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A literature review was conducted to highlight the 
application and potential benefit of using geographic 
information systems (GIS) during Legionnaires’ dis-
ease outbreak investigations. Relatively few pub-
lished sources were identified, however, certain types 
of data were found to be important in facilitating the 
use of GIS, namely: patient data, locations of potential 
sources (e.g. cooling towers), demographic data relat-
ing to the local population and meteorological data. 
These data were then analysed to gain a better under-
standing of the spatial relationships between cases 
and their environment, the cases’ proximity to poten-
tial outbreak sources, and the modelled dispersion of 
contaminated aerosols. The use of GIS in an outbreak 
is not a replacement for traditional outbreak investiga-
tion techniques, but it can be a valuable supplement to 
a response.  

Background
Legionnaires’ disease (LD) is an atypical type of pneu-
monia caused by bacteria of the genus Legionella [1-3]. 
The disease mainly affects people over 50 years of age, 
and generally men more than women [4,5]. Smokers, 
people with certain occupations, and people with 
underlying medical conditions may be at a higher risk 
of infection [1]. The early symptoms of Legionnaires’ 
disease can include an influenza-like illness with mus-
cle aches, tiredness, headaches, dry cough and fever 
[1,2]. The fatality rate of Legionnaires’ disease can 
vary from 1% to 17% of cases in the general population 
and may be higher in the risk groups [5-9]. The right 
skewed incubation period distribution has a median of 
six days but can range between two and 19 days [10]. 

Susceptible persons typically become infected when 
they inhale Legionella bacteria in aerosolised form. 
There is no evidence of person-to-person transmis-
sion [11]. Legionella organisms are found widely in 
the environment. They multiply under favourable con-
ditions created by man-made water systems, such as 
hot and cold water systems, whirlpools, water in air 

conditioning cooling systems, and cooling towers, from 
where they can be aerosolised.

The majority of LD cases are reported as single (spo-
radic) cases which can occur throughout the year, with 
most cases occurring in late summer and early autumn 
[3,4,12]. However, clusters and outbreaks also occur 
[6-9]. During an LD outbreak descriptive epidemio-
logical and (clinical and environmental) microbiologi-
cal investigations are often sufficient to identify the 
outbreak source when it becomes clear that all cases 
have visited a common location. However, there are 
instances where there is no obvious, common link 
between cases. It is in these situations that geographic 
information systems (GIS) can provide supplementary 
insight. 

A GIS can be described as the integration of software 
and hardware for the digital capture, management, 
analysis and visualisation of geographically referenced 
data. The majority of health data are inherently spa-
tial and have a location, be it an address or a broader 
administrative unit. GIS enable interpretation of this 
information spatially, looking for patterns, trends and 
relationships that might exist between disease (or 
other occurrences), demography, environment, space 
and time. GIS therefore have wide-ranging applications 
in public health, including outbreak response.

If a common source is responsible for an increase in 
LD cases it is reasonable to assume that those infected 
with LD have been in relatively close spatial proximity 
to the same source at some point over the likely incu-
bation period range. By using GIS to analyse the spa-
tial distribution of cases and how they have interacted 
with their environment, including their proximity to 
potential sources such as cooling towers, it is possible 
to identify areas in geographical space that are per-
haps common between cases and perhaps suggestive 
of where the source of an outbreak might be located. 
In this way GIS can help identify an outbreak source, 
target additional investigation or corroborate findings 
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from other types of investigation. The aim of this paper 
was to review the available peer-reviewed scientific lit-
erature to highlight the application and potential ben-
efit of using GIS within LD outbreak investigation. This 
paper will not review the use of GIS for LD outbreak 
detection or other analysis of surveillance data. 

Literature search strategy
The literature was searched at the end of November 
2011. The data was sourced using the Scopus (www.
scopus.com) and PubMed (www.ukpmc.ac.uk/) cita-
tion databases of peer-reviewed literature using the 
following search terms:

“((cluster analysis OR space OR spatial OR gis OR geo-
graphical) AND (legionnaires disease outbreak OR 
legionellosis))”

The returned titles and abstracts were reviewed by 
the first author and full texts were obtained for those 
publications that appeared relevant to the scope of 
the review. The selected full texts were then further 
reviewed by all the authors and selected for inclusion, 
if they provided details on the application of GIS or 
some type of spatial analysis within an LD outbreak 
investigation. Articles were excluded if they did not 
give practical details of the use of GIS or spatial analy-
sis in the context of a Legionella outbreak. Additional 
published materials that were cited in the articles 
returned by the initial search, and met the selection 
criteria, were also sourced for inclusion.  Unpublished 
examples of GIS-based analyses employed in LD out-
break response were not considered because they had 
not been subjected to peer review.

Results

Literature search
Of the 137 articles retrieved in the literature search, 
four met the inclusion criteria and were included in this 
review.  A further four articles, cited in these articles 
were also included, together with an additional article 
that met the inclusion criteria and was known to the 
authors, but did not appear in the literature search.  

Data collection
It is evident that the body of literature covering the 
application of GIS within LD outbreak response is fairly 
small; however from the examples available it is clear 
that the application of GIS relies on the availability of 
detailed patient case data and, depending on the type 
of analysis, other data such as information on poten-
tial source locations or demographic and meteorologi-
cal data. 

Patient case data
Typically, the incubation period of Legionnaires’ dis-
ease is between two and 19 days [10]. It is therefore 
highly desirable to collect data for each patient case 
(and possibly controls) covering that period of time 
before the onset of symptoms. In terms of spatial data, 

home location is commonly recorded as a minimum 
requirement to identify a case’s location in geographic 
space; however it is likely that patients will not be sta-
tionary at their home location but travel throughout 
their environment, for work or recreation, over the time 
period in question. Table 1 summarises the patient 
case data collected for a range of outbreaks reported 
in the reviewed literature. The majority of those stud-
ies [6,7,13-18] collected other data in addition to home 
location to gain a fuller understanding of the spaces 
occupied by cases (and possibly controls). Collecting 
case data to this level of detail is a challenge in itself, 
both in terms of resource availability for the outbreak 
control team and the physical ability of cases (who 
may be seriously ill) to recall and provide such detailed 
information. As such, such detailed data are often 
absent from an outbreak investigation, and the appli-
cation of GIS-based analyses is therefore not possible 
or seriously restricted.

Potential source locations
Where the source of an LD outbreak is not clear from 
the initial descriptive epidemiological investigation, 
it is often the case that cooling towers or other aero-
sol-emitting facilities are found to be the responsible 
sources [3]. By collecting details of the locations of 
these potential sources, GIS can be used to assess the 
relative likelihood that a source could be responsible for 
an outbreak based on the spatial movements of patient 
cases in relation to each potential source location. In 
a number of countries it is a statutory requirement to 
register a cooling tower with a particular administra-
tive body, either at a local, regional or national level; 
however in other countries it is not [20]. It is likely that 
a desktop assessment using mapping tools, and some 
field reconnaissance may be required to quality-check 
such registers and to also identify other potential out-
break sources.

Demographic data
Data about the population in an area are often utilised 
to calculate attack rates, providing relative measures 
of disease occurrence or effects [6,7,13,15,16]. 

Meteorological data
A number of studies have also made use of meteoro-
logical data for the purpose of atmospheric disper-
sion modelling [6,7] in an attempt to identify whether 
a modelled release from a suspected facility (such as 
a cooling tower) is consistent with the spatial pattern 
of infection. Climatic variables within atmospheric dis-
persion models can include wind speed, wind direc-
tion, temperature, humidity and atmospheric stability 
measures.

Data analysis
The real value of a GIS for an LD outbreak investigation 
is to take spatially implicit ‘textual’ information, such 
as addresses and descriptions of travel movements, 
and make them spatially explicit geometric features 
(coordinates) with linked attributes. This information 
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can be plotted onto a map and used within analytical 
operations. Textual information, such as addresses, 
can often be sufficient to suggest the source of an 
outbreak if, for example, all cases report having been 
to the same location, such as a spa pool. However, in 
those instances where the source remains unclear, the 
information provided in the case questionnaire can be 
mapped. Visualising that data on a map could reveal a 
pattern of infection that may be suggestive of a source 
or focus the investigation on a particular area. In addi-
tion, a number of analytical techniques have been 
described in the literature that utilise patient case 
data, as well as other sources of spatial information, 
to analyse the spatial relationships that exist between 
cases and their environment. 

Potential source proximity analysis
A common strategy employed is to identify potential 
sources of an outbreak, such as cooling towers, and 
then to analyse the spatial relationships between each 
case and each of these potential sources. Kirrage et 
al. [14] employed this technique within their investiga-
tion of the 2003 outbreak in Hereford, United Kingdom. 
Having identified the locations of cooling towers within 
the area of the outbreak, each cooling tower loca-
tion was ‘buffered’ by 250 m, 500 m, and 1,000 m. A 

composite score quantified the risk of exposure and 
therefore the likely source of contamination amongst 
seven sites of interest in and around the city centre. 
When reviewing the composite scores, two sites were 
identified as being associated with significantly more 
cases. Additional epidemiological and microbiological 
investigation then enabled the rapid identification of a 
single cooling tower as the source of the outbreak.

 Garcia-Fulgueiras et al. [13] adopted a similar approach 
as part of their investigation into the world’s largest LD 
outbreak to date with more than 800 suspected cases 
(449 confirmed) in Murcia, Spain. As part of the case–
control study a variety of data were mapped, includ-
ing home and work addresses, travel movements and 
method of transport. Also, thirty zones were defined 
around potential sources of contaminated aerosols 
(such as cooling towers). The authors analysed move-
ments through each of these zones and revealed a 
strong association, in all eight multivariate analyses 
described in the paper, between passing through the 
zone surrounding a hospital cooling tower and being ill 
with LD. 

In the same way that simple counts or scores can 
be attached to a buffer or zone, attack rates can be 

Table 1
Summary of case data collected in Legionnaires’ disease outbreaks for analyses based on geographic information systems

Outbreak Author(s) Cases Case data collected for GIS-based analyses

Pas-de-Calais, France
Nov 2003–Jan 2004

[6] Nguyen et 
al. (2006) 86 cases

As part of a matched case–control study, data on each 
location visited and time spent at each location (as well 

as method of transport) was mapped.

Fredrikstad and Sarpsborg, Norway
May 2005

[7] Nygard et al. 
(2008) 56 cases

The location of cases’ home addresses was mapped 
as well as their movements for the 14 days prior to the 

onset of symptoms. 

Murcia, Spain
Jul 2001

[13] Garcia-
Fulgueiras et 

al. (2003)

>800 suspected cases 
reported, 449 confirmed.

As part of a case–control study (consisting of 85 cases 
and 170 controls), home locations, work locations and 

travel movements (as well as method of transport) were 
mapped for the 14 days before onset of symptoms. 

Hereford, England
Oct–Nov 2003

[14] Kirrage et 
al. (2007) 28 cases

The location of cases’ home addresses was mapped as 
well as their movements for the 14 days prior to onset of 

symptoms. 

Barcelona, Spain
Oct–Nov 2000

[15] Jansa et al. 
(2002) 54 cases

The location of cases’ home addresses was mapped as 
well as the locations they had visited during the two 

days prior to their admission to hospital.

Delaware, United States
Jul–Sep 1994

[16] Brown et 
al. (1999) 29 cases

As part of a case–control study participants were asked 
to identify areas on a gridded map that they had visited, 

as well as the number of visits made and the length of 
time spent in each area. Data were collected for the 14 

days prior to the onset of symptoms.

South Wales
Sep 2010

[17] Keramarou 
& Evans (2010) 22 cases

The location of cases’ home addresses as well as any 
other locations visited were mapped for the 14 days prior 

to the onset of symptoms. 
Alcoi, Spain
July–Sep 2009

[18] Coscolla et 
al. (2010) 11 cases The location of cases’ home addresses were mapped as 

well as their movements.

Alcoi, Spain
Sep 1999–Dec 2000

[19] Martinez-
Beneito et al. 

(2006)

36 cases in the 1st 
outbreak, 11 cases in 

the 2nd outbreak and 97 
cases in the 3rd outbreak

As part of a case–control study home addresses were 
mapped.
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calculated to provide a relative measure of disease 
occurrence within a population. Nygard et al. [7] used 
attack rate analysis to help identify a commercial air 
scrubber as being the responsible source for the 2005 
outbreak in Fredrikstad and Sarpsborg, Norway. The 
assumption behind this technique is that the risk of 
infection will decrease with distance from a facility that 
is responsible for an outbreak. This part of their inves-
tigation revealed that people living within 1 km of a 
particular industrial air scrubber were most at risk, and 
that was the only source for which the risk decreased 
with increasing distance.

Dispersion modelling 
Nygard et al. [7] used the AirQUIS Gaussian puff model 
INPUFF [21] to simulate the dispersion of aerosols emit-
ted from a number of potential sources of infection 
incorporating data on wind direction, velocity, temper-
ature and atmospheric stability. They had to assume 
values for particle size of the aerosols, pipe diameter, 
output velocity and emission rate. Whilst acknowledg-
ing some of the limitations of the modelled outputs, 
the plumes were used to establish the proportion of 
patients who would have been exposed to the various 
potential sources by either living or visiting a location 
within the modelled dispersal region during the incu-
bation period. The results showed the best fit, with the 
same source highlighted by the attack rate analysis.

Similarly, Nguyen et al. [6] also employed aerosol dis-
persion modelling in an attempt to simulate the disper-
sion of aerosols from a suspected cooling tower. An 
atmospheric dispersion modelling system (ADMS) [22] 
was used to simulate emissions from the suspected 
facility during each wave of the outbreak. The output-
ted maps of aerosol dispersions revealed a good fit 
between the modelled plumes and the geographical 
distribution of cases. 

As is acknowledged by both Nguyen et al. [6] and 
Nygard et al. [7], there are a number of difficulties in 
modelling the airborne dispersal of contaminated aero-
sols. In essence a plume model attempts to track the 
concentration or dose of a contaminant through space 
and time following its release into the atmosphere. A 
simple Gaussian model makes the simplifying assump-
tion that wind is of a fixed speed and direction for the 
duration of the release and whilst having an inspiration 
in turbulent fluid theory, the form of the Gaussian plume 
is dependent on empirical estimates of downwind dis-
persion. The effects of buildings and vehicles changing 
the flow are not included in such a model. Essentially 
dispersion models serve two major functions: firstly, to 
estimate the exposed population following a potential 
release, and secondly, to infer potential release sites 
from the pattern of observed infections. For the former, 
insufficient evidence has been compiled to suggest an 
infectious dose of Legionella in humans (or the proba-
bility of infection following inhalation of a dose), or how 
long the bacteria can survive in the atmosphere once 
aerosolised. As such, converting the contours from a 

plume model into exposure and potential infections is 
difficult without additional strong assumptions being 
made. The latter use for dispersion modelling is chal-
lenging in the majority of outbreaks as the uncertainty 
regarding the time of infection means that the location 
of the infection is unclear. Furthermore the total at-risk 
population in time and space may be unclear. One is 
often left with simply stating whether the pattern of 
infection is consistent with a modelled release, rather 
than making any stronger statements.

Case-based analysis
If no suspect sources are identified, the focus of analy-
sis will have to be on the spatial interactions of each 
patient case with their general environment. In other 
words, there is a need to analyse interactions between 
the places where people live, the places people have 
visited and the routes they have taken.

Coscolla et al.’s [18] study into the 2009 LD outbreak in 
Alcoi, Spain involved the collection of detailed patient 
case data including home location, any other locations 
visited and routes of transport. Within a GIS each loca-
tion and route was then buffered by a 500 m radius, 
with those buffers representing areas in which contact 
with contaminated aerosols may have taken place and 
where infection might have occurred. Areas where dif-
ferent cases’ buffers intersected were considered to 
represent locations more likely to contain the source 
of infection, with the initial hypothesis being that 
the outbreak originated from a common, static point 
source (e.g. a cooling tower). However, the authors 
noted obvious spatial variation in the data with two 
different neighbourhoods of the city being linked with 
particular waves of infection over the course of the out-
break. A secondary hypothesis was proposed: that the 
source of contamination was mobile. An asphalt paving 
machine was identified as being the responsible infec-
tion source. It was used in both neighbourhoods at 
times consistent with the pattern of infection attached 
to each wave of the outbreak.

As part of the investigation by Jansa et al. [15] into the 
2000 outbreak in Barcelona, Spain, incidence rates by 
census tracts (geographic boundaries created for the 
aggregation and reporting of census data) containing 
approximately 400 people, revealed significant spatial 
variation. Within the affected area, the incidence rates 
revealed that the northern part of the district was more 
heavily affected (6.4/1,000) than the southern area 
(2.23/1,000). The identified area was subsequently 
shown to be in closest proximity to the cooling towers 
identified as responsible for the outbreak by further 
environmental and microbiological investigation.

Similarly, attack rate analysis was utilised by Nguyen 
et al. [6] as part of a wide range of analytical methods 
investigating the 2003–04 outbreak in Pas-de-Calais, 
France. Their analysis revealed the attack rate was 
highest in the Harne commune in which the suspected 
cooling tower was located.
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Martinez-Beneito et al. [19] applied a spatial statisti-
cal methodology to investigate three consecutive out-
breaks in the industrial city of Alcoi, Spain between 
September 1999 and December 2000. 36 cases were 
identified in the first outbreak, 11 in the second out-
break, and 97 in the third outbreak. The authors identi-
fied a group of controls who were staying in hospital 
in the same period as cases in the first outbreak and 
who were of the same sex and roughly the same age. 
Residential postcodes were obtained and a spatial 
point process model was constructed with the aim of 
identifying whether the geographical distribution of 
the cases could be considered to be random. Ripley’s 
K function [23], a descriptive statistic for identifying 
deviation from spatial homogeneity, was estimated 
for cases and controls and a difference between these 
statistics was then calculated and tested for statistical 
significance. Results of significance tests suggested 
higher aggregation of cases than of controls in all 
outbreaks. Risk surface maps were also estimated for 
each outbreak. These were given based on the differ-
ence between the observed probability of being a case 
at a particular location and the expected probability 
of being a case within the city. Thus areas of high risk 
were highlighted on which attempts to find a source for 
each outbreak should focus.

Brown et al.’s [16] study looked into a method for cal-
culating dose of exposure. The outbreak was strongly 
linked to a hospital in Wilmington, Delaware, United 
States. Attack rate analysis revealed that the highest 
relative risk existed among hospital staff and those 
living within a census tract adjacent to the hospital. In 
total 29 cases met the study’s case definition criteria 
for LD, and 21 of these were included in the case–con-
trol study, with three controls being matched to each 
case. A standardised questionnaire to interview cases 
and their controls was used that focussed on the area 
near the hospital where the attack rate was highest. 
Interviewees were provided with a gridded map of the 
area. They were asked to mark possible locations for 
their exposure in the two weeks before onset of illness. 
Further information was recorded about the number of 
visits made and the length of time spent in each grid 
cell. Separate regression models were used to deter-
mine the change in frequency and duration of poten-
tial exposure in each grid cell and the change in risk 
associated with a change in distance from the hospital. 
Risk of illness was found to decrease with increasing 
distance from the hospital, but to increase for each 
additional hour spent in grid cells within 0.125 miles 
of the hospital. The median dose of modelled potential 
exposure was higher for cases than controls.

Discussion
The use of GIS in LD outbreak investigation is not a 
replacement for traditional descriptive epidemiologi-
cal and microbiological investigative techniques, but it 
should be viewed as a valuable addition to the public 
health professional’s toolbox. However, it is important 
to keep in mind that each outbreak is a unique event, 

and as such not all analytical techniques reviewed in 
this article will be appropriate in all circumstances. The 
body of peer reviewed literature covering the applica-
tion of GIS for LD outbreak investigation is currently 
relatively small, so the extent to which GIS is used 
more generally across public health organisations for 
this purpose is unclear.  

Four types of spatial data have been identified in 
this review as being potentially useful to an outbreak 
response: case data (i.e. locations visited in incubation 
period including their home); potential sources in the 
locality (i.e. a registry of cooling tower locations and 
field investigation of other sources); information about 
the broader demography of the population (i.e. how 
many people live in the administrative regions identi-
fied or a control group to compare to cases) and finally 
meteorological data (i.e. wind speed and direction if 
dispersion modelling is being performed). To facili-
tate a response, mechanisms for collecting and stor-
ing such data should be in place before an outbreak 
occurs. These mechanisms should be considered an 
important aspect of LD outbreak preparedness and 
have the potential of speeding up and improving sub-
stantially the use of these techniques.

Two broad families of statistical analysis were identi-
fied from the literature: one using case data to infer 
zones for further/higher priority field analysis; the 
other focussing on known potential sources and check-
ing whether the pattern of infection of cases is consist-
ent with a release emanating from there. A third type of 
analysis that overlaps with these two approaches, dis-
persion modelling, can be useful if the release occurred 
over a short time period, but the results of such analy-
sis are likely to be compromised by the uncertainty in 
infection time of each case and the infectious dose. 
If resources allow, a carefully designed case–control 
study that includes appropriate controls might better 
support source hypothesis testing than using disper-
sion modelling.

The nature of the outbreak, as well as data availability, 
will influence the selection of a GIS-based investiga-
tive approach. The analytical options, based on data 
availability, are summarised in Table 2. The techniques 
that test presumptive sources against the observed 
distribution of cases can identify a single source, or a 
number of sources, that are more likely to have been 
responsible for the outbreak than others. As such these 
types of analyses can help focus additional investiga-
tion, particularly if there are a large number of poten-
tial outbreak sources initially being considered. Even 
in the absence of detailed case data, home locations 
alone have been successfully utilised, in conjunction 
with demographic data and potential source location 
data, to map rates of disease occurrence at varying 
distances from potential sources. It should be stressed 
that these techniques are reliant on good quality 
information about potential source locations, and if 
the actual source of the outbreak is absent from your 
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Table 2
Summary of analytical techniques used in Legionnaires’ disease outbreak investigations, given data availability

Data type Examples of possible analyses Considerations
Patient case data 
(patient home 
locations only)

Home locations can be plotted for outbreak 
visualisation.

Density analyses (such as kernel density analysis) may 
be used to highlight areas in space with a high density 
of cases. Area(s) of higher density may suggest that 
the outbreak source is within relatively close spatial 
proximity.

If case–control study data are available, comparative 
analyses between cases and controls can be performed. 
Basic cluster analyses can be utilised to identify whether 
spatial clustering is greater in cases than controls 
(e.g. Martinez-Beneito et al. [19]). Clustering of cases 
may suggest that an outbreak source is located within 
relatively close spatial proximity or may identify a region 
for further (field) investigation.

Simply plotting patient case home locations can provide a 
spatial context to an outbreak.

Using only home location can bias any analyses, as home 
location is not necessarily the location of infection.

Patient case data 
(patient home 
locations + travel 
histories)

Case travel histories can be plotted for outbreak 
visualisation (e.g. Coscolla et al. [18]).

Density analyses (such as kernel density analysis) may 
be used to highlight areas in space with a high density 
of spatial interactions between cases. Area(s) of higher 
density may suggest that the outbreak source is within 
relatively close spatial proximity.

Case data that includes travel histories give a more complete 
record of the spaces occupied by each case (where infection 
may have taken place).

Clear overlaps may be identified but bias may be introduced 
(each case’s travel history must be carefully weighted so that 
their contributions are equal and reported movements are 
fairly accounted). Note that without comparator information 
travel routes may simply highlight popular commuter routes

Patient case data 
+ potential source 
location data

Zones or buffers can be established around each of the 
potential source locations. Overlay analysis can then be 
used to identify which cases live, work or have travelled 
within each zone. You would expect the responsible 
source to display a high number of cases living, working 
or travelling within its zone, compared to other sources 
(e.g. Kirrage et al. [14]).

If case–control study data are available then 
comparative analyses between cases and controls can 
be performed (e.g. Garcia-Fulgueiras et al. [13]).

Centrally archived lists of sources may be obsolete (new 
unregistered sources or decommissioned sources might exist 
in the locality).

Without well designed case–control/cohort study or 
demographic data, inference on patient data is likely to 
be biased (i.e. some areas may be visited rarely by certain 
groups).

Patient case data 
+ demographic 
data

Demographic data allows for attack rate analysis, 
providing a relative measure of disease occurrence 
within a population. Attack rate analysis can be 
undertaken using populations attached to small-area 
administrative units and can potentially highlight areas 
with higher levels of disease occurrence. Such areas 
should be within close spatial proximity to an outbreak 
source (e.g. Nguyen et al. [6] and Jansa et al. [15]).

Cluster analysis can be used to identify abnormal 
grouping of cases in space and time, with new 
techniques being developed that can measure the 
degree of association between cases.

If case–control study data are available then 
comparative analyses between cases and controls can 
be performed (e.g. Brown et al. [16]).

Demographic data are normally based on home locations, 
however, daytime population figures may be significantly 
different due to the movements of working populations.

Knowledge that cases are clustered in space and time may 
not reduce an area of interest for potential sources, but may 
potentially confirm other investigations.

Case control data may actually be more appropriate/detailed 
than general population data that reflect only residence.

Patient case data 
+ potential source 
location data + 
demographic data

Radial attack rate analysis buffers each potential 
source at multiple distances and calculates the attack 
rate within each buffer. For the responsible facility you 
would expect to observe a pattern where the attack rate 
decreases with an increase in distance from the facility 
(e.g. Nygard et al. [7]).

Demographic data are normally based on home locations, 
however, daytime population figures may be significantly 
different due to the movements of working populations.

Case control data may actually be more appropriate/detailed 
than general population data.

Patient case data 
+ potential source 
location data + 
demographic data 
+ meteorological 
data

Dispersion modelling allows you to identify whether a 
modelled plume from a potential source is consistent 
with the observed pattern of infection (e.g. Nguyen et al. 
[6] and Nygard et al. [7]).

Dispersion models can provide intuitive outputs if, for 
example, the release is over clear short time window, there is 
only one possible source, or people have not moved.

A lack of information on dose response and general 
uncertainty over infection time for cases means that, in many 
situations, dispersion models will not inform the outbreak 
control team’s hypotheses.



7www.eurosurveillance.org

dataset, it will not be considered within your analysis 
and subsequently will not be identified. 

Alternative approaches examine case data in isola-
tion, looking to identify areas in geographic space 
that display a higher concentration of spatial interac-
tion amongst cases. Some techniques, such as ker-
nel density, attempt to smooth case point data out 
across space. In this context, it should be noted that 
without a comparator population from a control group 
such analysis is difficult to interpret and is simply an 
alternative visualisation of the point data. However, 
even whilst lacking quantitative power, it might high-
light areas of particular interest. Others aggregate the 
observed case numbers to small administrative units 
for which attack rates can be calculated. Upon identify-
ing areas in space that are seemingly common between 
cases, investigation can be targeted to look for poten-
tial outbreak sources within that vicinity. Care should 
be taken during the interpretation of outputs that the 
regions identified are not unduly biased by commuting 
or other similar behaviours in the underlying popula-
tion. These techniques can be applied to very detailed 
case data covering the entire travel histories of patient 
cases over the course of the likely incubation period. 
However, as above, they can also be applied in situ-
ations where only residential address information is 
available to provide additional insight into an outbreak. 

Outbreaks of Legionnaires disease may be seen as a 
proxy or analogous to other disease outbreaks, such 
as Q fever. However, caution should be taken when 
applying these techniques by judging whether the 
methodology is appropriate to the specific disease. 
This is especially true given the fact that the applica-
bility and usefulness of the techniques depend very 
much on characteristics such as the incubation period 
of the disease, release and/or transmission character-
istics, susceptibility, symptomatology, detection and 
diagnostics. 

A GIS can clearly supplement an outbreak response by 
quickly visualising both case and potential outbreak 
source information, as well as providing spatial ana-
lytical capabilities to interrogate that data. In order to 
utilise GIS for these purposes it is important to have 
clear data collection protocols in place ahead of time, 
and an awareness of the technical and legal issues 
around storing and managing such information (par-
ticularly patient-identifiable data). The usefulness of 
GIS to outbreak investigations are largely dependent 
on the availability of good quality case data, and any 
enhancements to the way such information is collected 
would ultimately enhance the application of the spatial 
analytics used to assist in outbreak responses.
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