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An early estimate of disease transmissibility is essen-
tial for a well-informed public health response to a 
newly emerged infectious disease. In this study, we 
ask what type and quantity of data are needed for use-
ful estimation of the initial reproduction number (R). 
It is possible to estimate R from case incidence data 
alone when the growing incidence of cases displays 
a wave pattern, because the pattern provides infor-
mation about the serial interval (the time elapsed 
between the onset of symptoms of a case and symp-
tom onset in individuals infected by that case). When 
the mode of the serial interval distribution is small, 1.5 
days or less, there is generally no informative wave 
pattern in the observed series of daily incidences. The 
precision of the estimate of R is then improved sub-
stantially by having some observations on the serial 
interval. For an infectious disease with characteris-
tics such as those of influenza, an estimate of R able 
to inform plans to mitigate transmission is obtained 
when the cumulative incidence of cases reaches about 
300 and about 10 observations on the serial interval 
are available.

Introduction
Concern about the risk posed to humans by avian influ-
enza A(H5N1) encouraged substantial planning for the 
possible emergence of pandemic influenza [1-4]. The 
emergence of the pandemic influenza A(H1N1) strain 
in 2009 further highlighted the importance of pan-
demic preparedness. Key elements of preparedness 
plans are disease transmissibility, the rate of disease 
progression and how these change with use of anti-
viral drugs, vaccines and social-distancing measures. 
Assumptions about disease transmissibility and pro-
gression are necessarily based on data from past pan-
demics and seasonally circulating influenza strains, 
but a future pandemic strain may have quite different 
characteristics.

Preparedness planning deals with this uncertainty by 
assessing the effectiveness of interventions under 
different scenarios. When a new viral strain emerges, 
it is important to determine which scenario obtains, 
because the effectiveness of some interventions is 
scenario dependent. For example, targeted use of 

antiviral drugs, early and liberally, may contain an 
influenza strain with a modest transmission rate, but 
would be ineffective against a highly transmissible 
strain. Timeliness is also important, because an inter-
vention is most effective when introduced early. Here 
we consider what data from the early stage of an out-
break, and how much, are needed to inform decisions 
about interventions needed to mitigate the impact of a 
pandemic to a manageable level.

It is convenient to quantify disease transmissibility by 
R, the effective reproduction number of infective indi-
viduals. At any time, R is the mean number of infections 
generated by a ‘typical’ infective person, given current 
levels of immunity and public health interventions. It 
quantifies the growth in the number of cases from one 
generation of cases to the next. We aim to estimate 
the initial R from early incidence data of an outbreak. 
Incidence data alone seem inadequate for this estima-
tion: we also need information about the serial inter-
val, the time elapsed between the onset of symptoms 
of a case and symptom onset in individuals infected 
by that case. The artificial incidence series A and B of 
Table 1 illustrate this point. Comparing incidences on 
days 0, 2, 4, 6 and 8 suggests the two outbreaks are 
growing similarly over time, while comparing cumula-
tive incidences suggests series B is the larger threat. 
However, series A actually poses the greater threat 
(larger eventual attack rate) because it is consistent 
with R = 4 and every infected person having a short 
symptomatic infectious period on the second day after 
infection, while series B is consistent with R = 2 and 
a short symptomatic infectious period on the first day 
after infection. In other words, reproduction numbers 
corresponding to incidences that appear to be growing 
similarly can differ by a factor of two when the mean 
serial interval differs by a factor of two. This shows 
that estimates of R obtained by assuming a form for the 
serial interval distribution come with the risk of sub-
stantial estimation bias.

The basic reproduction number (R0) is the mean number 
of infections generated by a ‘typical’ infective person in 
a community with everyone susceptible and no public 
health interventions in place. Throughout this paper, R 
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refers to the initial reproduction number. For pandemic 
influenza this is likely to differ from R0 for two reasons. 
Firstly, some cross-immunity from previous exposure 
to influenza strains may be present. Secondly, prior 
alertness to the possibility that the pandemic strain 
may be imported, and its unknown severity, may result 
in atypical behaviour and an enhanced public health 
response.

Wallinga and Teunis [5] provide a method for estimat-
ing R that is based on considering, for every case, 
who might have been responsible for that infection. 
The distribution of the serial interval is assumed to be 
known. Cauchemez et al. [6] modified the approach to 
enable dynamic estimation of R over time. The above 
comparison for case series A and B suggests that it is 
preferable to estimate R and the mean serial interval 
simultaneously from early data. A method for making 
Bayesian inferences about R, without assuming a spe-
cific distribution for the serial interval, is proposed by 
Cauchemez et al. [7]. They assume that a certain frac-
tion of infections are traced as an epidemic progresses. 
An alternative approach to estimating R during the 
early stage of an epidemic is described by White and 
Pagano [8]. Their results suggest that it is possible to 

estimate R and parameters of the serial interval distri-
bution simultaneously using only daily incidence data. 
Inspection of case series A of Table 1 indeed suggests 
that there is scope to estimate R from incidence data 
alone when the pattern of incidences is strongly sug-
gestive of the serial interval. When growth in incidence 
exhibits waves over time, we can regard the sources 
of infection in one wave to be the cases of the previ-
ous wave, as illustrated for smallpox by Becker [9]. 
Here we consider estimation of R by both maximum 
likelihood and Bayesian methods. The aim is to deter-
mine what data are needed to make the estimate of R 
precise enough to inform decisions on public health 
interventions.

Methods 
The alert of a possible pandemic virus strain instigates 
enhanced surveillance of incoming travellers and the 
general population. It is therefore possible to have daily 
incidence data of reasonable quality during the early 
stage of a detected outbreak. Observations on serial 
intervals are harder to collect because it is often dif-
ficult to ascertain the source of an infection. However, 
the first cases of a newly emerged infection are often 
travellers and subsequent local cases can sometimes 
be linked to incoming infected travellers. This can pro-
vide observations of serial intervals, as can sequential 
cases in early household outbreaks.

For maximum likelihood estimation and Bayesian infer-
ence of R, we need a likelihood function. We use the 
likelihood function proposed by White and Pagano [8], 
which is based on the infection process depicted in 
Figure 1, with one modification. We augment the likeli-
hood with a contribution for independent observations 
of the serial interval, as described in the Appendix. We 
also use an unrestricted range of distributions for the 
serial interval, so we can better explore how results 
depend on the shape of this distribution. This likeli-
hood function was used for maximum likelihood esti-
mation and in Bayesian inferences via Markov chain 
Monte Carlo (MCMC) methods on simulated data [10], 
to see how these inferences perform with different 
amounts of data and with different rates of disease 
transmission and progression. 

For our assessment of data needs we simulated, for 
each choice of parameter values, a large number of 
outbreaks, as in White and Pagano [8]. Specifically, 
we begin an outbreak with a fixed number of newly 
infected individuals. We assume that the number of 
infections generated by an infected case has a Poisson 
distribution. This assumes that each case has the 
same potential to infect others. We also assume that 
the serial interval has a multinomial distribution, as 
depicted in Figure 1. 

We covered values of R in the range one to five, and a 
wide range of plausible shapes for the distribution of 
the serial interval.

Figure 1
The infection process: mean number of secondary cases 
generated by a single case

pi; probability that a serial interval is i days; R: initial reproduction number; 
t: day of symptom onset.

Note that Rpi is simply R multiplied by pi.

Mean number of secondary cases, with onset of symptoms in the next three 
days, generated by a single case with onset of symptoms on day t.

Table 1
Daily incidence counts of four artificial incidence series

Incidence 
series

Daily incidence counts 
Daya

-1 0 1 2 3 4 5 6 7 8
A – 1 0 4 0 16 0 64 0 256
B – 1 2 4 8 16 32 64 128 256
C – 10 0 20 0 40 0 80 0 160
D 4 6 8 12 16 24 32 48 64 96

a Day 0 is the day initial cases present. In series D, four additional 
initial cases present on the previous day.
Four series of daily incidence counts that coincide with the mean 
count when R = 4 for series A, R = 2 for series B, C and D, and a 
short symptomatic infectious period on the first day after infection 
in series B and on the second day after infection in series 
A, C and D.
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How precise should the estimate of R be? We note that 
a precise estimate is valuable when R is near one, 
because it is then useful to be assured that a small 
amount of additional intervention, such as use of anti-
viral drugs or restricted school attendance, may con-
tain the outbreak. When R is large (e.g. R > 3), we know 
that considerable intervention is required and the pre-
cise value of R is not quite as critical. On this basis, we 
aim for a precision so that the lower and upper values 
of a 95% credibility interval lie 25% or less below and 
above the value of R, respectively.

Results
As mentioned, data needs were investigated by 
assessing estimates obtained from many simulations 
of randomly generated outbreaks. Illustrative results 
for such simulated outbreaks are given for a few combi-
nations of parameter values in Table 3 in the Appendix. 
This comprehensive assessment of the methods of 
inference from such simulated outbreaks led to several 
useful findings. Here we report these findings with ref-
erence to four simple illustrative incidence series, spe-
cifically chosen to point to the underlying reasons for 
the results.

First, we found circumstances when a useful estimate 
for R can be obtained from daily incidence data alone 
and having independent observations on the serial 
interval does not improve the precision of the estimate 
appreciably. This point is illustrated by estimating R 
from the case incidences shown in series A of Table 
1. Let pi denote the probability that a serial interval 
is i days. Incidences A coincide with the mean counts 
obtained from the model when R = 4 and the serial 
interval is two days (i.e. p2 = 1). The mean serial inter-
val (µ) is then two. Without additional observations on 
the serial interval, Bayesian inferences (described in 
the Appendix) gave the 95% credibility intervals for R, 
p1, p2, p3 and µ shown in row one of Table 2. Note that: 

•	  an R value of four lies in the 95% credibility inter-
val for R and the interval bounds are only about 
10% below and above four 

•	  a µ value of two lies in the 95% credibility interval 
for µ 

•	  the large value for p2 and small values for p1 and p3 
are indicated well by the inferences. 

Specifically, note the tight credibility interval for µ, 
although no independent observations on the serial 
interval are included.  

The above illustration is for incidences artificially cho-
sen to coincide with the mean incidence counts, when 
R = 4 and p2 = 1. Similar performance was observed 
when incidences were simulated to include a chance 
component (see Table 3 in the Appendix, for an illus-
tration). The conclusion that incidence data alone can 
provide useful estimates also holds for variable serial 
intervals. This is illustrated by results in Table II of 
White and Pagano [8], who assume certain gamma dis-
tributions for the serial interval. 

Row two of Table 2 shows the credibility intervals 
obtained when, in addition, there are 20 observations 
on serial intervals consisting of 18 serial intervals of 
two days and one serial interval of each of one day 
and three days. It is seen that adding the independent 
observations on serial intervals does not improve the 
precision of inferences. A similar conclusion is reached 
from the properties of maximum likelihood estimates. 
Specifically, the large sample standard deviation of 
the maximum likelihood estimator for R, with param-
eter values as for series A, is the same (to four deci-
mal places) whether the number of observations on the 
serial interval is zero or 20.

The extreme pattern of incidences in A is very sugges-
tive of a mean serial interval of two. More generally, 
we found that incidence data alone provide a good 
estimate whenever the serial interval distribution is 
unimodal and the mode is greater than one day. With 
such a serial interval distribution, a wave pattern tends 
to be superimposed on the exponentially growing inci-
dence counts, and this pattern is informative about 
the mean serial interval. In particular, the four gamma 

Table 2
95% credibility intervals from the daily incidence counts of four artificial incidence seriesa, with and without additional 
observations on serial intervals

Row Incidence
series

95% credibility intervals of the parameter

R p1 p2 p3 µ
1 A 3.64–4.46 0.00–0.01 0.96–1.00 0.00–0.04 2.00–2.04
2 A + 20b 3.66–4.52 0.00–0.02 0.94–0.99 0.00–0.05 1.99–2.05
3 B 2.11–4.88 0.10–0.88 0.01–0.70 0.01–0.71 1.16–2.51
4 B + 20b 1.97–2.59 0.67–0.95 0.01–0.23 0.01–0.21 1.07–1.52
5 C 1.81–2.25 0.00–0.01 0.97–1.00 0.00–0.03 1.99–2.02
6 D 1.40–2.06 0.27–0.91 0.01–0.55 0.01–0.51 1.12–2.14
7 D + 10b 1.56–2.14 0.15–0.56 0.31–0.76 0.02–0.31 1.50–2.08

µ: mean serial interval; pi: probability that a serial interval is i days; R: initial reproduction number.
a The four artificial incidence series (A–D) in Table 1.
b The number after the plus sign is the number of observations on the serial intervals.
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distributions used by White and Pagano [8] are unimo-
dal and have a mode greater than one day, which is 
what enables the incidence data alone to produce use-
ful estimates.

In contrast, we also found circumstances when obser-
vations on daily incidence data alone are inadequate 
for simultaneous estimation of R and parameters of the 
serial interval distribution. We illustrate this observa-
tion by estimating R from the case incidences shown in 
series B of Table 1.

The daily incidences in series B coincide exactly with 
the mean incidence counts when R = 2 and p1 = 1, so 
that µ = 1. These parameter values are not recovered 
well by Bayesian estimation applied to the incidence 
data alone, as shown by the credibility intervals in row 
three of Table 2. The interval for R is wide and does 
not contain the value R = 2. Inferences about the dis-
tribution of the serial interval do not suggest a value 
near one for p2, nor for µ. The four gamma distributions 
assumed for the serial interval by White and Pagano 
[8] do not reveal this weakness in making inferences 
from incidence data alone. By adding 20 independent 
observations on serial intervals (18 serial intervals of 
one day, one of two days and one of three days), the 
width of the credibility intervals narrows appreciably 
(see row four of Table 2). The main reason for the poor 
inference when there are no observations on serial 
intervals lies in the fact that the growing incidence in 
series B displays no wave pattern, so the incidence 
data provide minimal information about the mean 
serial interval. More generally, we found that the pre-
cision of estimates of R from incidence data alone is 
poor when the probability that serial interval is less 

than two days exceeds 0.5. Specifically, with a gamma 
distribution for the serial interval (as in [8]), estimation 
is poor when the mode of the distribution is zero, e.g. 
the exponential distribution. In such instances, estima-
tion improves substantially by adding observations on 
the serial interval.

The following is a useful warning about choosing a 
suitable value for the number of initial infected indi-
viduals in simulation studies that assess methods for 
estimating R. It is natural to avoid very small outbreaks 
in simulation studies because they provide little infor-
mation for estimation and in practice are unlikely to 
lead to attempts to estimate R. It is therefore common 
practice to start a simulated transmission chain with 
a larger number of initial cases. For example, White 
and Pagano [8] and Cauchemez et al. [6] generally 
start with 10 initial cases, and sometimes with 100. We 
found that assessing inferences based on 10 cases on 
the initial day tends to suggest better precision than is 
likely with more realistic initial case clusters. We illus-
trate this point by comparing inferences for case series 
C and D of Table 1. Incidence series C begins with 10 
cases on day 0, while incidence series D begins with 
six cases on day 0 and four cases with onset of symp-
toms the previous day. With those respective initial 
cases, incidence series C and D coincide exactly with 
the mean counts when R = 2 and p2 = 1. Both series 
have the same number of cases over the 10-day obser-
vation period, so the two series might be expected to 
contain approximately the same amount of informa-
tion. The credibility intervals shown in row 5 and row 
6 in Table 2 show that inferences for incidence series 
C are more precise than those for series D. Incidences 
C lead to better precision, particularly for p1, p2, p3 and 
µ, because the 10 initial cases generate a better wave 
pattern on the exponentially growing incidences than 
does the initial case cluster in series D.

Given that incidence data alone are insufficient for 
estimating R for all plausible incidence series, it is 
important to determine how many observations on 
serial intervals are necessary to estimate R, when inci-
dence data of an outbreak are inadequate for such esti-
mation. Analyses based on Bayesian inferences and on 
maximum likelihood estimation indicate that just a few 
observations lead to a substantial improvement in the 
precision of estimates. This is illustrated in Figure 2. 
The solid curve shows the large-sample standard error 
of the maximum likelihood estimate of R as the number 
of observations on the serial interval increases. For 
this curve, we started with 10 cases on the first day 
and observed the incidence over the following four 
days, assuming R = 2 and that the serial interval has 
the distribution given by p1 = 0.61, p2 = 0.32 and p3 = 
0.04 (a distribution of the binomial form). The dashed 
curve shows the standard deviation for the posterior 
distribution of R when we have two initial infective 
cases and incidence counts of 2, 4, 7, 12, 21, 36, 61 
and 104 over the next eight days. These counts are the 
mean counts (rounded to the nearest integer) when

Figure 2
Effect of increasing the number of observations on the 
serial interval

Large-sample standard deviation of the maximum likelihood 
estimate (solid line) and standard deviation of the posterior 
distribution (dashed line) of the initial reproduction number (R) as 
the number of observations on the serial interval increases.
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R = 2 and the serial interval distribution is given by p1 = 
0.61, p2 = 0.32 and p3 = 0.04. Both curves illustrate the 
important point that the first few observations improve 
precision substantially. After 10–15 observations, 
each additional observation provides only a modest 
improvement in precision. This is typical of other set-
tings where the incidence data alone are inadequate 
for estimating R with a precision of practical value. 
Note that both curves in Figure 2 decrease to a positive 
value. This value depends on the amount of incidence 
data available, which constrains the precision that is 
possible when estimating R.

It remains to ask how long a series of incidence data 
needs to be observed before we can estimate R with 
useful precision. This depends on the value of R and 
on the distribution of the serial interval. However, 
useful guidance is found by noting that estimating R 
corresponds to estimating the mean of the ‘offspring’ 
distribution, and so the number of infective individu-
als who are ‘parents’ is key to answering that ques-
tion. As generations are not identified, some idea 
about the mean serial interval is needed. We found 
that R can be estimated with useful precision if we wait 
until the cumulative incidence reaches 150 and then 
continue to observe incidence for a number of days 
equal to the mean serial interval. Then the incidence 
data will include close to 150 parents (primary cases). 
This is illustrated by the results in row 5 (series C) in 
Table 2 when the incidence data are informative about 
the serial interval and by the results in row 6 (series 
D+10) when the incidence data contain little informa-
tion about the serial interval. Note that series C and D 
each include 150 parents (primary cases) and there are 
160 cases in the final generation whose offspring have 
not yet been observed.

Discussion
For a disease such as severe acute respiratory syn-
drome (SARS), with a latent period of a few days and 
onset of symptoms at about the start of the infectious 
period, it is very likely that the modal value of the 
serial interval is located a few days past the point of 
infection. Our results indicate that R can then be esti-
mated quite effectively from daily incidence data alone. 
In contrast, for influenza the latent period and time to 
onset of symptoms tends to be quite short and indi-
viduals are thought to be infectious prior to onset of 
symptoms. It is not clear that the serial interval for the 
next influenza strain will have a modal value greater 
than one day. It is therefore sensible to include plans 
for observing some serial intervals into preparedness 
plans for pandemic influenza. As few as 10 observa-
tions can improve the precision of the early estimate 
of R substantially. The point that serial interval data 
improve the estimation of R was also made in the 
recent paper by White et al. [11].

In contrast to the approach of Cauchemez et al. [7], our 
approach assumes we have independent observations 
on the serial interval. This assumption made it feasible 

for us to carry out the analysis for many choices of 
parameter values. The assumption has no impact on 
results for the performance of estimates without serial 
interval data. For results that include serial interval 
data, we note that the independence assumption holds 
when the serial interval data come from a different 
location. When the serial interval observations are part 
of the locally collected incidence data, there is some 
dependence that is ignored by our approach. This is 
unlikely to have a significant impact on results, since 
we are assuming we have serial interval observations 
for less than 10% of infections.

The difficulty of observing serial intervals is exac-
erbated by the fact that the serial intervals actually 
observed may not be truly representative of randomly 
selected serial intervals, because they often arise from 
household contacts (with higher rates of contact within 
households) and from infected travellers (who may not 
have spent all of their infectious period locally).

It is important to be aware that biases may arise from 
the use of early incidence counts. First, it is important 
to allow for imported infections. Each imported case 
must be considered to have been infected elsewhere 
and not an offspring of a case from an earlier day. The 
methods used here are easily adapted to allow for this. 
Second, if a newly emerged infection is not detected 
immediately there may be a build-up of cases who are 
then detected in quick succession. Such a burst in the 
number of detected cases may not reflect the natural 
history of the infection and disease progression and 
can lead to initial estimates being biased.

As mentioned previously, the inferences reported here 
assume that the number of infections generated by an 
infected case has a Poisson distribution. This assumes 
that each case has the same potential to infect others 
and does not allow for variation in infectivity between 
individuals.

Our assessment clearly involved assumptions. During 
the early stages of the next newly emerged pandemic 
strain, it will not be known how appropriate these 
assumptions are. It will nevertheless be very useful 
to use these results on the type and quantity of data 
needed for guidance in preparedness plans for future 
emerging infections.

Appendix:
http://nceph.anu.edu.au/Staff_Students/Staff%20Publications/
Appendix_Becker.pdf
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