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To the editor: 
Over the past two weeks, Eurosurveillance has pub-
lished several timely papers related to the emergence 
of a new influenza A(H7N9) virus affecting humans in 
China [1-3]. Genetic studies by Kageyama et al. [1] and 
Jongens et al. [2] assessed evidence in the genome 
for virus origin, adaptation and virulence, and a paper 
by Corman et al. [3] described real-time reverse-tran-
scription PCR assays for specific virus diagnosis. While 
these are important aspects of novel virus characteri-
sation and detection, the accrual of over 100 human 
cases now also affords opportunity to consider evolv-
ing epidemiologic patterns as part of population risk 
assessment.

Perhaps the most intriguing impression to date from 
available surveillance findings has been the unex-
pected age/sex distribution of reported influenza 
A(H7N9) cases. The age range spans from 2 to 91 years 
but two thirds of influenza A(H7N9) cases have been 
50 years of age or older and two thirds have been 

male (Table) [4,5]. Illness severity, with a substantial 
case fatality of 20%, shows a similar age/sex profile 
(Table) [4,5]. Unlike the pattern observed for influenza 
A(H5N1), children, both boys and girls and notably the 
school-aged, are under-represented among influenza 
A(H7N9) detections. Among the first 100 adult influ-
enza A(H7N9) cases, men and women were equally rep-
resented in the youngest age category 20–34 years, 
but men were 2–3-fold more frequent than women 
in older age groups (Table). Furthermore, compared 
with women 20–34 years of age, women 50–64 and 
65–79 years were each twice as frequent among influ-
enza A(H7N9) detections. Conversely, men 50–64 and 
65–79 years are each 4–5-fold more frequent among 
influenza A(H7N9) detections than men 20–34 years 
of age. While being careful not to over-interpret early 
surveillance data, what hypotheses might be invoked 
to explain that pattern?
 
Disease occurrence is the result of the classic interac-
tion triad of agent–host–environment. Environmental 

Table 
Human cases of influenza A(H7N9) and deaths by age group and sex, China, as of 23 April 2013 (n=109)a

Age (years)
<2 2–4 5–9 10–14 15–19 20–34 35–49 50–64 65–79 ≥80 Unknown

Total cases 0 3 1 0 0 9 16 30 36 12 2
    Female 0 0 1 0 0 4 5 9 9 4 0
    Male 0 2 0 0 0 5 11 21 27 8 0
    Unknown 0 1 0 0 0 0 0 0 0 0 2
Deaths 0 0 0 0 0 1 3 6 7 3 1
    Female 0 0 0 0 0 0 1 2 2 0 0
    Male 0 0 0 0 0 1 2 4 5 3 0
    Unknown 0 0 0 0 0 0 0 0 0 0 1

a Data sources include the Chinese Center for Disease Control and Prevention and the World Health Organization.
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factors such as differences in poultry exposure due 
to socio-cultural behaviours and host factors such as 
healthcare-seeking behaviour or underlying comor-
bid conditions have been postulated to explain these 
early influenza A(H7N9) surveillance signals [6,7]. 
However, hypotheses should also include the addi-
tional perspective of agent (i.e. virus)–host interac-
tions. Immunological profiles by age likely reflect 
accumulated lifetime opportunities for influenza virus 
exposure, leaving intricate imprints that may positively 
or negatively modulate subsequent risk. We have illus-
trated this immunological complexity at the population 
level for influenza, showing variation in age-specific 
cross-reactive antibody levels to previously emerging 
influenza A(H1N1)pdm09 virus [8] and more recently to 
the emerging (swine-origin) influenza A(H3N2)v, prob-
ably reflecting complex cohort effects based on differ-
ential prime/boost exposures to influenza variants by 
age [9].

That pre-existing immunity can differentially modulate 
the infection process for novel pathogens may be rel-
evant in understanding the differing age distributions 
of the emerging influenza A(H5N1) versus A(H7N9) 
viruses [6,7]. Anti-neuraminidase (N1) antibodies 
induced by cumulative influenza A(H1N1) lifetime expo-
sures may have a role in mitigating risk and severity of 
influenza A(H5N1) infection [10-13] in older individuals 
accounting for its more youthful profile to date [4-7]. 
In contrast, for influenza A(H7N9) we may anticipate 
that anti-N9 antibodies would be less prevalent over-
all in the population. Other population immunologi-
cal effects of the 2009 influenza A(H1N1) pandemic, 
which affected predominantly young people, such as 
cross-reactive T-cell responses to generally conserved 
internal virus proteins [14] or memory B cell responses 
to shared epitopes within group 1 (i.e. H1, H5) versus 
group 2 (i.e. H3, H7) subtypes [15] may also need to be 
considered as factors that influence influenza A(H5N1) 
and A(H7N9) age profiles. 

At this stage, we should also stay open to the pos-
sibility that pre-existing cross-reactive antibodies 
may actually facilitate the viral infection process, a 
phenomenon best recognised for dengue through 
the mechanism of antibody dependent enhancement 
(ADE) [16,17]. ADE is thought to occur when low-levels 
of weakly heterotypic, cross-reactive but not cross-
protective, antibodies generated by past exposure to 
virus antigen, e.g. through prior infection or immunisa-
tion, form bridging complexes to facilitate uptake and 
replication of related but non-identical variants [16-18]. 
The possibility of ADE in influenza has long been and 
remains the subject of intense interest among experts 
[19,20], for which there may recently be indirect evi-
dence. Early during the 2009 influenza pandemic, we 
described a potentially important interaction between 
seasonal and novel emerging influenza virus, notably 
an approximate doubling of the likelihood of medically-
attended pandemic influenza A(H1N1) illness among 
people previously administered seasonal influenza 

vaccine that contained virus antigenically related but 
distant from the emerging influenza A(H1N1)pdm09 
strain [18]. In a follow-up experiment, vaccinated fer-
rets showed higher lung virus titres and greater illness 
severity after influenza A(H1N1)pdm09 challenge than 
influenza-naïve animals [21]. In swine, disease exacer-
bation has also been observed following heterologous 
challenge [22-24]. ADE was one of the proposed (but 
unproven) hypotheses to explain the unexpected find-
ings from Canada during the 2009 pandemic [18]. The 
possible relevance of weakly cross-reactive antibodies 
in facilitating infection due to other emerging influenza 
viruses with pandemic potential may therefore warrant 
further consideration. 

In that regard, older Chinese men may not only have 
a greater likelihood of current poultry/bird exposure, 
to explain their disproportionate representation among 
influenza A(H7N9) cases, but also a greater total sum 
of lifetime avian influenza exposures potentially con-
tributing to cross-reactive H7 antibody. Few serosur-
veys to assess H7 antibodies in the population of China 
are available in the English language, and none has yet 
been sufficiently powered to compare this by age or sex 
[25-28]. In a serosurvey conducted 20 years ago in cen-
tral China (Nanchang), 25% of 100 samples collected 
from women who raised pigs were found by ELISA to 
have antibodies to purified H7 antigen [25]. In a more 
recent serosurvey conducted in 2006–08 in northern 
China, 5–10% of ca. 1,000 farmer families and poultry 
workers aged 5–87 years had detectable but low-level 
antibodies (titre of at least 1:20 but not exceeding 1:40) 
to influenza (H7N1) in a modified haemagglutination 
inhibition (HI) assay using horse erythrocytes [26]. In 
2011, none of >1,500 duck-related workers in Beijing 
aged 14–71 years had influenza (H7N2) or (H5N1) titres 
exceeding 1:40 by modified HI, although seropositivity 
to influenza (H9N2) was more prevalent, particularly 
among adults older than 50 years of age in whom the 
rate of seropositivity was four-fold higher than among 
younger participants [28]. 

Although the detection of antibodies to H7 subtype 
viruses has proved challenging even among culture-
confirmed cases [29-35], serosurveys to compare cross-
reactive antibodies and neutralising effects by multiple 
assays and by age group could be important, not only 
to inform possible protection, but also to explore pat-
terns of enhanced risk in influenza A(H7N9) affected 
areas and more broadly elsewhere to inform risk 
assessment. Certain immunological effects, including 
ADE as it pertains to influenza, may yet be speculative. 
At this early stage of trying to understand the unex-
pected epidemiological patterns of an emerging patho-
gen, however, it is prudent for the global scientific and 
public health community to consider all possibilities 
within the full virus–host–environment paradigm. 
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