 
(family Reoviridae) including Changuinola virus [1].
The latter viruses have been associated with sev-
eral outbreaks in humans. Further less important 
viruses have also been found in Europe. Chios virus 
was isolated from a human case of severe encepha-
litis (Papa and Pavlidou, personal communication) 
in Greece and additionally three other viruses were 
isolated from Phlebotomine sandflies: Corfou virus 
from Phlebotomus (Larroussius) neglectus, in Greece 
[4], Massilia virus from P. (L.) perniciosus, in France 
[5] and Arbia virus from P. (L.) perniciosus and from
P. (L.) perfiliewi in Italy. However, so far there are no 
reports of human disease from these viruses. 

Little is known about the viruses transmitted by 
Phlebotomine sandflies and they can be, to our opin-
ion, considered as neglected pathogens. However, the 
Toscana virus, sandfly fever Naples and Sicilian viruses 
are endemic in the Mediterranean region and could 
spread to more temperate areas in Europe where vec-
tors are abundant. Moreover, other viruses transmitted 
by sandflies and circulating in India may be imported 
into Europe by introduction of viremic patients empha-
sising the need to consider these viruses relevant from 
a European public health perspective.

Clinical picture and geographical 
distribution 
Sandfly fever Sicilian and Naples 
virus infections
Sandfly fever Sicilian and Naples virus and other 
related viruses cause the “three-day fever” or “pap-
atacci fever”. Patients present with influenza-like 
symptoms including fever, retro-orbital pain, myalgia 
and malaise and usually recover fully within a week. 
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However, infections with sandfly fever Naples and 
Sicilian viruses, even when mild, have shown to be 
highly incapacitating for the time patients are affected.

The human cases and some virus isolation from sand-
flies were reported around the Mediterranean Sea 
(Figure 1) in Algeria [6], Cyprus [7, 8], Egypt [9], Iran 
[9-11], Israel [12], Italy [13], Jordan [14] and Portugal 
[15]. An earlier review based on serological data, 
without virus isolation and characterisation, indi-
cated that sandfly fever Sicilian or Naples viruses 
have been recorded in Bangladesh, Djibouti, Ethiopia, 
Iraq, Morocco, Saudi Arabia, Somalia, Sudan, Tunisia, 
southern and central Asian republics of the former 
Soviet Union, and the former Republic of Yugoslavia 
[16]. The same study showed the absence of neutralis-
ing antibodies in humans in Algeria, central Africa and 
eastern Asia [16]. 

Sandfly fevers were first described in Italy, in 1943-
1944 during outbreaks of influenza-like illness among 
United States (US) soldiers due to Sicilian and Naples 
viruses [16]. Human cases are often found in people 
visiting Mediterranean countries. A total of 37 cases of 
sandfly fever Sicilian virus infections and one case of 
sandfly fever Naples virus infection were recorded in 
Swedish tourists returning from Cyprus between 1986 
and 1989. In 1985, the incidence was low (0.3%) among 
members of Swedish troops stationed in Cyprus [17]. 
More recently, a 2002 outbreak affecting 256 among 
581 Greek soldiers stationed in Cyprus showed increas-
ing incidence (44%) for infections with sandfly fever 
Sicilian virus [8].

Toscana virus infections
Many infections with the Toscana virus are asymp-
tomatic. Reported clinical cases mostly present with 
influenza-like symptoms, but the virus displays a 
strong neurotropism. Outbreaks of acute meningitis or 
meningo-encephalitis due to infections with Toscana 
virus have been reported in several European countries 
bordering the Mediterranean Sea: (Italy, France [18-25], 
Spain [26-30] and Portugal [31]).

Seroprevalence studies in Italy, show large variations 
ranging from 3% in northern Italy (Torino) [32], to 
16% in Umbria [33] and 22% in central Italy. The virus 
is widespread in several regions including Tuscany, 
Piedmont, the Marches, Umbria and Emilia-Romagna.

In Spain, the seroprevalence rate is higher and ranges 
from 5% [27] to 26% [26]. However, the large differ-
ence in prevalence observed between the two sur-
veys might be related to the fact that the authors did 
not use the same serological tests [21]. In France, the 
seroprevalence observed recently was 12% in a survey 
using blood from donors in south-eastern France [21]. 
In Turkey [34], a pilot study reports also positive serol-
ogies for sandfly fever Toscana, Naples and Sicilian 
viruses.

In Italy, from May to October, Toscana virus is a major 
cause of meningitis and meningo-encephalitis with 
a peak of incidence in August. During this period it 
causes 80% of cases in children and 50% of cases in 
adults [32, 33]. Toscana virus is among the three most 
prevalent viruses associated with meningitis during the 
warm season. Therefore, Toscana virus must be con-
sidered as an emerging pathogen in the Mediterranean 
basin [19] and significant public health issue in Europe.

Chandipura virus infections
Outside of Europe, epidemics of acute encephalitis 
characterised by rapid onset of fever and central nerv-
ous system involvement with high case fatality rate 
were reported in Asia [35, 36]. These outbreaks were 
caused by the highly pathogenic Chandipura virus, 
a Vesiculovirus of the Rhabdoviridae family origi-
nally isolated in India from a patient [2]. To date, no 
human cases have been reported in Europe and Africa, 
although Chandipura virus has been isolated in Nigeria 
from hedgehogs (Atelerix spiculus) [37]. The fact that 
no human cases have been reported from there so far 
may reflect a lack of specific testing for Chandipura 
virus. 

Figure 1
Distribution of (a) Toscana, (b) Sicilian, and (c) Naples viruses in the European Union and neighbouring countries around 
the Mediterranean Sea up to 2009

Countries with confirmed cases are depicted in mid grey, the estimated distribution limits are depicted with a dark grey line.
Source: V-borne project; reproduced with permission from the European Centre for Disease Prevention and Control.
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Among the nine species of the genus Vesiculovirus, 
Chandipura virus should be considered of great public 
health importance. Conducting surveys on Chandipura 
virus in the south of Europe and along the south-east-
ern European borders is necessary to anticipate an 
introduction of the virus into Europe from Asia and/or 
Africa.

Transmission 
Genus Phlebovirus
This genus contains the majority of known sandfly-
borne viruses. Many serotypes have been character-
ised in the Americas from sandflies belonging to the 
genera Lutzomyia sensu lato, and in Africa, Europe and 
Central Asia mainly from Phlebotomus and also from 
Sergentomyia.

According to the eighth Report of the International 
Committee on Taxonomy of Viruses [37], the genus 
Phlebovirus can be divided into nine antigenic com-
plexes and includes 37 classified viruses. Further 16 
virus serotypes are unclassified and are considered 
to be tentative members of the genus. Current knowl-
edge suggests that many of the phleboviruses are 
maintained in their arthropod vectors by vertical (tran-
sovarial) transmission and that vertebrate hosts play 
little or no role in the basic maintenance cycle of these 
agents [1]. This maintenance mechanism has impor-
tant ecological implications for the phleboviruses, as it 
allows them to persist during periods when adult vec-
tors are absent or when susceptible vertebrate hosts 
are not available.

Sandfly fever Sicilian virus
This virus has been isolated in natura [39] and in 
vitro [40, 41] from P. papatasi captured from the 
Mediterranean basin to Central Asia. It has also 
recently been isolated in natural conditions from
P. (L.) ariasi in Algeria [6]. In some parts of its distribution 
area such as Cyprus where a local strain, Cyprus virus, 
has been isolated from Swedish troop members [7], 

Figure 2
Neighbour-joining tree based on nucleotide sequences 
of the large segment encoding the viral polymerase with 
bootstrap values (%) calculated with 500 replicates. 

Figure 3
Distribution of main vectors in the European Union and neighbouring countries around the Mediterranean Sea up to 2009

From left to right and from top to bottom: (a) Phlebotomus papatasi, (b) P. perniciosus, (c) P. ariasi, and (d) P. perfiliewi s. st. 
Countries with confirmed presence are depicted in mid grey, estimated distribution limits are depicted in dark grey.
Source: V-borne project; reproduced with permission from the European Centre for Disease Prevention and Control.
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P. papatasi is an abundant species [42] and could be a 
suspected vector. However, in Italy P. papatasi is now 
scarce whereas it was abundant before DDT was used 
in the 1940s and cannot be a candidate for the trans-
mission of sandfly fever Sicilian virus. Autochtonous 
Phlebotomus belonging to the subgenus Larroussius 
(P. perniciosus, P. perfiliewi and P. neglectus) seem to 
be better candidates for its transmission. In Greece, a 
closely related virus called Corfou virus has been iso-
lated from P. (Larroussius) neglectus [4].

Different vertebrate species including rodents 
(Apodemus spp., Mus musculus, Rattus rattus, 
Clethrionomys glareolus, Meriones libycus, Gerbillus 
aureus), insectivora (Soricidae and Talpidae) and car-
nivora (Mustela nivalis) may participate to the mainte-
nance of Sandfly Sicilian virus life cycle [43-46].

The virus is endemic in Europe and currently there 
are no known reasons why it would not extend over 
the entire distribution range of the vectors. Its further 
spread could follow a wider distribution of the vector 
and/or the reservoirs taking into account the unknown 
potential impact of climatic shifts on the development 
of the virus in the vector. Future studies will have to 
determine (i) the distribution and prevalence of the dis-
ease according to serological studies in the European 
Mediterranean region, (ii) the vector competences and 
capacities of local sandfly species, (iii) the tempera-
tures required for viral replication in infected sandflies 
in order to evaluate the risk of development in local 
vectors, and field work will have to be performed in 
foci where human cases, infected animal reservoirs 
and infected sandflies occur.

Sandfly fever Naples virus
The virus has been isolated in Italy from P. perniciosus 
[47], in Serbia from P. perfiliewi [48] and in Egypt from 
P. papatasi [49]. The area in which a stable focus is 
recorded has been delimited to Serbia [50]. Reservoirs 
for Sandfly fever Naples virus are unknown. An impor-
tant seroprevalence rate of 30% has been recorded in 
Jordan [14]. Because the identity of the virus cannot 
be assessed with certainty, the virus could circulate 
in Turkey [51]. Future investigations similar to those 
developed for Toscana virus need to be carried out to 
gain better understanding of the potential spread of 
the virus.

Toscana virus
The distribution of Toscana virus includes Spain, 
France, Italy, Greece, Cyprus [19], Portugal [30], and 
Turkey [38] and it has been isolated several times from 
P. perniciosus and P. perfiliewi belonging to the sub-
genus Larroussius. Transovarial transmission has been 
demonstrated in laboratory conditions and by viral iso-
lation from male Phlebotomus spp. Venereal transmis-
sion from infected males to uninfected females has also 
been demonstrated [52]. It is suggested that the res-
ervoir of Toscana virus is most likely the vector itself. 
However, a progressive decline of vector infected rates 

from generation to generation, suggests that this virus 
cannot be maintained indefinitely by vertical transmis-
sion [53-55]. Consequently, the existence of reservoirs 
has to be considered. Serological data have shown no 
evidence of infection among domestic or wild animals. 
However, a Toscana virus strain was isolated from the 
brain of the bat Pipistrellus kuhli [56]. The viral genome 
detection of Toscana virus in Sergentomyia minuta [57], 
a species considered as feeding exclusively on lizards 
and geckos, points towards the possible existence of 
unknown reservoirs. The short duration of viraemia, 
and the lack of evidence for a persistent infection in 
humans, compromises the participation of humans in 
the maintenance of the virus.

The geographical extension potential of Toscana virus 
is high in Europe. At this time numbers of endemic foci 
of the virus have been identified in different neigh-
bouring countries (Spain, France, Italy) and potential 
vectors are widely dispersed. However, a rapid spread-
ing of the virus is unlikely due to the lack of evidence 
of animal reservoir. Humans may favour viral trans-
portation but the shortness of viraemia may limit an 
efficient transmission to naïve vectors. Moreover, the 
potential impact of climatic shifts on the vector com-
petence is unknown. Similarly as for the two viruses 
mentioned above, future studies - both field work and 
experimental - will have to determine the distribu-
tion and prevalence of the disease caused by Toscana 
virus based on serological investigations around the 
European Mediterranean region, the vector compe-
tences and capacities of local sandfly species (in par-
ticular P. ariasi and P. perniciosus), the temperatures 
required for viral replication in infected sandflies and 
the possible impact of climate change on the potential 
spread in Europe.

Massilia virus, phlebovirus isolate 
and Punta Toro virus
The recent isolation of Massilia virus - a new 
Phlebovirus - from P. (L.) perniciosus in south-east-
ern France [5], emphasised the necessity of perform-
ing field studies to anticipate the possible eruption in 
humans of this new virus. Furthermore, the isolation of 
a probable new Phlebovirus from a sandfly (Figure 2) in 
southern France during the summer 2007 increases the 
number of phleboviruses and the potential pathogens 
for humans. This highlights the need to carry out new 
investigations in Europe taking into account the vari-
ability of phleboviruses [58].

The distribution area of Punta Toro virus is limited to 
Central America where it is transmitted by Lutzomyia 
(Nyssomyia) trapidoi and L. (Ny.) ylephiletor. The taxo-
nomic status of these vectors has to be clarified in the 
light of an entomological revision. Even if the subgenus 
Nyssomyia has never been recorded in the West Indies, 
some species belonging to it have been recorded in 
French Guyana such as L. anduzei, L. flaviscutellata, 
L. umbratilis, L. yuilli pajoti [59]. These sandfly spe-
cies could be considered as possible candidates for 
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native transmission in the overseas territories of the 
European Union (EU) which are important leisure desti-
nations during local dry seasons. Whereas importation 
of Punta Toro virus in European countries is unlikely, 
the possible emergence of the virus will highlight the 
importance to have the capacity to diagnose etiologi-
cally any imported febrile syndromes in tourists return-
ing from these areas. 

The main natural Phlebotomus vectors seem to belong 
to the subgenus Larroussius. The vectors of the main 
phleboviruses in the eastern part of the Mediterranean 
basin are not known: in Turkey, P. perniciosus and
P. ariasi are not recorded (figure 3). However, it appears 
difficult to assess a co-evolution between viruses 
and sandflies within the subgenus Larroussius: the 
isolation of viruses (or viral RNA) in P. papatasi or in 
Sergentomyia spp. strongly suggests the capture of the 
viruses by Phlebotomine sandflies. 

Genus Vesiculovirus 
Chandipura virus
Under laboratory conditions, P. papatasi is an effi-
cient reservoir for the virus, showing growth, and 
venereal and transovarial transmission [60, 61]. The 
experimental transmission of Chandipura virus by
P. (Euphlebotomus) argentipes has been recently dem-
onstrated [62]. In natural conditions, it has been iso-
lated from a pool of 253 unidentified Phlebotomine 
sandflies (Phlebotomus spp.) in the Maharashtra State 
of India [63] and from unidentified Sergentomyia in 
the Karimnagar district in Andhra Pradesh, India [64]. 
Four strains have also been isolated from batches of 
sandflies from Senegal, belonging probably to the 
genus Sergentomyia [65, 66]. These data show a wide 
distribution of the virus and the capacity of two gen-
era of sandflies namely Phlebotomus (subgenera 
Phlebotomus and Euphlebotomus) and Sergentomyia 
to transmit the virus.

Chandipura virus is currently endemic only in India and 
its introduction to Europe by an infected Phlebotomine 
sandfly is unlikely to occur, due to the fact that no set-
tlement of Phlebotomine Chandipura virus vector has 
been documented yet. However, the importation of 
Chandipura virus through an infected individual with 
or without clinical symptoms cannot be excluded. This 
could be the main risk of introduction in European 
areas where P. papatasi is an abundant species. To 
assess the transmission risk, it is necessary to carry 
out studies on the duration of the viraemia in infected 
humans and the vector competence of autochtonous 
Phlebotomine species in European countries where 
P. papatasi is scarce or not recorded. The recent intro-
duction in Cyprus of Leishmania donovani, an Asiatic 
and African parasite transmitted by local Phlebotomine 
sandflies highlights the risk of introduction diseases 
potentially transmitted by European Phlebotomine 
sandflies [67-69].

The virus Isfahan has been isolated only in Iran 
in P. papatasi, rodents and patients [70]. The Jug 
Bogdanovac virus has been isolated in P. (L.) perfiliewi 
in Serbia [71].

Genus Orbivirus
Orbiviruses transmitted by sandfly bites are restricted 
to the 12 species from the Americas belonging to the 
Changuinola virus group. Human infection caused by 
this group is not well documented and until now has 
presented with mild influenza-like symptoms and does 
not show major clinical importance [72].

Laboratory diagnosis 
Direct viral diagnosis, such as isolation, RT-PCR, in 
blood or cerebrospinal fluid is only possible in early 
stages of infection i.e. the first two days after symp-
tom onset and before the IgM sero-conversion. In most 
cases the diagnosis is based on serological investi-
gation of acute and early convalescent sera. In-house 
enzyme-linked immunosorbent assay (ELISA) meth-
ods (MAC-ELISA and IgG sandwich) are developed in 
reference laboratories. To date, only one commercial 
kit is registered in Italy for Toscana virus diagnosis. 
Serological cross reactions exist within the sandfly 
fever Naples virus and sandfly fever Sicilian virus anti-
genic complex. Seroneutralisation assays using early 
convalescent sera remain the reference method to spe-
cifically identify the viruses or to assess the antibody 
response specificity. Reference tools, reagents and 
quality control are not widely available. However, the 
collaborative working group of the European Network 
for the diagnosis of imported viral diseases (ENIVD 
www.enivd.de/index.htm) is able to provide some of 
these reagents.

Treatment and prevention
The treatment of phlebovirus infections is sympto-
matic. Treatment with hepatotoxic medication as well 
as aspirin and other NSAIDs such as ibuprofen and 
ketoprofen are not recommended.

No human vaccine against Phlebotomus-borne virus 
is available. The prevention of phlebovirus infection 
relies on the control of vector proliferation in limited 
areas where people are highly exposed. Individual pro-
tective measures such as insect repellents and insecti-
cide impregnated mosquito bednets are recommended 
in these areas. 

In most cases, phlebovirus infections are self-resolving 
pathologies. Only two complicated forms of Toscana 
virus infections have been reported in the literature. If 
a vaccine were available, the implementation of mass 
vaccination programmes would not seem to be relevant 
for the prevention for sandfly fever Naples and sandfly 
fever Sicilian viruses.

Risk for the future
Data on vertebrate reservoirs is sparse for sandfly 
fever viruses. The factor currently known to limit the 
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spread of diseases is the distribution areas of poten-
tial vectors. The distribution areas of the disease may 
not be restricted to the areas where they have been 
recorded but could be as wide as those of their vec-
tors, that is to say Larroussius and P. papatasi mainly 
but not exclusively (figure 3). Consequently, field work 
in form of viral isolation from sandflies and possible 
reservoirs as well as laboratory work to establish vec-
torial competence of colonised sandflies need to be 
encouraged in a near future for three main reasons:(i) 
phleboviruses already endemic in the southern part of 
Europe have a potential to spread to other areas where 
their vectors are circulating, (ii) new phleboviruses of 
unknown pathogenicity such as the Massilia virus, that 
circulate among Phlebotomine sandflies may emerge in 
humans, (iii) the highly pathogenic Chandipura virus is 
paradigmatic of arthropod-borne viruses transmitted 
by Phlebotomine sandflies that may be introduced to 
Europe. At the present time, Rift Valley Fever virus has 
not been isolated from Phlebotomine sandflies under 
natural conditions. However, sandfly infections have 
been demonstrated under laboratory conditions for 
P. (P.) papatasi, P. (P.) duboscqi, P. (Paraphlebotomus) 
sergenti, Sergentomyia schwetzi and Lutzomyia lon-
gipalpis [73-75]. A vector competence has been dem-
onstrated after oral infection for P. papatasi and 
P. duboscqi whereas P. sergenti, S. schwetzi and
L. longipalpis do not seem to be able to transmit Rift 
Valley Fever virus after oral infection [73-75]. The lack 
of isolates of Rift Valley Fever virus from field-collected 
Phlebotomine sandflies may could be a consequence of 
the low rates of capture of sandflies in arthropod field 
collections for virus isolation assays. Their geographi-
cal range coinciding with that of Rift Valley Fever virus 
in sub-Saharan Africa, and nearly all known phlebovi-
ruses seem primarily associated with sandflies. Thus, 
additional studies are needed to evaluate the role of 
sandflies as maintenance and epizootic vectors for Rift 
Valley Fever virus [75]. An epidemiological surveillance 
is also required in the EU.

Phleboviruses as a potential 
means of biological warfare
Efficient arboviruses transmission mainly depends on 
vectors. Except for RVFV, no other way of Phlebovirus 
transmission has been reported. Breeding of 
Phlebotomine species and artificial infection difficul-
ties are limiting factors for the use of phleboviruses 
as efficient biological weapons. Moreover, most phle-
boviruses are associated with asymptomatic or mild 
self-resolving infections in humans. Direct inter-human 
transmission has never been demonstrated. These cri-
teria make phleboviruses bad candidates for the devel-
opment of biological weapons.
Phleboviruses are characterised by their tripartite RNA 
genome. Genetic exchanges between phleboviruses 
are possible with unpredictable effects. Compared to 
RVFV, only less pathogenic phleboviruses have been 
identified so far. The possible genesis of a new, highly 
virulent Phlebovirus by this genetic-exchange mecha-
nism seems unlikely.
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During the last decade Crimean-Congo hemorrhagic 
fever (CCHF) emerged and/or re-emerged in several 
Balkan countries, Turkey, southwestern regions of the 
Russian Federation, and the Ukraine, with consider-
able high fatality rates. Reasons for re-emergence of 
CCHF include climate and anthropogenic factors such 
as changes in land use, agricultural practices or hunt-
ing activities, movement of livestock that may influ-
ence host-tick-virus dynamics. In order to be able to 
design prevention and control measures targeted 
at the disease, mapping of endemic areas and risk 
assessment for CCHF in Europe should be completed. 
Furthermore, areas at risk for further CCHF expansion 
should be identified and human, vector and animal 
surveillance be strengthened.

Introduction 
Crimean-Congo hemorrhagic fever (CCHF) is an acute, 
highly-contagious viral zoonosis transmitted to 
humans mainly by ticks of the genus Hyalomma, but 
also through direct contact with blood or tissues of 
viraemic hosts. In humans CCHF typically presents 
with high fever of sudden onset, malaise, severe head-
ache and gastrointestinal symptoms. Prominent hem-
orrhages may occur in late stages of the disease with 
published fatality rates ranging from 10% to 50% [1,2]. 
The disease is endemic in parts of Africa, Asia, the 
Middle East and eastern Europe. Main animal hosts 
include a number of domestic animals such as cat-
tle, sheep, goats, and hares. CCHF has the potential 
to cause community and nosocomial outbreaks. Due 
to the high case fatality rates and difficulties in treat-
ment, prevention, and control, CCHF is a disease which 
should be notified immediately to public health author-
ities in the European Union (EU). CCHF virus is also in 

the list of agents for which the Revised International 
Health Regulations of 2005 call for implementation of 
the decision algorithm for risk assessment and pos-
sible notification to the World Health Organization 
(WHO) [3]. 

In Europe, CCHF is currently only endemic in Bulgaria, 
however during the last decade an increased number 
of CCHF cases and outbreaks have been recorded in 
other countries in the region such as Albania, Kosovo, 
Turkey, and the Ukraine as well as south-western 
regions of the Russian Federation [4-9]. In June 2008, 
the first case was registered in Greece [10]. In response 
to this situation, the European Centre for Disease 
Prevention and Control (ECDC) invited a group of CCHF 
experts to review the situation of CCHF in Europe and 
to consult on interventions necessary to strengthen 
preparedness and response at the European level [11].
This article provides an update on the current situa-
tion of CCHF in Europe, and emphasises existing pre-
vention and control capacities within the EU. Aspects 
relevant to strengthen preparedness for CCHF are also 
discussed. 

CCHF situation in Europe 
CCHF is endemic in Bulgaria since the 1950’s, when a 
large outbreak occurred from 1954 to 1955 with 487 
notified cases mainly in the Shumen area in north-east 
Bulgaria. In total, 1,568 CCHF cases were notified in 
Bulgaria from 1953 to 2008, with an overall case fatal-
ity rate of 17% [4]. Endemic areas are confined to the 
vicinity of Shumen, Razgrad, Veliko Tarnovo, Plovdiv, 
Pazardjik, Haskovo, Kardjali, and Bourgas, however 
in April 2008 a cluster of six probable cases occurred 
in Gotse Delchev in the south-western province 
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Blagoevgrad near the border with Greece, an area 
considered of low CCHF endemicity until recently [5]. 
During the last decade, CCHF outbreaks have also been 
noted in Albania in 2001 and 2003, and in Kosovo in 
2001 [6,7].  

In Turkey, the first symptomatic human CCHF cases 
were noted in 2002, however, serologic evidence of 
enzootic CCHF virus circulation as well as limited evi-
dence of CCHF infections among humans (2.4% among 
1,100 tested humans) has been found since the 1970’s 
[4]. Starting in 2003, Turkey has experienced an 
expanding outbreak with increasing numbers of noti-
fied cases and associated fatalities (2002: 17/0; 2003: 
133/6; 2004: 249/13; 2005: 266/13; 2006: 438/27; 
2007: 713/33; 2008: 1315/63; 2009: 1300/62) [4,12]. 
Overall, there are more than 4,400 recorded laboratory 
confirmed CCHF cases in this country, mainly among 
residents in rural areas in north-central and north-
east Anatolia [4,8,12]. Within the CCHF endemic areas, 
there are hyperendemic areas where one out of every 
five residents and one out of every two residents with 
a history of tick bite has antibodies against CCHF virus 
[13]. A predictive map model using satellite-based cli-
mate data and high-resolution vegetation images from 
Turkey from 2003 to 2006 revealed that areas with 
higher CCHF reporting were significantly associated 
with zones of high climate suitability for Hyalomma 
ticks and high rate of fragmentation of agricultural 
land [13]. 

In Greece, a serosurvey conducted between 1981 and 
1988 among 3,388 rural residents from across the 
country showed 1% seroprevalence rate against CCHF 
virus [4]. More than 400 cases with a CCHF compatible 
clinical syndrome have tested negative for CCHF virus 
in this country since 1982, therefore, the seropreva-
lence rate of 1% was attributed to the non-pathogenic 
AP-92 strain and not to the pathogenic Balkan CCHF 
virus strain. A number of the cases tested for CCHF 
were finally diagnosed as hemorrhagic fever with renal 
syndrome (HFRS), leptospirosis and ricketsial infec-
tions. Other diagnoses were meningococcal menin-
gitis and unspecified bacterial sepsis. The first CCHF 
case was recorded in June 2008 in a woman with a tick 
bite working in agriculture near the city of Komotini 
in north-eastern Greece [10]. This town is situated 
within a few kilometres distance from there where the 
Bulgarian cluster occurred in 2008 [5]. A seroepidemi-
ological study for CCHF virus among local population 
and animals are underway in northern Greece.      

After nearly 27 years without any human cases, CCHF 
re-emerged in the south-western regions of the Russian 
Federation in 1999. Outbreaks have been reported in 
Astrakhan, Rostov and Volgograd Provinces, Krasnodar 
and Stavropol Territories, Kalmykia, Dagestan and 
Ingushetia Republics. Between 2000 and 2009 more 
than 1,300 clinical cases were diagnosed in the 
Russian Federation with an overall fatality rate of 3.2% 
for the period from 2002-2007 [4]. Most cases occurred 

among residents of rural areas in the Southern Federal 
Distinct. The largest number of cases was registered 
in Stavropol Territory, Kalmykia Republic and Rostov 
Province, where the mean annual CCHF incidence 
rate was 1.7, 10.1, and 0.7 cases per 100,000 popula-
tion, respectively. During 2008 alone, the incidence in 
Stavropol Territory increased by 1.3 times, and was the 
highest recorded in this region during the last decade 
[4,9,14]. In 2009, CCHF cases were also reported from 
Georgia, Kazakhstan, Tajikistan, Iran, and Pakistan 
[15].  

CCHF emergence and/or re-emergence in south-eastern 
Europe and neighboring countries is attributed to cli-
mate and ecologic changes and anthropogenic factors 
such as changes in land use, agricultural practices, 
hunting activities, and movement of livestock, that 
may have an impact on ticks and hosts and accordingly 
on CCHF epidemiology [1,2]. The geographic distribu-
tion of CCHF coincides with that of Hyalomma ticks. 
H. marginatum, the main CCHF virus vector in Europe, 
is found in Albania, Bulgaria, Cyprus, France, Greece, 
Italy, Kosovo, Moldavia, Portugal, Romania, Russia, 
Serbia, Spain, Turkey, and the Ukraine. In 2006 it was 
detected for the first time in the Netherlands and in 
southern Germany [16,17]. Given the wide distribution 
of its vector, the numerous animals that can serve as 
hosts, and the favorable climate and ecologic con-
ditions in several European countries bordering the 
Mediterranean Sea, it is possible that the occurrence 
of CCHF will expand in the future. A model that stud-
ied various climate scenarios on the habitat areas of 
different ticks, showed that a rise in temperature and 
a decrease in rainfall in the Mediterranean region will 
result in a sharp increase in the suitable habitat areas 
for H. marginatum and its expansion towards the north, 
with the highest impact noted at the margins of its cur-
rent geographic range [18]. 

Current prevention and control in Europe 
Several elements relating to laboratory diagnosis, sur-
veillance and therapy of CCHF should be addressed in 
order to increase preparedness capacity in Europe and 
to design appropriate prevention and control measures.  

Laboratory diagnosis
In 2008 there were 20 laboratories with diagnostic 
capacities for CCHF virus in Europe: 14 in EU Member 
States, eight in the endemic regions of the Russian 
Federation, and one in Turkey. Most of them used 
immunofluorescence assays (IFA), ELISA, and/or molec-
ular methods to diagnose CCHF whereas eight among 
them were also able to isolate CCHF virus [11], a BSL-4 
containment agent. Limitations for diagnosing CCHF 
concern both the limited diagnostic capacities in sev-
eral endemic areas as well as difficulties in the inter-
national transfer of samples for logistic and economic 
reasons. However, rapid and easy tests are needed to 
guide initial therapeutic decisions for the patient. 
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Surveillance
Currently, there are no standardised case definitions for 
CCHF notification and contact tracing within European 
countries [19]. Recent cases of nosocomial acquisition 
of CCHF in health care workers were well documented 
[6,8,20]. These cases underline the need for educat-
ing health-care workers about the modes of getting 
infected with CCHF virus and for strict implementa-
tion of infection control measures within health-care 
facilities, and the importance of providing adequate 
resources to do so [1,2].       

Therapy
The World Health Organization (WHO) recommends rib-
avirin for the treatment of CCHF cases [21,22]. Ribavirin 
appears to be more effective when introduced early 
in the course of illness [23]. Evidence of its efficacy is 
based on in vitro data and on limited observations in 
humans [24-26]. Randomised controlled trials have not 
been conducted so far, and ethical issues concerning 
the use of a control group remain a major obstacle for 
this [27]. Severity of infection, duration of illness prior 
to initiation of therapy, and route of administration may 
impact the clinical outcome of CCHF cases. On indi-
vidual country level, recommendations for treatment 
of CCHF cases with ribavirin existed in 2008 in Turkey, 
Russia, Bulgaria, and Greece. In Bulgaria, in addition, 
specific hyperimmune globulin collected from conva-
lescent CCHF cases is used for prophylaxis and treat-
ment and an inactivated suckling mouse brain vaccine 
is in use since the 1970’s for high-risk groups living in 
CCHF endemic regions [28]. There is no vaccine against 
CCHF licensed in any other EU Member State. 

Conclusions 
CCHF is a disease with a high fatality rate and the 
potential to cause outbreaks. The vector for CCHF, 
the Hyalomma tick is present in southeastern and 
southern Europe. Climate factors may contribute to 
a further spread of the vector and to a consecutive 
extension of the geographic range of CCHF, which may 
further expand to European countries bordering the 
Mediterranean Sea, with the highest risk in neighbour-
ing areas with already established endemicity. This 
highlights the need for strengthening human, vector, 
and veterinary surveillance, especially in areas where 
CCHF is expected to occur in the future. Together with 
the implementation of standardised case definitions 
for CCHF this will allow an estimate of the CCHF bur-
den and of epidemiologic trends in various areas and 
countries. Guidance for contact tracing and the estab-
lishment of early detection and response systems will 
allow prompt interventions at patient, community, and 
hospital level. To enable early detection, laboratory 
capacities are crucial to rapidly confirm the suspected 
clinical diagnosis and besides being available, tests 
need to be reliable and affordable. Overall, laboratory 
capacities for CCHF should increase. Considering the 
high case fatality rate of CCHF, development of a vac-
cine and new drugs against CCHF are of major impor-
tance. Ribavirin efficacy should be assessed through 
well-designed clinical protocols and in endemic areas 

general public and health-care workers should be 
aware about modes of CCHF transmission and prophy-
lactic measures. Climate and environmental factors 
and human behavior that may influence CCHF epidemi-
ology and spread should be further studied. Mapping 
of endemic areas and risk assessment for CCHF in 
Europe should be completed and areas at risk for CCHF 
expansion should be identified and finally, appropri-
ate tick-control strategies including public education 
should be implemented. All these measures should be 
undertaken as part of a multidisciplinary collaboration 
at interregional and international level and link with 
initiatives such as the International network for capac-
ity building for the control of emerging viral vector-
borne zoonotic diseases: ARBO-ZOONET [29].  

In accordance with an ECDC-initiated assessment on 
the importance of vector-borne diseases in 2008, CCHF 
has been identified as a priority disease for the EU [12]. 
In order to strengthen preparedness and response for 
CCHF and build capacity for its prevention and control, 
it is necessary to identify relevant gaps and work in an 
integrated fashion.
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