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Based on 2015 abundance of Aedes albopictus in 
nine northern Italian municipalities with temperate 
continental/oceanic climate, we estimated the basic 
reproductive number R0 for Zika virus (ZIKV) to be 
systematically below the epidemic threshold in most 
scenarios. Results were sensitive to the value of the 
probability of mosquito infection after biting a virae-
mic host. Therefore, further studies are required 
to improve models and predictions, namely evalu-
ating vector competence and potential non-vector 
transmissions.

In 2015, the largest recorded epidemic of Zika virus 
(ZIKV) started in Brazil and has since then expanded 
progressively to most countries in Central and South 
America [1]. We provide estimates of the basic repro-
duction number (R0) of ZIKV in northern Italy, based on 
estimates of the mosquito abundance from entomolog-
ical surveillance data.

Entomological surveillance in northern 
Italy

Mosquito monitoring was carried out fortnightly from 
May to October 2015 in the provinces of Belluno and 
Trento, Italy (Figure 1).

Aedes albopictus mosquitoes were collected using 54 
Biogents Sentinel traps (Biogents AG, Regensburg, 
Germany, hereafter abbreviated as BG) baited with 
BG lures and CO2 from dry ice, running for 24 hours 
and placed by entomologists at selected locations in 
nine municipalities (Figure 1) at altitudes ranging from 
74 m a.s.l. to 650 m a.s.l and geographical coordinates 
between 10°49'04.9”E and 12°12'54.2”E longitude and 
45°53'26.9”N and 46°09'59.4”N latitude. Temperatures 
at trap locations were obtained from land surface 

temperature satellite data with a resolution of 250 m 
[2] (Figure 2). 

Mosquito population dynamics
We developed a population model representing the 
developmental cycle of mosquitoes by means of tem-
perature-dependent parameters (Figure 3) and fitted 
it to capture data in order to estimate the density of 
female adult mosquitoes per hectare over time at each 
municipality. For two towns (Belluno and Feltre), human 
landing captures were carried out (seven and five ses-
sions, respectively) where BG traps were positioned. 
Two experts performed the catches, rotating between 
the two sites, acting as human baits and collectors. 
The mosquitoes were collected by a handheld aspira-
tor during the three hours preceding sunset. Human 
landing data were used for independent validation of 
the local mosquito abundance predicted by the model. 

The four main stages of the Aedes albopictus life 
cycle (eggs, larvae, pupae and adults) are modelled. 
Biological parameters encoding mortalities, develop-
mental rates and the length of the gonotrophic cycle 
depend on the average daily temperature recorded at 
the site of capture, according to equations provided 
in [6] and based on experimental data [20]. The site-
specific density-dependent factors and the capture 
rate (common to all sites) are free model parameters 
estimated by fitting model outputs to experimental 
capture data.

Given the model-predicted daily number of mosquitoes 
NV and the number of bites per mosquito per day k, the 
following relation should hold:

k NV = HLR T,
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where HLR is the hourly human landing rate estimated 
from data and T is the average duration of biting activ-
ity during a day (set to 12 hours, based on several stud-
ies on daily landing patterns, e.g. [3]).

Figure 4 shows a comparison between observed trap-
ping captures and corresponding model estimates 
over time for all nine sites considered. Values of the 
coefficient of determination R2, ranged between 0.47 
and 0.87, depending on the site (average across sites: 
0.71). Model-predicted hourly HLR (i.e. k × NV / T) 
were in good agreement with the observed HLR during 
2015 (Figure 5; R2 = 0.57), thereby validating the use of 
model-predicted mosquito densities.

Basic reproduction number of Zika virus
We assumed that the only route of transmission for 
ZIKV is via mosquito bites. R0 can be calculated from 
densities of human and mosquito populations and sev-
eral epidemiological parameters according to the fol-
lowing Formula [4]:

Symbols, interpretations, values and literature refer-
ences are reported in the Table.

When R0 < 1 (epidemic threshold), the probability of 
observing sustained transmission of ZIKV after impor-
tation of a case is negligible. When R0 > 1, the outbreak 
probability is given by the following Formula [5]: 

where

  
and
 

Using baseline parameter values (Table), the expected 
value of R0 stayed far below the epidemic threshold of 
1 at all sites and times in our simulations (Figure 6A), 
resulting in a low risk of autochthonous transmission 
of ZIKV.

We re-computed the values of R0 under a range of 
worst-case scenarios for parameter values and model 
assumptions. In all scenarios, all epidemiological 
parameters but one were fixed at their baseline val-
ues and sensitivity was assessed against variations 
of the selected parameter. Firstly, we set the mosquito 
biting rate (k) to the largest estimate for the 2007 
Italian chikungunya virus outbreak (k = 0.16 days−1 [6]). 
In this scenario, the peak value of R0 never exceeded 
0.8. Secondly, we assumed daily temperatures in the 
upcoming mosquito season to be 2 °C higher than 
those recorded in 2015 (an extreme scenario in clima-
tological terms) under baseline parameter values. This 
resulted in an increase of the peak mosquito abun-
dance of 17% to 95%, depending on the town; however, 
even in this case, R0 remained far from the epidemic 
threshold (peak values below 0.4 at all sites). Thirdly, 
R0 remained below 1 even when considering 100% 
human susceptibility to infection given a bite from an 
infected mosquito (pH) [7,8]. 

Figure 1
Location of the study area (inset) and mosquito traps (red 
points) within the study area, Italy, 2015
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Figure 2
Average temperatures recorded in the nine municipalities 
with mosquito traps, Italy, May–October 2015
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Figure 3
Model for mosquito population dynamics
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Figure 4
Comparison between observed and predicted numbers of mosquitoes captured over time at all sites, Italy, 2015
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Finally, we considered the variability of R0 with respect 
to the probability of a mosquito being infected upon 
biting of a viraemic human host, pV. The very low base-
line value (6.7%) was suggested by a recent experi-
mental study [7], but previous work had estimated a 
value of 100% [8]. Resulting predictions were very sen-
sitive to the value of this parameter. When we used the 
value provided by the latter study (pV = 100%), the peak 
value of R0 exceeded the epidemic threshold in seven 
of nine towns, with values as high as 3.8 in the highly 
mosquito-infested towns of Feltre and Riva del Garda 
(Figure 6B). In Strigno and Belluno, R0 remained sys-
tematically below the epidemic threshold because of 
the low ratio of mosquitoes per human (V/H in equa-
tions above). In all other towns, the minimum value of 
pV required to have R0 above 1 ranged from 25% to 50%. 

We call epidemic season the time of the year when the 
local mosquito abundance is sufficiently high for R0 
to exceed the epidemic threshold. According to model 
estimates, the epidemic season in the worst-case 
scenario of pV = 100% was predicted to last between 

two and three months in the seven towns at higher 
risk (Figure 6C). In this scenario, for every ZIKV case 
imported within the epidemic season, the average 
probability of observing an outbreak of local transmis-
sion ranged from 18% in Tenno to 39% in Feltre and 
Riva del Garda (Figure 6D).

Discussion
Although ZIKV infection in humans is generally asymp-
tomatic or very mild, there is growing evidence of 
association with Guillain–Barré’ syndrome [9] and con-
genital neuronal defects in newborns [10,11]. The flow 
of international travellers to and from Latin America 
raises potential concerns for the occurrence of out-
breaks also in Europe during the summer months when 
the mosquito activity is higher [12]. The Latin-American 
epidemic is likely to be driven by Ae. aegypti, a mos-
quito species that is currently present in Europe only 
in Madeira (Portugal) and around the Black Sea [13]. 
However, in many European countries Ae. albopictus is 
now endemic [13]. This species has been demonstrated 
to transmit ZIKV both in the laboratory [7,8] and in the 

Figure 5
Comparison between observed and predicted hourly human landing rate for the two sites where data were available, Italy, 
2015
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Table
Parameter values used in the model

Parameter description Unit Baseline Range Reference
k Number of bites to humans per mosquito per day Days− 1 0.09 0.05–0.16 [6]

pV
Vector susceptibility to infections: probability of transmission per bite 
from infectious hosts to susceptible mosquitoes % 6.65 0.8–100 [7,8]

pH
Human susceptibility to infections: probability of transmission per bite 
from infectious mosquitoes to susceptible hosts % 50 1–100 [7,8]

g Average infectious period in humans Days 5.8 4–7 [18]
1/lV Average extrinsic incubation period in mosquitoes Days 10.5 7–14 [7,19]

mV
Temperature dependent (in the range 10–30 °C) average mosquito 
mortality rate Days− 1 0.031 0.031–

0.032 [6,20]

H Urban population density of humans Ha− 1 Town-specific 39.4–88 [21]

V Female adult mosquito density Ha− 1 Town-specific 
time-dependent

8–508 
(peak 
value)

This study
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wild [14], although its estimated transmission effi-
ciency is much lower than measured for Ae. aegypti 
[7]. Based on data-driven estimates of the abundance 
of Ae. albopictus mosquitoes in nine municipalities of 
northern Italy, we expect a low risk of autochthonous 
mosquito-borne transmission of ZIKV. In addition, it 
must be considered that there is not yet sufficient evi-
dence of the real vector competence of Ae. albopictus 
in the wild for the circulating strain. Indeed, there have 
not been any documented ZIKV outbreaks in Europe in 
the last decades, despite the repeated introductions 
of the virus by viraemic travellers. Our findings may 
be applicable to other areas of Europe with temperate 

climate [15] and with established Ae. albopictus popu-
lations [13], such as eastern France, central Europe 
and the Balkan states. Our predictions do not apply to 
Mediterranean areas where the risk may be substan-
tially higher because climate conditions for Ae. albop-
ictus are more favourable. 

The most important source of variability in our results 
was the value for the mosquitoes’ susceptibility to 
infection. Two studies on vector competence provide 
tentative estimates: one where Ae. albopictus mos-
quitoes from a humid subtropical climate (Central 
Florida, United States) were infected with the Asian 

Figure 6
Estimated temporal changes of R0, using baseline parameter values (A) and sensitivity of model predictions with respect to 
all possible values of the mosquito probability of infection (B-D), Italy, 2015
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ZIKV genotype involved in the large South American 
outbreak [7], and one using Ae. albopictus from a 
tropical rainforest climate (Singapore) infected with an 
Ugandan ZIKV genotype [8]. We chose the first study 
as a baseline, because the viral strain used in the 
experimental setting was more relevant for the ongoing 
epidemic, and the second study to set the worst-case 
scenario (pV = 100%).

Additional sources of uncertainty come from sexual 
transmission of ZIKV [16]; much higher viral loads have 
been found in semen than in blood [17]; however, the 
relative contribution of non-vector transmission is cur-
rently not quantified. To improve models and predic-
tions, further studies are required that evaluate the 
vector competence and capacity of European popula-
tions of Ae. albopictus for the circulating strain of ZIKV 
and the potentially related contributions of non-vector 
transmission.
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