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Tests for recent infection (TRIs), such as the BED assay, 
provide a convenient way to estimate HIV incidence 
rates from cross-sectional survey data. Controversy 
has arisen over how the imperfect performance of a 
TRI should be characterised and taken into account. 
Recent theoretical work is providing a unified frame-
work within which to work with a variety of TRI- and 
epidemic-specific assumptions in order to estimate 
incidence using imperfect TRIs, but suggests that 
larger survey sample sizes will be required than pre-
viously thought. This paper reviews the framework 
qualitatively and provides examples of estimator per-
formance, identifying the characteristics required by 
a TRI to estimate incidence reliably that should guide 
the future development of TRIs.

Introduction
When monitoring HIV epidemics it is vital to estimate 
incidence in order to plan and evaluate HIV programmes 
[1]. Prospective cohort studies are the most direct way 
to achieve this. They are, however, expensive, prone 
to recruitment and retention bias, and potentially ren-
dered unrepresentative by ethical obligations. The use 
of prevalence data in conjunction with mathematical 
modelling is an alternative approach [2,3], but is indi-
rect and requires accurate knowledge of mortality and 
migration. The disadvantages of these methods have 
focused attention on estimating incidence from cross-
sectional surveys [4-8], with the result that a number 
of assays and algorithms that test for recent infection 
have been developed [9,10]. In the context of HIV, such 
an assay or algorithm has sometimes been termed a 
STARHS (Serological Testing Algorithm for Recent HIV 
Seroconversion) [9,10], but we prefer to use the generic 
term ‘test for recent infection’ (TRI), because it does 
not specify a particular disease and method of test-
ing. Recently, the World Health Organization (WHO) 
Technical Working Group on Statistical Approaches 
for Development, Validation and Use of HIV Incidence 
Assays has proposed using the term ‘recent infection 

testing algorithm’ (RITA). The term has not, however, 
gained universal acceptance.

TRIs identify HIV-positive individuals who have been 
infected recently. By using a TRI in a serosurvey, inci-
dence (I) can be estimated by applying the epidemio-
logical relationship (based on ‘Prevalence = Incidence 
x Duration’):

where R and S are the counts of ‘recently infected’ and 
‘susceptible’ (HIV-uninfected) individuals observed in 
the cross-sectional survey and D is the mean duration 
spent in the ‘recently infected’ state, often called the 
(mean) window period. This incidence estimate is an 
average of the instantaneous incidence over a period 
of approximately D prior to the survey. The problem of 
incidence estimation then reduces to measuring the 
prevalence of ‘recent infection’, given knowledge of its 
duration.

TRIs usually discriminate recent from established infec-
tions by measuring specific aspects of the immune sys-
tem which evolve during the course of initial infection. 
For HIV, this is typically the antibody response, with the 
titre, proportion of HIV-specific IgG, or antibody avidity 
(or a combination of these) providing quantitative out-
put [10]. Laboratory-defined thresholds are chosen to 
convert these outputs into categorical results. These 
results may be augmented with other clinical informa-
tion, such as CD4 lymphocyte counts and antiretroviral 
therapy (ART) status, to classify individuals as either 
TRI-positive (P i.e. recent) or TRI-negative (N i.e. non-
recent). Positive and negative in this context should 
not be confused with HIV-positive and HIV-negative.
 
The interaction between the virus and the immune sys-
tem is complex, and individuals vary in their response 
to infection as assessed by a particular TRI. Modest 
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variation is not intrinsically problematic, but serious 
complications arise if, in some individuals, the immune 
response is such that they remain indefinitely clas-
sified as TRI-positive or if individuals revert back to 
a TRI-positive classification as a result of advanced 
disease or in the presence of antiretroviral therapy. 
Unfortunately, both these complications arise for TRIs 
currently in use. This not only limits the applicability of 
the simple incidence estimator above, but also makes 
it difficult to define and estimate the mean duration 
spent in the recently infected state (i.e. to evaluate D). 
Methods for ‘adjusting’ estimates of incidence have 
been proposed [7,8] and adopted by the United States 
Centers for Disease Control and Prevention [11] but are 
currently under debate [12-15]. Recently, a formally 
rigorous framework has been developed [16,17]. We 
provide a summary of the framework and explore its 
implications for the analysis of surveys and develop-
ment of new TRIs. 

Theoretical framework
We now briefly describe the theoretical framework and 
how it can be generalised. The key results that emerge 
from the analysis are:

•	  A TRI is ideal if all individuals eventually 
progress permanently out of the TRI-positive 
state before there is any disease-related mor-
tality. In this case, the TRI-positive category 
directly corresponds to a useful definition of 
‘recently infected’ [16,18], which means that an 
estimate for the number of recent infections is: 

  

•	  For a non-ideal TRI (i.e. when some individuals 
never progress out of the TRI-positive state), it is 
in principle still possible to estimate the number 
of individuals in a well-defined ‘recently infected’ 
state, even though this state is not directly observ-
able in all individuals. If Pnp is the proportion of 
the HIV-positive individuals who never progress 
on the TRI under consideration, then an esti-
mate for the number of recent infections is [16]:  

When the TRI is ideal, then Pnp = 0, and this for-
mula reduces to the previous expression.

•	  For all applications (including determination of a 
trend without regard to the absolute level of inci-
dence), an estimate of Pnp is required. 

•	  To determine the absolute level of incidence, it is 
also necessary to estimate the mean time spent 
TRI-positive in the subset of individuals who even-
tually do progress to become TRI-negative. This 
quantity, which we denote by ω, is analogous to 
the duration D in the simple estimator, but differs 
in the requirement that it should be estimated in 
the subset of individuals that progress on the TRI. 

•	  As Pnp increases (i.e. a larger fraction of individu-
als fail to progress on the TRI) and as ω decreases 
(i.e. individuals spend less time in the TRI-positive 
state) statistical power is lost. This means that 
estimates of incidence will have more uncertainty 
(i.e. wider confidence intervals), and it is less likely 
that a true change in incidence will be detected. 

Previous work by McDougal et al. [7] used terminology 
usually employed to characterise the performance of 
diagnostic tests, such as sensitivity and specificity, to 
characterise TRI performance. ‘Recent infection’ was 
defined as being infected for less than a particular 
time (chosen to be the mean window period). A sensi-
tivity and two specificity parameters were introduced 
to characterise imperfect classification. No procedure 
incorporating the effect of parameter uncertainty has 
thus far been proposed to estimate statistical error or 
power for the McDougal approach. It has recently been 
shown that use of sensitivity and specificity parame-
ters is a redundant description of the TRI characteris-
tics [17,19]. In contrast, the new framework defines the 
condition of being ‘recently infected’ directly in terms 
of the TRI result. This approach is applicable under 
less restrictive assumptions, is less prone to bias, and 
admits an equally informative description of TRI per-
formance using only ω and Pnp [17].

In deriving the results outlined above, two assump-
tions were made. Firstly, it was assumed that indi-
viduals who do not progress on the TRI have the same 
survival outcomes as TRI progressors. There is, how-
ever, evidence for some TRIs that individuals that fail 
to progress on the test have a survival advantage. For 
example, in Baltimore, USA, 60% of elite suppressors 
(individuals with naturally suppressed virus below 50 
copies per ml) failed to progress on the BED assay [20], 
and elite suppressors have been observed to survive 
for longer than others [21]. Secondly, it was assumed 
that TRI progressors never regress back to the TRI-
positive state, but there are indications that this is not 
true for some TRIs. For example, the rate of misclas-
sification by the BED assay is observed to be higher in 
individuals with advanced infection [22] and individu-
als on ART [22-24]. When these assumptions are true, 
Pnp is always equal to the proportion of non-recently 
infected individuals who are classified TRI-positive. 
When the assumptions are violated, this proportion, or 
false-recent rate, denoted by ε, varies according to the 
historic trajectory of the epidemic [17,25]. This would 
be consistent with the apparently higher BED assay 
false-recent rate in Uganda [26] (an older, declining 
epidemic) than in South Africa [27] (a younger, growing 
epidemic) [25]. It is, however, still possible to estimate 
the number of recent infections by replacing Pnp, in the 
expression (1) above, with an estimate of ε applicable 
to the time and place of an incidence survey [27] (see 
eAppendix http://www0.sun.ac.za/sacema/publica-
tions/eAppendix.pdf for justification). The incidence 
estimator can then be written as:
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The inputs to this estimator are of two types: survey 
counts (P, N and S), which need to be estimated in 
every incidence survey, and parameters that describe 
the characteristics of the TRI (ω and ε), which ideally 
are estimated in a smaller number of parameter esti-
mation studies.

When ε and ω are known with sufficient accuracy, 
there are no theoretical reasons why an imperfect TRI 
should not allow the accurate estimation of incidence. 
However, two distinct types of practical problems arise 

– counting error and TRI parameter error. An important 
component of recent developments is the first consist-
ent analysis of incidence uncertainty accounting for 
both counting and parameter error (see eAppendix 
http://www0.sun.ac.za/sacema/publications/eAppen-
dix.pdf for a description of the uncertainty expression). 
We now illustrate this uncertainty with a somewhat 
idealised model of the BED assay, which has received 
much attention and application [28].

Counting error
Even in the largest HIV epidemics, infection events are 
relatively rare (about 2% of the population per year) 
and ‘recent’ infections (infections in the last 155 days 
or so, for the BED assay [7,29]) are even less common 

Figure 1
Uncertainty of incidence point estimates as a result of sample size and background incidence

CV: coefficient of variation; pyar: person years at risk; TRI: test for recent infection.
The coefficient of variation of estimates of incidence using a TRI depends on the sample size of the survey and the true incidence rate. Note 
that a sample size of 10,000 approximates to the typical size of household-based surveys in Sub-Saharan Africa, and that incidence in South 
Africa (where there is one of the largest epidemics) is estimated to be about two per 100 pyar). 
Assumptions: ω= 155 days; ε=0.05; no TRI parameter uncertainty; steady-state epidemic conditions; mean survival with HIV: 11 years [31-33].
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(about 0.85% in a cross-section of the population). 
Thus, estimates of incidence are associated with sub-
stantial uncertainty since there are few recent infec-
tions to be counted. Figure 1 shows the coefficient of 
variation (CV, which is the ratio of the standard devia-
tion to the estimate) for the estimator (2) calculated 
under various survey sample sizes and steady-state 
HIV incidence rates (see eAppendix http://www0.
sun.ac.za/sacema/publications/eAppendix.pdf for a 
description of the uncertainty and steady-state calcu-
lations). The TRI parameters (ω and ε) are assumed to 
be known with absolute certainty. Low values of CV 
are desirable and indicate that estimates of incidence 
have small confidence bounds, while high values indi-
cate that incidence estimates will be less certain. For 

example, in a cross-sectional survey of 5,000 individu-
als from a population with a steady-state incidence of 
2.0 per 100 person years at risk (pyar) the CV is 25.8% 
– i.e. the 95% likelihood interval for an incidence esti-
mate is 1.0 to 3.0 per 100 pyar.

To explore the ability to detect a change in incidence, 
a substantial reduction (halving) in incidence is simu-
lated (initially in a steady-state epidemic, with preva-
lence remaining constant between the two surveys), 
and a two-tailed test of the null hypothesis that inci-
dence is the same in the two surveys is performed. The 
possible outcomes are: sustaining the null hypothesis, 
or concluding that incidence has either increased or 
decreased. Figure 2 shows the probability of correctly 

Figure 2
Probability of correctly inferring a reduction in incidence

pyar: person years at risk; TRI: test for recent infection.
The probability of detecting a reduction in incidence between two surveys, when incidence has actually been reduced by half, as a function of 
the sample size of the surveys (both assumed to be the same) and the baseline incidence rate.
Assumptions: ω=155 days; ε=0.05; no TRI parameter uncertainty; significance α=5%; steady-state epidemic conditions at first survey, with 
equal prevalence at second survey; mean survival with HIV: 11 years [31,33].
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inferring a reduction in incidence, when testing the 
null hypothesis at a significance level of α=5%. A prob-
ability close to 100% indicates that reductions in inci-
dence will be reliably detected, with a probability of 
less than 90% indicating that results will be unreliable. 
The South African National Strategic plan for HIV AIDS 
[30] has ambitiously set a target of halving incidence 
between 2007 and 2012. Our calculations suggest that 
the sample size of each of two surveys (in 2007 and 
2012) required to reliably conclude that incidence has 
decreased, at the 5% significance level, is approxi-
mately 25,000. 

TRI parameter error
In the previous section, it was assumed that the cor-
rect TRI parameters were known with certainty. The 
incidence estimates are very sensitive to changes in 
the values of ω and ε, however, and small differences 
between the values used in the calculation and the 
true values can lead to large errors. These parameters 
have to be estimated in separate studies, usually using 
cohorts of individuals whose infection time is known 
approximately. Such cohorts are rare, however, and 
the numbers of individuals in them are typically small, 
resulting in substantial uncertainty for the values of 
ω and ε. In Figure 3 we explore the uncertainty of the 
estimator (expressed as a CV), as a function of the 
uncertainty in the TRI parameters. For example, when 

Figure 3
Uncertainty of incidence point estimates as a result of TRI parameter uncertainty

CV: coefficient of variation; pyar: person years at risk; TRI: test for recent infection.
Coefficient of variation of incidence estimator, using a BED-like assay on a sample size of 5,000, in a population exposed to an incidence of 
two per 100 pyar, as a function of the uncertainty in the TRI parameters, assumed to be normally distributed.
Assumptions: ω= 155 days; ε=0.05; steady-state epidemic conditions; mean survival with HIV: 11 years [31,33].

27.5

30

30

35

35

35

40

40

40

40

45

45

45

45

50

50

Contours of constant CV (%)

 ω Coefficient of variation (%)

 ε
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n 

(%
)

0 3 6 9 12 15 18 21 24 27 30
0

3

6

9

12

15

18

21

24

27

30



6 www.eurosurveillance.org

the BED-like parameters are known with a CV of only 
15.0% (reference to a CV for ω relates to the uncertainty 
of the estimate of ω, not the variation associated with 
progression times), at a sample size of 5,000 and a 
steady-state incidence of 2.0 per 100 pyar the CV, as 
a result of both counting error and parameter uncer-
tainty, is 35.7% – i.e. the 95% likelihood interval for an 
incidence estimate is 0.6 to 3.4 per 100 pyar.

Since the TRI parameter estimation study may be 
conducted in a separate population, it is possible to 
introduce systematic bias if the true values of the TRI 
parameters vary between populations or over time. 
The few estimates of ε that have been published vary 
widely. For example, the false-recent rate is estimated 

at 1.7% in a South African survey [27] and 26.7% in 
Rwanda and Zambia [26] presumably due to popula-
tion differences in the historic courses of the epidem-
ics, viral subtypes, host immune profiles, and uptake 
of antiretroviral therapy. This undermines confidence 
in the ability to use an estimate for ε obtained in a 
different population to the one in which incidence is 
to be estimated, and could contribute to the appar-
ently inflated estimates of incidence reported recently 
[34,35]. There is also currently no general theoretically 
unbiased procedure for estimating ε – work on this 
problem is in progress [36]. In Figure 4 we explore the 
systematic error in the incidence estimate, expressed 
as a percentage of the correct value, introduced by sys-
tematic errors in the TRI parameters, also expressed 

Figure 4
Systematic error in incidence point estimates as a result of systematic error in TRI parameters

pyar: person years at risk; TRI: test for recent infection.
Systematic error expressed as a percentage of the correct estimate, excluding counting error, observed in the incidence estimator, using a 
BED-like assay, as a function of a precisely known systematic error in the TRI parameters. 
Assumptions: ω=155 days; ε=0.05; steady-state epidemic conditions; mean survival with HIV: 11 years [31,33].
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as percentages. There is a region in which bias may be 
small due to cancellation of systematic errors (see the 
zero error contour). 

Conclusion
In the short term, reports from early studies using 
BED should be interpreted with caution [28], given the 
substantial uncertainties identified above. Analysis of 
TRI data should be performed within a more general 
theoretical framework [16,17], rather than using ear-
lier methods. Most importantly, incidence surveillance 
should not currently rely on any single methodology, 
but make use of multiple methods for estimating inci-
dence [37], such as interpretation of prevalence trends 

and epidemiological and demographic modelling 
[3,38].

The search for robust means of estimating incidence 
from cross-sectional surveys is at a crucial juncture. 
Although an imperfect TRI can be used to estimate HIV 
incidence reliably, the reliance on having accurate and 
precise values of two key aspects of TRI performance 
(ω and ε) can undermine the use of this technology. The 
effect of ω and ε on statistical power is shown in Figure 
5. While larger values of ω provide sufficient numbers 
of TRI-positive individuals to ensure statistical power, 
ω should not be so large that the estimated incidence 
is not representative of the recent past. On this basis, 

Figure 5
Uncertainty of incidence point estimates as a result of TRI performance

CV: coefficient of variation; pyar: person years at risk; TRI: test for recent infection.
Coefficient of variation of incidence estimator, on a sample size of 5,000, in a population exposed to an incidence of two per 100 pyar, as a 
function of the TRI parameters. 
Assumptions: no TRI parameter uncertainty; steady-state epidemic conditions; mean survival with HIV: 11 years [31,33].
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a value of approximately six months to a year is desira-
ble. It is also essential that ε be small (progress in this 
regard is being made, for instance using TRIs consist-
ing of an assay in combination with clinical information 
[39]). Ideally, to ensure that the fraction of misclassi-
fications is independent of time and epidemic state, 
inter-individual variability in TRI progression should 
be unrelated to survival outcomes, and there should 
be no regression to the TRI-positive state. These form 
the core requirements for the development of new TRI 
assays and algorithms used to estimate incidence.

In the next phase of TRI development, it will be 
essential to be guided by these insights into the key 
determinants of test performance, and to focus on 
characterising the performance of the test within a sys-
tematic framework.
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