Rapid Communications

Research Articles

Comparison of Leishmania typing results obtained from 16 European clinical laboratories in 2014

Letters

Community-wide outbreaks of haemolytic uraemic syndrome associated with Shiga toxin-producing Escherichia coli O26 in Italy and Romania: a new challenge for the European Union

by E Severi, F Vial, E Peron, O Mardh, T Niskanen, J Takkinen

News

New version of the Epidemic Intelligence Information System for food- and waterborne diseases and zoonoses (EPIS-FWD) launched

by CM Gossner

C Adlhoch ¹, IH Brown ², SG Angelova ³, Á Bálint ⁴, R Bouwstra ⁵, S Buda ⁶, MR Castrucci ⁷, G Darbéra ⁸, Á Dán ⁹, C Grund ⁹, T Harder ⁹, W van der Hoek ¹⁰, K Krisztalovics ¹¹, F Parry-Ford ¹², R Popescu ¹², A Wallensten ¹³, A Zdravkova ¹⁴, S Zohari ¹⁵, S Tsolova ¹, P Penttinen ¹

1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
2. Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
3. National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
4. National Food Chain Safety Office (NEBIH), Budapest, Hungary
5. GD Animal Health Deventer, Netherlands
6. Robert Koch Institute (RKI), Berlin, Germany
7. Istituto Superiore di Sanità (ISS), Rome, Italy
8. Public Health England (PHE), London, United Kingdom
10. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
11. National Center for Epidemiology, Budapest, Hungary
12. National Institute of Public Health, Bucharest, Romania
13. The Public Health Agency of Sweden, Stockholm, Sweden
14. Bulgarian Food Safety Agency, Sofia, Bulgaria
15. National Veterinary Institute (SVA), Uppsala, Sweden

Correspondence: Cornelia Adlhoch (cornelia.adlhoch@ecdc.europa.eu)

Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response.

Avian influenza A(H5N8) situation in Europe, December 2016

In September 2016, the Food and Agriculture Organization (FAO) of the United Nations raised awareness for the potential reintroduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) to Europe after the detection in a wild swan in the Tyva Republic, Russia, in June 2016. A potential spread of the virus was assumed via the migratory bird routes of duck, geese and swans [1]. The communication followed earlier reports in 2016, of A(H5N8) in wild and domestic birds in the Republic of Korea, and Taiwan, and the event suggested re-introduction of the virus via wild birds migrating back to Europe for overwintering.

Outbreaks in wild birds

From 30 October to 6 December 2016, 14 European countries (Austria, Croatia, Denmark, Finland, France, Germany, Hungary, the Netherlands, Poland, Romania, Russia, Serbia, Switzerland, and Sweden) as well as Egypt, India, Iran, and Israel reported HPAI A(H5N8) outbreaks in domestic poultry or detections in wild or zoo birds (Figure) [2]. Tunisia and Ukraine reported HPAI A(H5) outbreaks suspected to be A(H5N8). Since the first finding in October, the virus spread rapidly across central Europe. It mostly affected wild water birds, but also birds of prey that feed on dead birds’ carcasses. Infections of the latter indicate a recent introduction into the local resident bird population.

Outbreaks in poultry holdings

In 2016, outbreaks in poultry holdings were reported from Austria, Denmark, France, Germany, Hungary, the Netherlands, Poland and Sweden [2]. This resembles the situation in the northern hemisphere winter 2014/15 when a virus of the same clade 2.3.4.4 caused outbreaks in six European countries (Germany [3,4], Italy [5], Hungary [6], the Netherlands [7], Sweden and the United Kingdom [8]), mainly in closed poultry holdings, and sporadic detections in wild birds and a zoo [2,3]. Although the viruses belong to the same
genotype clade, viruses during the 2014/15 outbreak belonged to a different group of clade 2.3.4.4, group A (Buan-like), while the current 2016 viruses cluster in clade 2.3.4.4 group B (Gochang-like).

This report presents critical points identified during the HPAI A(H5N1) and A(H5N8) outbreaks in 2014/15 for preparedness, communication and public as well as animal health recommendations and measures to contain outbreak of avian influenza.

Potential risks to human health

No human cases of influenza A(H5N8) virus infection have been reported despite large numbers of people being occupationally exposed while managing the avian outbreaks, thus the risk for humans is considered very low [9]. This contrasts with the risk of bird-to-human transmission of influenza A(H5N1) and is likely due to A(H5N8) receptor-binding properties with the latter virus being better adapted to avian-like receptors than human-like receptors [8,10-12]. Although the sequence information available for the haemagglutinin and neuraminidase proteins of recent A(H5N8) isolates does not show any evolution towards increased affinity for humans, these viruses should be closely monitored for any adaptation [13]. The non-structural protein (NS) gene of the A(H5N8) virus detected in a wild sea duck, common Goldeneye, in Sweden in mid-November is truncated (217aa) and reassortment in polymerase acidic (PA) and nucleoprotein (NP) genes has been observed compared to those viruses detected earlier in June in Tyva (S. Zohari, personal communication, December 2016; sequences available in GISAID: EPI863862-69; National Veterinary Institute; Uppsala, Sweden A/Common Goldeneye/Sweden/SVA161117KU0322/SZ0002165/2016).

Influenza viruses undergo constant reassortment. Recent human cases of influenza A(H5N6) reported from China illustrate how A(H5) viruses belonging to the same clade 2.3.4.4 as A(H5N8) viruses, can gain the ability to infect humans without any of the major
Table A
Avian influenza prevention and control measures implemented by selected national European Union public health authorities*, December 2016

<table>
<thead>
<tr>
<th>Measure</th>
<th>Bulgaria</th>
<th>England</th>
<th>Germany</th>
<th>Hungary</th>
<th>Italy</th>
<th>Netherlands</th>
<th>Romania</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of exposed individuals during avian influenza incidents</td>
<td>Individuals exposed occupationally or in close contact with infected or potentially infected birds should use suitable PPE such as disposable overalls, nitrile/vinyl gloves, rubber boots, goggles, and a filtering half mask with exhalation valve. The personnel handling infected or potentially infected birds should observe the biosecurity instructions for collection and disposal of the equipment used.</td>
<td>Individuals exposed occupationally should use appropriate PPE: disposable or polycotton overall, disposable gloves, rubber or polyurethane boots, FFP3 respirator with exhalation valve and close fitting googles.</td>
<td>PPE including disposable gloves, clothing, headwear, protective boots, close fitting googles and masks: FFP3 if aerosolisation is not likely, otherwise FFP3 with exhalation valve</td>
<td>Full body protection: (overall, gloves, boots, googles) and FFP3 respirator</td>
<td>Occupationally exposed individuals should use appropriate PPE: FFP3 masks, rubber gloves and boots resistant to detergents/disinfectants, disposable overall and hair cover, eye protection.</td>
<td>Eye protection, FFP2 mask (for cullers FFP3), boots, disposable overall, hair cover, disposable goggles</td>
<td>Measures for protecting the individuals who come in contact with infected birds or likely to be infected, birds alive or dead are: PPE and appropriate conditions for collection, neutralisation and storage of the equipment used.</td>
<td>Individuals occupationally exposed should use appropriate PPE: disposable or polycotton overall, disposable gloves, rubber or polyurethane boots, FFP3 respirator with exhalation valve and close fitting goggles.</td>
</tr>
</tbody>
</table>

| Period that exposed people should be monitored for symptoms | 7-10 days | 10 days | 7 days | 10 days | Up to 10 days following exposure | Poultry workers / cullers are requested to report symptoms until 10 days post exposure, to the municipal health service, i.e. passive monitoring, which can be scaled up to active monitoring. | 7 days | 10 days |

| Testing | Clinical specimens (naso-pharyngeal swabs/bronchoalveolar lavage fluid/endotracheal aspirate/pleural fluid/sputum) from exposed people with respiratory symptoms in close contact with ill or dead birds, their family members or travellers to countries with registered avian influenza cases will be collected to identify influenza and specifically A(H5) | Influenza and specifically A(H5) from respiratory tract samples: if serological testing is considered paired, serum samples should be collected. | Influenza and specifically A(H5) from respiratory tract samples; test for human influenza A,B,C and influenza A/H5; respiratory tract and paired (9-14 days) serum samples should be taken and sent to reference laboratory of NCE. | Test for human influenza A,B,C and influenza A/H5 from respiratory tract samples; paired serum samples should also be taken. | Testing only after telephone consultation with the virologist on duty (24/7) at RIVM; nose, throat, and eye swab for PCR analysis. | Naso-pharyngeal swabs will be collected to identify avian influenza virus A(H5). | Influenza and specifically A(H5) from respiratory tract samples |

* The information provided applies generally, but each incident is assessed individually to ensure a fully appropriate response.

National guidelines in Italy leave flexibility to provide antiviral prophylaxis during avian influenza outbreaks, whereas vaccination with seasonal vaccine is annually recommended for veterinary service and poultry/swine industry workers.

National guidelines in the Netherlands leave considerable flexibility regarding monitoring, antiviral prophylaxis and seasonal vaccination. The approach is tailor-made to ensure a rapid and flexible response to any signal.
Table B

Avian influenza prevention and control measures implemented by selected national European Union public health authorities, December 2016

<table>
<thead>
<tr>
<th>Measure</th>
<th>Bulgaria</th>
<th>England</th>
<th>Germany</th>
<th>Hungary</th>
<th>Italy</th>
<th>Netherlands</th>
<th>Romania</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre or post-exposure chemoprophylaxis</td>
<td>Exposed individuals: antiviral chemoprophylaxis, immediately after exposure</td>
<td>Exposed individuals who are exposed occupationally: antiviral chemoprophylaxis as an added precaution following an appropriate risk assessment and according to defined algorithm.</td>
<td>Exposed individuals with direct contact to infected birds following an appropriate risk assessment (for example appropriate PPE during exposure or not)</td>
<td>Post-exposure prophylaxis: oseltamivir antiviral prophylaxis for 50 days for occupationally exposed individuals</td>
<td>Exposed individuals on evaluation by local health authorities</td>
<td>All exposed workers, farmers, and their family members; a national supply of antivirals is kept at RIVM.</td>
<td>Specific measures to protect exposed individuals: prophylactic antiviral treatment for 7 days, immediately after exposure</td>
<td>Individuals who have been exposed without wearing protective equipment depending on the type of avian influenza and the exposure</td>
</tr>
<tr>
<td>PPE and other precaution measures to be used by healthcare workers assessing symptomatic, exposed people</td>
<td>PPE: disposable gloves; single use mouth/nose mask, goggles; standard, contact and airborne precautions</td>
<td>Contact and airborne precautions; this includes eye protection, FFP3 respirator, gowns and gloves when working in same room as the symptomatic person.</td>
<td>Standard, contact and airborne precautions; eye protection</td>
<td>Standard, contact and airborne precautions with eye protection</td>
<td>Standard, contact and airborne precautions, including eye protection</td>
<td>Standard PPE and personal hygiene measures</td>
<td>PPE: single use gowns, single use mouth/nose mask, goggles, single use gloves; standard contact and airborne precautions</td>
<td>Standard, contact and airborne precautions; eye protection; gowns and gloves when working in same room as the symptomatic person</td>
</tr>
<tr>
<td>Seasonal influenza vaccine recommendation</td>
<td>Risk population groups recommended by WHO for influenza vaccination</td>
<td>As per usual annual recommendations for at-risk groups</td>
<td>As per recommendation of the German standing committee for vaccination (STIKO), including poultry workers</td>
<td>Based on the recommendation of NCE (in the annual circular of the Chief Medical Officer): poultry/pig workers (breeders, transporters, cullers, workers in processing plants, etc.)</td>
<td>Poultry/pig workers and healthcare workers</td>
<td>Only vaccinated workers can be involved in culling. Vaccination is offered to other workers, farmers and their family members if outbreaks occur during influenza season.</td>
<td>Risk population groups recommended by WHO for influenza vaccination (including HCW) and for exposed individuals, in order to avoid the reassortment between human and avian virus</td>
<td>As per usual recommendations, currently no requirement for poultry workers</td>
</tr>
<tr>
<td>Measures (applied or planned) to follow-up on exposed individuals during current A(H5N8) outbreaks or detections in birds</td>
<td>NA</td>
<td>Exposed individuals will be followed up either actively or passively during incident and for 30 days after last exposure. Choice of active or passive follow-up depends on type of exposure and an assessment of use of protective measures, including chemoprophylaxis if indicated.</td>
<td>UNKN</td>
<td>UNKN</td>
<td>UNKN</td>
<td>NA</td>
<td>UNKN</td>
<td>UNKN</td>
</tr>
</tbody>
</table>

*The information provided applies generally, but each incident is assessed individually to ensure a fully appropriate response.

*National guidelines in Italy leave flexibility to provide antiviral prophylaxis during avian influenza outbreaks, whereas vaccination with seasonal vaccine is annually recommended for veterinary service and poultry/swine industry workers.

*National guidelines in the Netherlands leave considerable flexibility regarding monitoring, antiviral prophylaxis and seasonal vaccination. The approach is tailor-made to ensure a rapid and flexible response to any signal.
Table C
Avian influenza prevention and control measures implemented by selected national European Union public health authorities, December 2016

<table>
<thead>
<tr>
<th>Measure</th>
<th>Bulgaria</th>
<th>England</th>
<th>Germany a</th>
<th>Hungary</th>
<th>Italy b</th>
<th>Netherlands c</th>
<th>Romania</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seroepidemiological follow-up planned in 2016/17</td>
<td>No</td>
<td>Not routinely done; focus is on investigation of symptomatic individual patients exposed during incidents.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>In case of an outbreak there is a research protocol which includes serology at T0 and T4 weeks – with analysis for different human, avian, swine influenza viruses using microarray.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Other studies planned related to current outbreaks</td>
<td>No</td>
<td>Will be determined on an incident-by-incident basis, if required to support the public health response</td>
<td>UNKN</td>
<td>In order to assess the efficacy of disinfection, 100 g dust samples are taken. Wetted tissue swabs are applied on 900 cm² surface from different parts of the pen representing the whole area.</td>
<td>No</td>
<td>Possible air sampling in and around poultry farms in case of a new outbreak</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

a The information provided applies generally, but each incident is assessed individually to ensure a fully appropriate response.
b National guidelines in Italy leave flexibility to provide antiviral prophylaxis during avian influenza outbreaks, whereas vaccination with seasonal vaccine is annually recommended for veterinary service and poultry/swine industry workers.
c National guidelines in the Netherlands leave considerable flexibility regarding monitoring, antiviral prophylaxis and seasonal vaccination. The approach is tailor-made to ensure a rapid and flexible response to any signal.
adaptation processes referred to above. The current properties of the virus are not suggestive of pandemic risk. Still, the likely lack of immunity in humans against A(H5N8) and its increasing geographic distribution and incidence in animals justify constant monitoring of outbreaks in birds. Current concerns among veterinarians include the potential ability of A(H5N8) to infect mammals such as cats and dogs: thus precautions should be put in place to minimise the risk of exposure for these animals.

Available guidance on protective measures

Although the risk of human infection is considered very low [14], most of the available national guidance documents recommend a number of risk mitigation measures to minimise exposure. They target different groups: (i) for the general population recommendations are to avoid exposure to potentially infected birds by not touching dead wild birds, and instead inform local veterinary authorities; (ii) local public and veterinary health authorities are recommended to limit the number of individuals exposed to birds suspected or confirmed to have HPAI; and (iii) individuals exposed occupationally are recommended to use appropriate personal protective equipment (PPE).

Experiences from 2014/15 outbreaks and measures in 2016

In October 2015, animal and public health experts involved in the HPAI A(H5N1) and A(H5N8) outbreaks in Europe in 2014/15, reviewed relevant national protocols available in European Union/European Economic Area (EU/EEA) countries, actions implemented and lessons learnt, in a workshop organised by the European Centre for Disease Prevention and Control (ECDC) [15].

The Table summarises key recommendations from selected public health authorities that managed avian influenza outbreaks in recent years and are valid in 2016. Generally they contain strict use of PPE when handling potentially infected birds, carcasses or other material, with some flexibility based on the local risk assessment in some countries. Post-exposure prophylaxis with neuraminidase inhibitors is advised, often based on individual clinical assessment or local risk assessment. Some, but not all countries recommend pre-exposure prophylaxis that is to be continued during and after exposure. All countries recommend follow-up, passive or active, of those exposed, for development of symptoms for the duration of the maximum incubation period estimated to be around 7-10 days. Exposed people with influenza-like symptoms according to the EU case definition [16] should immediately be tested for influenza virus infection, preferably using lower respiratory tract specimens and including H5-specific tests. Healthcare workers managing suspect human cases should take appropriate contact and airborne precaution measures (Table).

The experts concluded that the actions taken during the 2014/15 outbreaks were adequate to prevent human cases, but some challenges and discrepancies were noted. There was agreement that timely sharing of information between the animal and human health sectors as well as between countries is crucial for an appropriate and early response. Intersectoral communication should also continue between outbreaks to foster cooperation at national level. Most countries appear to use a maximum level of precaution during incidents rather than basing precautions on a careful risk assessment, and experts concur whether this was the most efficient approach. Although a general overview of published evidence was considered useful, risk should be assessed locally.

Recommendations on use of antivirals or seasonal vaccines differed between countries. Some challenges were encountered when post-exposure prophylaxis was recommended, but sufficient antivirals were not immediately available. The experts suggested that rapid availability of antivirals in each country should be reviewed and ensured.

Recommendations for seasonal influenza vaccination of poultry workers in general differ between countries. Seasonal influenza vaccination of exposed individuals during an outbreak was suggested in most countries to avoid co-infection with seasonal and avian influenza viruses which could be followed by reassortment events. However, England considered vaccination with seasonal influenza vaccine during an avian influenza outbreak as being too late for exposed individuals to develop an antibody response necessary for individual protection.

Active follow-up of exposed individuals is resource-demanding and requires a risk assessment. Suggestions from the meeting were to develop a tool to track and trace information on detections and outbreaks in animals as well as related human exposure and follow-up measures, in real time.

Streamlined messages based on evidence and targeted to those concerned are necessary. Communication barriers i.e. language were identified as reason for failure to follow up exposed mobile and migrant workers on poultry farms. This could be remedied by providing leaflets in different languages.

Large farms might have better safety and training standards than small farms, but response capacity and timeliness during outbreaks may still be insufficient.

Rapid communication and sharing of the viral genetic information is important to estimate the reliability of the PCR-based A(H5) HA gene detection applied in each country/region and antiviral treatment efficacy.

Conclusions

Humans have been and will be exposed to influenza A(H5N8) virus from infected birds, their carcasses or contaminated material in the coming weeks in Europe.
Although no human cases of influenza A(H5N8) have been documented, expert advice is that precautionary measures should be taken to minimise human exposure and possible infections. Relevant guidance and protection measures have proven sufficient during the avian influenza outbreaks in 2014/15 but were critically reviewed and adjusted where necessary. Well-designed follow-up studies among the exposed would help to document the (lack of) risk from A(H5N8) to humans and the effectiveness of control measures.

Timely communication between the animal and human health sectors is vital to enable a rapid, effective and efficient response to the ongoing outbreaks. Any human infection with a novel influenza subtype should trigger an immediate international notification through the International Health Regulations (IHR) mechanism and the EU Early Warning and Response System.

Acknowledgements

We acknowledge the authors, originating and submitting laboratories of the sequences from GISAID’s EpiFlu Database. The submitter of data may be contacted directly via the GISAID website www.gisaid.org.

The authors are grateful to Kaja Kaasik Aaslav for her great support in monitoring avian influenza situation.

Conflict of interest

None declared.

Authors’ contributions

All authors provided information on public health measures in their respective country, participated in the meeting referred to in the article, contributed to the article and approved the final version.

Cornelia Adlhoch coordinated the work, interpreted the data and led the writing of the article.

References

License and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2016.
Leishmaniasis is endemic in southern Europe, and in other European countries cases are diagnosed in travellers who have visited affected areas both within the continent and beyond. Prompt and accurate diagnosis poses a challenge in clinical practice in Europe. Different methods exist for identification of the infecting Leishmania species. Sixteen clinical laboratories in 10 European countries, plus Israel and Turkey, conducted a study to assess their genotyping performance. DNA from 21 promastigote cultures of 13 species was analysed blindly by the routinely used typing method. Five different molecular targets were used, which were analysed with PCR-based methods. Different levels of identification were achieved, and either the Leishmania subgenus, species complex, or actual species were reported. The overall error rate of strains placed in the wrong complex or species was 8.5%. Various reasons for incorrect typing were identified. The study shows there is considerable room for improvement and standardisation of Leishmania typing. The use of well validated standard operating procedures is recommended, covering testing, interpretation, and reporting guidelines. Application of the internal transcribed spacer 1 of the rDNA array should be restricted to Old World samples, while the heat-shock protein 70 gene and the mini-exon can be applied globally.

Introduction

Leishmaniasis is a vector-borne disease which is endemic in 98 countries worldwide [1]. It is caused by protozoan parasites of the genus Leishmania, which are transmitted by female sand flies of the genera Lutzomyia and Phlebotomus. Many infected individuals never develop symptoms, but those who do can exhibit various disease manifestations [2]. Visceral leishmaniasis (VL) or kala-azar is the severe form, whereby parasites infect internal organs and the bone marrow, a lethal condition if left untreated. Other disease types are restricted to the skin (cutaneous leishmaniasis, CL) or the mucosae of the nose and mouth (mucosal leishmaniasis, ML). Finally, a particular cutaneous disease sometimes develops in cured VL patients: post kala-azar dermal leishmaniasis (PKDL). Typically, VL is caused by two species: Leishmania donovani and Leishmania infantum. The latter can also cause CL, as can all other pathogenic species. Some particular
species (e.g. *L. braziliensis* and *L. aethiopica*) can lead to overt ML.

As many as 20 different *Leishmania* species are able to infect humans, and globally there are over 1 million new disease cases per annum [1,3]. Leishmaniasis is endemic in southern Europe, and in other European countries cases are diagnosed in travellers who have visited affected areas both within the continent and beyond. Although treatment in practice is often guided only by clinical presentation and patient history, in some cases determination of the aetiological subgenus, species complex or species is recommended for providing optimal treatment [2,4,5]. For example, a patient returning from South America with CL might be infected with *Leishmania braziliensis*, which necessitates systemic drug therapy and counselling about the risk of developing mucosal leishmaniasis in the future. The same patient could also be infected with *Leishmania mexicana*, which is managed by less intensive treatment and which is not associated with mucosal disease [6]. Determining the infecting species and its probable source permits selection of the

![Figure 1](https://example.com/figure1.png)

Figure 1

Typing results obtained in study comparing *Leishmania* typing results in 16 European clinical laboratories, 2014

For each method, the number of correct typings to species, species complex, and subgenus level are shown in different colours. In addition, the incorrect species designations are indicated, some of which identified the wrong species in the correct complex (purple bars), others placing a strain in the wrong complex (red bars). The methods or combination of methods that were used to obtain the given results are shown on top.

- **ITS**: internal transcribed spacer; **hsp70**: heat-shock protein 70 gene; **kDNA**: kinetoplast minicircle DNA; **RFLP**: restriction fragment length polymorphism.

4 RFLP was performed on a fragment covering both ITS1 and ITS2 [14].

5 One laboratory reported the use of two separate methods. Results E and M.
Figure 2
Typing results for each of the 21 strains included in study comparing *Leishmania* typing results in 16 European clinical laboratories, 2014

MLSA: multilocus sequence analysis; WHO: World Health Organization.

a One laboratory reported the use of two separate methods.

b Strain MHOM/CO/88/UA316 is *L. guyanensis* based on MLEE, but *L. panamensis* based on MLSA (Table 1).

For each strain, the number of correct typings at species, species complex, and subgenus level are reported. In addition, the incorrect species designations are indicated, some of which identified the wrong species in the correct complex (purple bars), others placing an isolate in the wrong complex (red bars). The strain identification by WHO code (Table 1) is given with the abscissa. Species, complexes, and subgenera are represented on top, with an indication of the New or Old World strain origin.
correct drug, route of administration (intralesional, oral systemic, or parenteral) and duration [7].

Unfortunately, for CL it is impossible to predict the species responsible for an ulcerating lesion clinically, and the morphology of amastigotes does not differ between species. When the geographical origin of infection is known, for instance when a patient in an endemic region is treated at a local hospital, the species can be guessed often from the known local epidemiology, as species distribution follows a geographical pattern [8]. However, especially in infectious disease clinics that treat patients who have stayed in various endemic countries, the geographic origin of infections may be unknown. For instance, people residing in Europe who have travelled outside Europe may come from, or have also visited, *Leishmania*-endemic areas within Europe, especially the Mediterranean basin. Even when the location of infection is known, several species can co-circulate in a given endemic area, in which case the species can only be determined by laboratory tests. Culture and subsequent isoenzyme analysis is time consuming and available in very few specialised centres, so it is impractical as a front-line diagnostic test in clinical laboratories. Hence, well-performed reliable molecular methods are necessary for species identification.

Several *Leishmania* typing methods have been published (reviewed in [9]), and as a result each laboratory uses its own preferred assay. The most popular assays nowadays are those that can be applied directly to clinical samples, thereby circumventing the need for parasite isolation and culture. However, few tests have been standardised, and no commercial kits are currently available. As a result, clinical and epidemiological studies make use of various techniques, and in patient management other methods are often deployed. In this study we compare the typing performance in 16 European clinical laboratories, which use a variety of methods for species discrimination.

Table 1

<table>
<thead>
<tr>
<th>Strain (WHO code)</th>
<th>Culture name CNRLa</th>
<th>Speciesb</th>
<th>Reference typing methodc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHOM/ET/83/130–83</td>
<td>LEMS118</td>
<td>Leishmania aethiopica</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/GF/2002/LAV003</td>
<td>LEM4351</td>
<td>L. amazonensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/VE/76/JAP78</td>
<td>LEM0391</td>
<td>L. amazonensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/BR/75/M903b</td>
<td>LEM0396</td>
<td>L. braziliensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/PE/83/ST139</td>
<td>LEM0781</td>
<td>L. braziliensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/BO/2001/CUM555</td>
<td>NA</td>
<td>L. braziliensis outlierd</td>
<td>AFLP [12], WGS, MLSA</td>
</tr>
<tr>
<td>MHOM/IN/---/LRC-L51</td>
<td>LEM070</td>
<td>L. donovani</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/KE/55/LRC-L53</td>
<td>LEM0707</td>
<td>L. donovani</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/GF/86/LEM1034</td>
<td>LEM034</td>
<td>L. guyanensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/FR/78/LEM75</td>
<td>LEM0075</td>
<td>L. infantum</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MCUN/BR/85/M9342</td>
<td>LEM2229</td>
<td>L. lainsoni</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/IRQ/86/CRE1</td>
<td>LEM0858</td>
<td>L. major</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/BR/82/BEL21</td>
<td>LEM0695</td>
<td>L. mexicana</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/EC/87/EC103-CL8</td>
<td>LEM1554</td>
<td>L. mexicana</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MDAS/BR/79/M533</td>
<td>LEM2204</td>
<td>L. noitii</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/CO/86/UA126</td>
<td>LEM047</td>
<td>L. panamensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/CO/88/UA264</td>
<td>LEM1492</td>
<td>L. panamensis</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/CO/88/UA316</td>
<td>LEM1505</td>
<td>L. panamensis / L. guyanensis⁵</td>
<td>MLEE, MLSA</td>
</tr>
<tr>
<td>MHOM/PE/90/HB86</td>
<td>NA</td>
<td>L. peruviana</td>
<td>AFLP [12], WGS, MLSA</td>
</tr>
<tr>
<td>MHOM/PE/90/LCA08</td>
<td>NA</td>
<td>L. peruviana</td>
<td>AFLP [12], WGS, MLSA</td>
</tr>
<tr>
<td>MHOM/IL/80/SINGER</td>
<td>LEM0617</td>
<td>L. tropica</td>
<td>MLEE, MLSA</td>
</tr>
</tbody>
</table>

AFLP: amplified fragment length polymorphism; CNRL: Centre National de Référence des Leishmanioses (Montpellier, France); NA: not applicable; MLEE: multilocus enzyme electrophoresis; MLSA: multilocus sequence analysis; WGS: whole genome sequencing; WHO: World Health Organization.

a Identification in the Montpellier cryobank (Centre National de Référence des Leishmanioses).

b For the taxonomic position of each species (subgenus and species complex), please refer to Figure 2.

c Reference method used to determine the species of each isolate. MLEE [10]; MLSA based on seven genes [11]; AFLP analysis [12]; WGS (unpublished results).

d Group of distinct *Leishmania braziliensis* strains [9,12], also called *L. braziliensis* type 2 [15] or atypical *L. braziliensis* [18].

e This strain was typed as *L. panamensis* by MLSA, and as *L. guyanensis* by MLEE.

f This strain was typed as *L. panamensis* by MLSA, and as *L. guyanensis* by MLEE.
Methods

Participants and reference methods
Twenty one Leishmania isolates were typed by 16 laboratories in 12 countries in 2014. Table 1 lists the parasite strains that were used in this study, along with the reference method for species identification. Strains identified with a Laboratoire d’Ecologie Médicale (LEM) code were provided by the Centre National de Référence des Leishmanioses in Montpellier, France, which assigns LEM codes to each cryopreserved culture, while the remaining three strains were provided by the Institute of Tropical Medicine in Antwerp, Belgium.

Four highly informative reference methods were used: multilocus enzyme electrophoresis (MLEE [10]), multilocus sequence analysis (MLSA [11], GenBank sequence accession numbers in Table 2), genome-wide amplified fragment length polymorphism (AFLP) analysis [12], and whole genome sequencing (unpublished results).

DNA was extracted from parasite cultures using either the DNeasy Blood and Tissue Kit or QIAamp DNA Mini Kit (Qiagen, www.qiagen.com), and the concentration was measured spectrophotometrically. The 21 DNAs were randomised at the United Kingdom (UK) National External Quality Assessment Service for Parasitology (UKNEQAS, London, UK), and every study participant received a blind panel containing 50 µl of a 10 ng/µl DNA solution. The participating laboratories are listed in Table 3.

After performing the respective routine typing technology, each laboratory reported its results to UKNEQAS, who forwarded these along with the randomised code in one batch to the Institute of Tropical Medicine in Antwerp for analysis. Some participants used the term ‘L. braziliensis complex’ when referring to the L. (Viannia) subgenus, and where needed the reported results were adjusted. The results after these adjustments are presented in this analysis.

Genome targets for typing
The 16 laboratories used a total of five genome targets for typing (Table 4): the internal transcribed spacer 1 of the rDNA array (ITS1), the mini-exon, kinetoplast minicircle DNA (kDNA), the heat-shock protein 70 gene (hsp70), and a repetitive DNA sequence. One laboratory reported two sets of result from two different targets, which are treated in the analysis as if they were from separate laboratories, which is why the results section describes 17 instead of 16 outcomes. The targets were

<table>
<thead>
<tr>
<th>WHO CODE</th>
<th>LEM</th>
<th>MLSA locus</th>
<th>hsp70</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCUN/BR/85/M9342</td>
<td>2229</td>
<td>KT959002 KT959017 KT959032 KT959047 KT959062 KT959077 KT959092 LN907839</td>
<td></td>
</tr>
<tr>
<td>MDAS/BR/79/M5533</td>
<td>2204</td>
<td>KT959001 KT959016 KT959031 KT959046 KT959061 KT959076 KT959091 FR872767</td>
<td></td>
</tr>
<tr>
<td>MHOM/BO/2001/CUM555</td>
<td>NA</td>
<td>KT959006 KT959021 KT959036 KT959051 KT959066 KT959081 KT959096 FR872760</td>
<td></td>
</tr>
<tr>
<td>MHOM/BR/75/M2903b</td>
<td>396</td>
<td>KT958993 KT959008 KT959023 KT959038 KT959053 KT959068 KT959083 LN907832</td>
<td></td>
</tr>
<tr>
<td>MHOM/BZ/82/BEI21</td>
<td>695</td>
<td>KT958994 KT959009 KT959024 KT959039 KT959054 KT959069 KT959084 LN907841</td>
<td></td>
</tr>
<tr>
<td>MHOM/CO/86/UA126</td>
<td>1047</td>
<td>KT958997 KT959012 KT959027 KT959042 KT959057 KT959072 KT959087 LN907843</td>
<td></td>
</tr>
<tr>
<td>MHOM/CO/88/UA264</td>
<td>1492</td>
<td>KT958998 KT959013 KT959028 KT959043 KT959058 KT959073 KT959088 LN907844</td>
<td></td>
</tr>
<tr>
<td>MHOM/CO/88/UA316</td>
<td>1505</td>
<td>KT958999 KT959014 KT959029 KT959044 KT959059 KT959074 KT959089 LN907837</td>
<td></td>
</tr>
<tr>
<td>MHOM/EC/87/EC103-CL8</td>
<td>1554</td>
<td>KT959000 KT959015 KT959030 KT959045 KT959060 KT959075 KT959090 LN907842</td>
<td></td>
</tr>
<tr>
<td>MHOM/ET/83/130–83</td>
<td>1118</td>
<td>KC159315 KC159357 KC159393 KC159759 KC158871 KC159981 KC158649 LN907830</td>
<td></td>
</tr>
<tr>
<td>MHOM/FR/78/LEM75</td>
<td>75</td>
<td>KC159255 KC159477 KC159933 KC159699 KC158811 KC159921 KC158589 LN907838</td>
<td></td>
</tr>
<tr>
<td>MHOM/FR/2002/LAV003</td>
<td>4351</td>
<td>KT959003 KT959018 KT959033 KT959048 KT959063 KT959078 KT959093 LN907831</td>
<td></td>
</tr>
<tr>
<td>MHOM/FR/86/LEM3043</td>
<td>1034</td>
<td>KT958996 KT959011 KT959026 KT959041 KT959056 KT959071 KT959086 LN907836</td>
<td></td>
</tr>
<tr>
<td>MHOM/IL/80/SINGER</td>
<td>617</td>
<td>KC159287 KC159509 KC159065 KC159731 KC158843 KC159953 KC158621 LN907846</td>
<td></td>
</tr>
<tr>
<td>MHOM/IN/--/LRC-L51</td>
<td>1070</td>
<td>KC159313 KC159535 KC159091 KC159757 KC158869 KC159979 KC158647 LN907834</td>
<td></td>
</tr>
<tr>
<td>MHOM/IQ/86/CRE1</td>
<td>858</td>
<td>KC159299 KC159521 KC159077 KC159763 KC158855 KC159965 KC158631 LN907840</td>
<td></td>
</tr>
<tr>
<td>MHOM/KE/55/LRC-L13</td>
<td>707</td>
<td>KC159294 KC159516 KC159072 KC159738 KC158830 KC159960 KC158628 LN907835</td>
<td></td>
</tr>
<tr>
<td>MHOM/PF/99/HB86</td>
<td>NA</td>
<td>KT959004 KT959019 KT959024 KT959049 KT959064 KT959079 KT959094 LN907845</td>
<td></td>
</tr>
<tr>
<td>MHOM/PF/99/LCA08</td>
<td>NA</td>
<td>KT959005 KT959020 KT959035 KT959050 KT959065 KT959080 KT959095 EU909089</td>
<td></td>
</tr>
<tr>
<td>MHOM/PE/83/STI139</td>
<td>781</td>
<td>KT958995 KT959010 KT959025 KT959040 KT959055 KT959070 KT959085 LN907833</td>
<td></td>
</tr>
<tr>
<td>MHOM/VE/76/IAP78</td>
<td>391</td>
<td>KT958992 KT959007 KT959022 KT959037 KT959052 KT959067 KT959082 EU909092</td>
<td></td>
</tr>
</tbody>
</table>

analysed with PCR, generally followed by sequencing or restriction fragment length polymorphism (RFLP) analysis, as shown in Table 4 and Figure 1. Four laboratories used in-house sequencing, while five others used the service of an external sequencing facility. PCRs based on kDNA did not require post-PCR manipulations other than gel analysis.

Figure 1 indicates for each laboratory individually which method or methods were used, but not all samples were necessarily analysed with each method. Of the 16 laboratories, 11 used the ITS1 target, either applying RFLP (n=7) or sequencing (n=4). All of them based their analysis on the fragment described in [13], except for laboratory L which used a larger region also including ITS2 [14]. Five laboratories based typing on hsp70: four (A-D) used sequencing of the F fragment described in [15-17], while one (E) used the N fragment. Two laboratories (F and G) analysed this gene with RFLP [17,18]. Three laboratories used sequence analysis of the mini-exon gene: laboratory O [19,20], laboratory P [21], and laboratory Q [22]. Two laboratories based typing partly on kDNA: laboratory K [23], and laboratory L [24,25]. Finally, laboratory J complemented ITS1-RFLP with RFLP analysis of a repetitive DNA sequence [26].

Grading of results
Each individual result was graded as follows. The best ranking was given to reported species agreeing with the reference methods, whereby *L. garnhami* was considered a synonym of *L. amazonensis* [27]. Results reporting MHOM/BO/2001/CUM555 as *L. braziliensis* were considered correct. Although this strain belongs to a group of clearly distinguishable outliers (Table 1), it has so far not been described as a separate species. Next were identifications that reported the species complex rather than the actual species (see Figure 2), and were in agreement with the reference methods. The lowest ranking of correct results was given to those identifying the subgenus, i.e. *L. (Viannia)* or *L. (Leishmania)*, without specification of species or species complex. Identification errors were graded at two levels. First, some laboratories reported a species within the correct complex, but identified the wrong species within that complex. Second, some isolates were placed in an erroneous species complex altogether. A peculiar case was presented by strain MHOM/CO/88/UA316, which was *L. guyanensis* based on MLEE, but *L. panamensis* based on MLSA (Table 1). For this strain, all results reporting either *L. guyanensis* or *L. panamensis* were considered to have identified the correct species complex.

In a next level of the analysis, the cause of erroneous typings was sought by means of in-depth assessment of the methods. The reasons for different identification outcomes of laboratories using the same methods were also identified. Sequences from laboratories that based their typing on the same genes were compared by alignment in the software package MEGA5 [28].

Results
Results from all analyses are summarised in Figure 1, details are available from [29]. One laboratory reported...
When comparing the hsp70 sequences provided by four laboratories (A-D), there were marked differences in sequence quality. Three laboratories (A, B, C) succeeded in sequencing the entire or nearly entire fragment F [17], with few or no sequence ambiguities. The sequence sets of two laboratories (A and C) contained one insertion and one deletion relative to the other data, indicating sequence mistakes as the gene shows no size variation [15,16]. In contrast, the quality of the fragment F sequences from one laboratory (D) was considerably lower. Sequences were largely incomplete at their 5' end and to a lesser extent at their 3' terminus, and numerous insertions, deletions, and unresolved nucleotides (nt) were present. One laboratory (E) sequenced only the N fragment [17], but base calling quality was poor in the 40 terminal 3' nt. The consensus hsp70 sequences were deposited in GenBank (Table 2).

Three laboratories (M, N, O) determined the ITS1 sequence of all isolates, while one laboratory (P) sequenced only MHOM/GF/2002/LAV003. The sequences of two laboratories (N and P) covered the entire amplified PCR product, while some of two others (O and M) were incomplete at the termini. Apart from some insertions in the sequences of one laboratory (N) and occasional unresolved nt in those of another (O), the sequences were identical, except for isolate MHOM/CO/88/UA316. Here, up to 9 nt differences were present in a 120 nt stretch.

Three laboratories (O, P, Q) determined the mini-exon sequences. For some strains the sequences of these laboratories were nearly identical, but for others large size differences of the determined fragment were seen, and deletions and nt identity discrepancies were observed. Also, many nt were not fully resolved.

Discussion

As a general observation, eight laboratories who participated in this comparison typing performance made no errors, and often laboratories using the same typing marker reported different results (Figure 1). Two of the ‘error-free’ laboratories obtained the highest typing accuracy, with 20 out of 21 strains typed to the species level, and strain MHOM/CO/88/UA316 at the complex level. Using our reference methods MLSA and MLEE (Table 1), the latter species could not be classified unequivocally, and hence results placing it in the L. guyanensis complex were regarded as correct. These two laboratories (A and B) based their typing on hsp70 gene sequencing, which was identified as one of the typing methods with the highest resolution in other comparative studies [9,15]. One other laboratory (C) also made use of this method, but typed several strains only to the complex level. Even though the hsp70 gene often permits distinction between closely related species, separating them is not always straightforward. For instance, some MLEE-defined L. guyanensis have the same sequence as L. panamensis [16]. Because identifying the exact species within a given complex

Table 4

<table>
<thead>
<tr>
<th>Genomic locus / gene</th>
<th>Analysis method</th>
<th>Number of laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS1</td>
<td>RFLP [13,14]</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sequencing [15]</td>
<td>4</td>
</tr>
<tr>
<td>hsp70</td>
<td>Sequencing [15,16]</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>RFLP [17]</td>
<td>2</td>
</tr>
<tr>
<td>Mini-exon</td>
<td>Sequencing [19-21]</td>
<td>3</td>
</tr>
<tr>
<td>kDNA minicircles</td>
<td>RFLP [24,25]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Specific PCR [23]</td>
<td>1</td>
</tr>
<tr>
<td>Repetitive DNA</td>
<td>RFLP [26]</td>
<td>1</td>
</tr>
</tbody>
</table>

ITS: internal transcribed spacer; hsp70: heat-shock protein 70 gene; kDNA: kinetoplast minicircle DNA; RFLP: restriction fragment length polymorphism.

a The total number is higher than the 16 participating laboratories, because several laboratories used different methods in parallel.
can therefore be difficult, one laboratory (C) decided to identify the species complex rather than the exact species in case of doubt. Apparently the low sequence quality obtained by one of the participants (D) had no adverse effects on the results, probably because species-specific nt identities were not affected. The sequence quality was not influenced by the use of in-house vs external sequencing services.

One laboratory (E) reported four mistakes based on hsp70 sequences. As opposed to laboratories A-D, the analysis was based on a smaller part of the gene, fragment N [17], which is not suited for typing all species [15]. Nevertheless, several of these species were called based on a BLAST search in GenBank [https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch], from which the first listed species was regarded as the final result, regardless of identical similarity scores obtained from other species. In this process some species were by chance determined correctly, while others were erroneously identified. This stresses the importance of correctly interpreting output lists generated by BLAST, because different species can have the same similarity score when the marker is too conservative for discriminant between them. To avoid such errors the methodology even identified an erroneous complex, i.e. MHOM/ET/83/130–83 was typed as L. donovani instead of L. aethiopica, based on an erroneous annotation in GenBank. Indeed, several GenBank entries of L. donovani from L. tropica were correctly assigned by laboratory M. However, in several cases also other species showed the same similarity scores, and hence there was no ground for naming the exact species. In contrast, another laboratory (N), which also used ITS1 sequence analysis, reported L. tropica strains at subgenus level with no further attempt to determine the complex or species. Thereby they respected the limitations of ITS1, although some L. (Viannia) complexes could have been identified based on their data.

The same laboratory E reported a second results set based on ITS1 sequence analysis, listed under laboratory M in Figure 1. Again, BLAST analysis was applied, and even though ITS1 is not suitable for discriminating L. braziliensis and L. guyanensis complex species [15], several species were reported. Except for one misclassified L. braziliensis outlier strain (Figure 2), species were correctly assigned by laboratory M. However, in several cases also other species showed the same similarities scores, and hence there was no ground for naming the exact species. In contrast, another laboratory (N), which also used ITS1 sequence analysis, reported L. (Viannia) strains at subgenus level with no further attempt to determine the complex or species. Thereby they respected the limitations of ITS1, although some L. (Viannia) complexes could have been identified based on their data.

The majority of study participants that used ITS1 did not sequence the target, but relied on RFLP analysis. Laboratories basing their results on this method reported some typical errors: L. tropica was mixed up with L. aethiopica; the L. donovani complex was confused with L. mexicana; unsuccessful attempts were made to separate L. infantum from L. donovani; and on one occasion L. amazonensis was identified as L. major. When digesting the PCR products with the popular enzyme Haell, sufficient gel resolution is needed in order not to mix up the aforementioned species, as their RFLP fragments are similar in size. In addition, contrary to what was originally published [13], L. infantum cannot be distinguished from L. donovani [9] and therefore ITS1 can only type to the L. donovani complex, without further specification.

Two laboratories (F and G) complemented ITS-RFLP with hsp70-RFLP, and both mistook L. naiffi for L. braziliensis. This is a result of identical patterns generated from L. naiffi and many L. braziliensis strains with restriction endonucleases Haell and Rsal. The mistake could have been avoided by using the appropriate enzyme Sdul [18].

Only one laboratory (J) made use of a repetitive DNA sequence originally described in [31]. In combination with ITS1, 10 out of the 21 typings were incorrect, whereby seven strains were assigned to the wrong complex. Of the 10 mistakes, nine were made in the L. (Viannia) subgenus, while the remaining error was due to the unsuccessful separation of L. infantum from L. donovani. ITS1-RFLP is not suitable for discriminating these species, and the repetitive sequence RFLP was designed for typing Old World strains, where only the L. (Leishmania) subgenus is encountered. Such mistakes once more underline the importance of knowing the limits of the typing marker chosen.

Kinetoplast DNA is primarily a useful marker to discriminate the two Leishmania subgenera, but is less suited for typing to the actual species level (reviewed in [9]). In combination with the fact that also ITS1-RFLP does not discriminate many L. (Viannia) species, the two laboratories (K and L) using these methods reported typing mostly to the subgenus or species complex level. One of them (K) had a particularly high error rate (6/20) using these markers, probably related to the previously mentioned gel resolution problems and separation of L. infantum from L. donovani with ITS1-RFLP. In addition the laboratory used ‘L. braziliensis complex / L. guyanensis complex’ as a synonym for L. (Viannia), while two strains were L. naiffi and L. lainsoni.

With the mini-exon sequences, only two mistakes were reported. One laboratory (O) identified L. mexicana strain MHOM/EC/82/EC103-CL8 as L. donovani, but after disclosing the results realised a mistake in reporting, as their analysis actually did show the correct species. In a comparative analysis of four markers [15], the mini-exon together with hsp70 were identified as the most discriminative markers worldwide, which is confirmed by the results presented here. Some species within the complexes can, however, not be resolved based on the mini-exon, as also reflected in the current
analysis, where often complexes rather than species were identified.

When looking at the typing results for each of the 21 strains (Figure 2), it is apparent that strains of the \textit{L.} \textit{(Viannia)} subgenus were more often typed to the subgenus level, while those of the \textit{L.} \textit{(Leishmania)} subgenus were more often reported at the species level. Given that ITS1 was the most popular marker, this is a logical result in view of the poor discrimination of \textit{L.} \textit{(Viannia)} species by ITS1. Also the fact that for Old World strains 5.9\% of typings were erroneous, in comparison to 9.6\% New World strains, relates to the use of methods that are tailored to Old World strains. Only two strains were identified to the species level by all laboratories and all methods: MHOM/IL/80/SINGER (\textit{L. tropica}) and MHOM/IQ/86/CRE1 (\textit{L. major}). The results show that several laboratories are currently unable to discriminate \textit{L.} \textit{(Viannia)} species, which is partly explained by the participation in the study of six groups that are situated in a European country where \textit{Leishmania} is actively transmitted. Hence, they mainly diagnose patients infected by endemic species, and use methods primarily tailored to species in the Old World. On the contrary, the remaining laboratories are dealing only with imported leishmaniasis cases, which can originate from anywhere in the world, and for which the origin of infection is sometimes unknown. This forces them to apply assays that are able to identify species from everywhere around the globe.

With regard to nomenclature, there is an evident need for standardisation. When the first results were reported, several laboratories used the term ‘\textit{L. braziliensis} complex’ to refer to \textit{L. (Viannia)}. For many years these have been synonyms, but current literature restricts this term to \textit{L. braziliensis} and \textit{L. peruviana} \cite{27}. Another confusion can arise from the fact that each complex bears the name of one of its constituent species. For instance, a typing outcome reported as ‘\textit{L. guyanensis}’ has to be clearly distinguished from ‘\textit{L. guyanensis} complex’. Even though this particular problem did not seem to occur in our analysis, one could easily envision such occurrence. One laboratory (K) reported several results as ‘\textit{L. braziliensis} complex’ / ‘\textit{L. guyanensis}’ complex’ for referring to \textit{L. (Viannia)}, but with this term \textit{L. naiffi} and \textit{L. laimsoni} were excluded.

Finally, the particular case of strain MHOM/CO/88/UA316 draws attention to problems in species definitions, as this strain was typed as \textit{L. guyanensis} with MLEE, but as \textit{L. panamensis} with MLSA (Table 1). Reported correct results for this strain were either \textit{L. guyanensis} complex, \textit{L. guyanensis}, or \textit{L. panamensis}, but this was irrespective of the method or target used \cite{29}. Such occasional dubious results are unavoidable when dealing with closely related species, in particular \textit{L. guyanensis-L. panamensis}, \textit{L. braziliensis-L. peruviana-L. mexicana-L. amazonensis}, and \textit{L. donovani-L. infantum} \cite{9}. Also newly documented parasite species such as \textit{L. martiniquensis} \cite{32} and \textit{L. waltoni} \cite{33}, and variants as the \textit{L. braziliensis} outlier \cite{9,12,15,18} further complicate the interpretation of typing results. It is therefore of utmost importance that species identification is performed with a well-documented standard operating procedure (SOP), clearly describing not only experimental procedures, but also in detail how results should be analysed, interpreted, and reported.

The current study was performed on cultured parasite isolates, so all participants received a high amount of pure parasite DNA. Yet, 8.5\% errors were seen, and in four cases no result was obtained. When dealing with patient material, the amount of parasite DNA is much lower, and vastly exceeded by human DNA. As the current study did not assess the sensitivity of the methods used, it is expected that typing success based on clinical samples will be considerably lower. In view of the fact that only recognised reference laboratories participated in this study, there is a clear need for optimisation. On the other hand, in many clinical settings the suspected origin of infection can help in interpretation of typing outcomes, thereby possibly lowering the error rate.

Conclusions

There is considerable room for improvement of current \textit{Leishmania} typing strategies, and inter-laboratory comparisons such as the one we conducted can contribute to enhance typing quality. Whichever the clinical need for determining the subgenus, complex, or species, and whichever the technology used in a particular setting, typing should be based on a well-defined and validated SOP designed by an expert in \textit{Leishmania} taxonomy. This SOP should cover not only testing, but also analysis and interpretation procedures, and a clear description of how species should be named and reported, taking into account the limitations of each marker and technique, and the problem of resolving closely related species or occasional interspecies hybrids. Validation should be performed on a sufficient amount of reference isolates from various geographic origins to cover each species’ variability. When using sequencing, sequence errors should be avoided, and a well-validated sequence reference set is recommended over BLAST analysis using GenBank, which lacks quality control. In cases where treatment is species- or complex-dependent, clinicians should be made aware of the limitations of the technology used whenever results are reported, especially when closely related species are involved. The use of real-time PCR assays developed for specific complexes or species could speed up typing and facilitate interpretation of results, but currently no globally applicable methods are available. As previously recommended \cite{15} and also apparent from this analysis, \textit{hsp70} and the miniexon currently offer the best \textit{Leishmania} typing tools world-wide, and the use of ITS1 should be restricted to the Old World. Setting up similar evaluations outside Europe, in institutes in endemic as well as non-endemic countries, would shed additional light on the quality of \textit{Leishmania} typing across the globe.
Acknowledgements

The authors would like to thank the ESCMID study group for Clinical Parasitology (ESGCP), headed by Titia Kortbeck, National Institute for Public Health and the Environment, RIVM, Bilthoven, The Netherlands) for financial support (ESMCID Study Group Research Grant 2013 to Peter L. Chiodini). We are grateful to Jean-Pierre Gangneux (ESGCP co-ordinator for leishmaniasis, Centre Hospitalier Universitaire de Rennes, Rennes, France) and the LeishMan consortium (www.leishman.eu) for conceptual support and promoting the study. We acknowledge the valuable comments of Titia Kortbeck, and the technical assistance of Sofia Andersson (The Public Health Agency of Sweden, Stockholm, Sweden), José M. Cristóvão (Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, UNL, Lisbon, Portugal), Mehmet Karakus (Ege University, Faculty of Medicine, Department of Parasitology, Izmir, Turkey), Ilse Maes (Institute of Tropical Medicine, Antwerp, Belgium), Abed Nasereddin (Hebrew University, Hadassah Medical Centre, Jerusalem, Israel), Chris Stalder (Swiss Tropical and Public Health Institute, Basel, Switzerland), Antonietta Toffolotti and Antonella Vulcano (National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani, Rome, Italy), Carla Wassenaar (Academic Medical Center, Amsterdam, The Netherlands), Julie Watson and Spencer Polley (Hospital for Tropical Diseases, London, United Kingdom). Gert Van der Auwera is supported by the Third Framework program between ITM and the Belgian Directorate General for Development. Peter L. Chiodini is supported by the Biomedical Research Centre of the University College London Hospitals and National Institute for Health Research.

Conflict of interest

None declared.

Authors’ contributions

Gert Van der Auwera, Albright J. Albert, Ingrid Felger, Christophe Ravel, Jean-Claude Dujardin, and Peter L. Chiodini conceptualised the study. Gert Van der Auwera coordinated the study, analysed the data, and drafted the publication. Christophe Ravel and Gert Van der Auwera provided the cultures, from which DNA was extracted by Ingrid Felger and Gert Van der Auwera. Monika Manser was responsible for blinding the samples and collecting the results. Gert Van der Auwera, Albright J. Albert, Carmen Chicharro, Sofia Cortes, Leigh Davidson, Trentina Di Muccio, Ingrid Felger, Maria Grazia Paglia, Felix Grimm, Gundel Harms, Charles L. Jaffe, Christophe Ravel, Florence Robert-Gangneux, Jeroen Roelfsema, Seray Töz, and Jaco J. Verweij supervised or carried out the assays. All authors gave their input on the manuscript draft.

References

32. Desbois N, Pratlong F, Quist D, Dedet JP. Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies). Parasite. 2014;21:12. DOI: 10.1051/parasite/2014011 PMID: 24626346

License and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2016.
Community-wide outbreaks of haemolytic uraemic syndrome associated with Shiga toxin-producing Escherichia coli O26 in Italy and Romania: a new challenge for the European Union

E Severi ¹, F Vial ¹, E Peron ² ³, O Mardh ¹, T Niskanen ¹, J Takkinen ¹

1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
2. European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
3. Gastrointestinal, zoonosis and tropical diseases unit, Department of infectious diseases epidemiology, Robert Koch Institute, Berlin, Germany

Correspondence: Ettore Severi (ettore.severi@ecdc.europa.eu)

Citation style for this article:

To the editor: In their recent article in Eurosurveillance, Germinario et al. describe a community-wide outbreak of Shiga toxin 2-producing Escherichia coli (STEC) O26:H11 infections associated with haemolytic uraemic syndrome (HUS) and involving 20 children between 11 and 78 months of age in southern Italy during the summer 2013 [1]. The investigation identified an association between STEC infection and consumption of dairy products from two local milk-processing establishments. We underline striking similarities to a recent multi-country STEC O26 outbreak in Romania and Italy and discuss the challenges that STEC infections and their surveillance pose at the European level.

In March 2016, Peron et al. published, also in Eurosurveillance, early findings of the investigation of a community-wide STEC infection outbreak in southern Romania [2]. As at 29 February 2016, 15 HUS cases with onset of symptoms after 24 January 2016, all but one in children less than two years of age, had been identified, three of whom had died. Aetiological confirmation was retrospectively performed through serological diagnosis and six cases were confirmed with STEC O26 infection. Shortly after this publication, and following the identification of the first epidemiologically-linked case in central Italy, the European Centre for Disease Prevention and Control (ECDC) and the European Food Safety Authority (EFSA) published a joint Rapid Outbreak Assessment [3]. The Italian and Romanian epidemiological, microbiological and environmental investigations implicated products from a milk-processing establishment in southern Romania as a possible source of infection. The dairy plant exported milk products to at least four European Union (EU) countries. The plant was closed in March 2016 and the implicated food products recalled or withdrawn from the retail market.

Pulsed Field Gel Electrophoresis (PFGE) and whole genome sequencing (WGS) analyses did not establish a microbiological link between the Italian (2013) and the Romanian/Italian (2016) outbreaks (personal communication, Stefano Morabito, October 2016). However, the epidemiological similarities between the two community-wide outbreaks associated with HUS and STEC O26 infections, mostly affecting young children and implicating dairy products, are notable. While raw milk and unpasteurised dairy products are well known potential sources of STEC infection, milk products, as highlighted by Germinaro et al. [1], have been rarely implicated in community-wide STEC outbreaks in the past, emphasising an emerging risk of STEC O26 infection associated with milk products.

Reporting of STEC O26 infections has been steadily increasing in the EU since 2007, partly due to improved diagnostics of non-O157 sero-pathotypes [4]. The attention to non-O157 STEC sero-pathotypes rose considerably after the severe STEC O104 outbreak that took place in Germany and France in 2011 during which almost 4,000 cases and more than 50 deaths were reported [5]. In light of the recently published outbreaks related to dairy products and the simultaneous increased reporting of isolations of STEC O26 from milk and milk products in the EU/European Economic Area (EEA) [6], strengthening STEC surveillance in humans and food and enhancing HUS surveillance in children less than five years of age is warranted. Paediatric
nephrologists should be sensitised to this effect and further joint studies between food and public health sectors be increased.

Conflict of interest
None declared.

Authors’ contributions
ES drafted the letter to the Editor. All authors reviewed, commented and accepted its final version.

References

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2016.
New version of the Epidemic Intelligence Information System for food- and waterborne diseases and zoonoses (EPIS-FWD) launched

CM Gossner ¹
1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
Correspondence: Celine Gossner (celine.gossner@ecdc.europa.eu)

On 1 December 2016 the third version of the Epidemic Intelligence Information System for food- and waterborne diseases and zoonoses (EPIS-FWD) was launched. With this development, the European Centre for Disease Prevention and Control (ECDC) moved one step further towards the One Health approach.

In collaboration with the European Food Safety Authority (EFSA), the Molecular Typing Cluster Investigation (MTCI) module was expanded to also allow the assessment of Salmonella, Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes microbiological clusters based on non-human isolates (i.e. food, feed, animal and environmental) and on a mix of non-human and human isolates.

Depending on the type of cluster assessed, the MTCIs are coordinated by ECDC or EFSA or jointly by both agencies together with public health and/or food safety and veterinary experts from the involved European Union (EU) and European Economic Area (EEA) Member States.

ECDC collects human typing data through the European Surveillance System (TESSy) since 2013 [1]. Typing data from non-human isolates can now be submitted by the food and veterinary authorities of the EU/EEA Member States through the EFSA molecular typing data collection system. Furthermore, the joint ECDC-EFSA molecular typing database allows the comparison of the typing data collected by ECDC and EFSA.

First launched in March 2010, the Epidemic Intelligence Information System for food- and waterborne diseases and zoonoses (EPIS-FWD) has become an important tool for assessing ongoing public health risks related to FWD events worldwide. Currently, 52 countries from five continents have access to the outbreak alerts in the EPIS-FWD [2].

Since its launch, 305 outbreak alerts have been assessed through the EPIS-FWD; 32 (10%) were from countries outside of the EU/EEA which underlines the global dimension of the system.

The Health Security Committee, a part of the European Commission and the officially nominated public health risk management authority in the EU/EEA, has access to the EPIS-FWD to ensure the link between risk assessment and risk management. The World Health Organisation (WHO), including the International Network of Food Safety Authorities (INFOSAN) managed jointly by the Food and Agriculture Organisation of the United Nations (FAO) and WHO, is invited to contribute to the discussions in the EPIS-FWD when international outbreaks involve non-EU/EEA countries.

Through this new version of EPIS-FWD, ECDC and EFSA are encouraging the sharing of data between sectors and aspire to strengthen the multi-sectorial collaboration at international and national levels.

References

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the European Centre for Disease Prevention and Control, 2016.