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In this study, New Delhi metallo-beta-lactamase (NDM)-
producing Enterobacteriaceae were identified in Irish 
recreational waters and sewage. Indistinguishable 
NDM-producing Escherichia coli by pulsed-field gel 
electrophoresis were isolated from sewage, a fresh 
water stream and a human source. NDM-producing 
Klebsiella pneumoniae isolated from sewage and sea-
water in the same area were closely related to each 
other and to a human isolate. This raises concerns 
regarding the potential for sewage discharges to con-
tribute to the spread of carbapenemase-producing 
Enterobacteriaceae.

We report the finding of New Delhi metallo-beta-lac-
tamase (NDM)-producing Enterobacteriaceae in fresh 
water and seawater samples collected at two beaches 
located near an untreated human sewage ocean dis-
charge. Isolates of NDM-producing Escherichia coli 
derived from the sewage collection system, the sew-
age storage tank and the outflow were 100% iden-
tical by pulsed-field gel electrophoresis (PFGE) to 
those derived from a fresh water stream on one of the 
beaches, and to a clinical isolate.

Recreational water and sewage sample sites
In 2016, we identified a beach (Beach A) in Ireland, 
used for bathing and recreation, which is crossed by 
two fresh water streams (Stream A and Stream B), flow-
ing from the surrounding countryside. These streams 
were examined for the presence of carbapenemase-
producing Enterobacteriaceae (CPE). The detection of 
NDM-producing E. coli in these waters prompted subse-
quent additional sampling of the streams. As untreated 
human sewage was being discharged into the sea in 
the vicinity of the beach, and the fresh water streams 

can become immersed in seawater at high tide, sewage 
was evaluated as a potential source. Sewage samples 
included samples from the collection system, the stor-
age tank and the outflow. Sampling was performed in 
the period May to September, 2016. The sewage sys-
tem is not linked to any hospital or long-term care facil-
ity that we are aware of. Further sampling of the fresh 
water streams and sewage sites was carried out in 
January 2017. In addition to this, seawater from Beach 
A and from a second beach (Beach B), ca 950 m in a 
direct line from Beach A were examined. Figure 1 shows 
a schematic diagram of the sampling points and their 
location relative to each other.

Processing of samples
We applied a previously described method (CapE), to 
examine large volumes of water (30L) from both the 
fresh water streams and the seawater, for the presence 
of CPE [1]. Following filtration and overnight enrich-
ment, the samples were sub-cultured onto Brilliance 
CRE agar (Oxoid). Sewage samples were examined by 
direct plating onto Brilliance CRE agar. Following purifi-
cation, presumptive isolates were identified to species 
level by matrix-assisted laser desorption/ionisation 
time-of-flight (MALDI-TOF) mass spectrometry, and 
antimicrobial susceptibility testing was performed and 
interpreted in accordance with European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) criteria 
[2]. Carbapenemase-encoding genes were detected by 
real-time PCR, as previously described [3-6]. Typing of 
NDM-producing Enterobacteriaceae was not performed 
at the variant level, but PFGE was performed on all 
isolates, as outlined previously [7]. PFGE profiles of 
NDM-producing Enterobacteriaceae isolated from recre-
ational water and sewage samples were compared with 
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PFGE profiles of NDM-producing Enterobacteriaceae 
isolated from clinical specimens.

Findings of New Delhi metallo-
beta-lactamase (NDM)-producing 
Enterobacteriaceae
Of eight fresh water samples from Stream B, NDM-
producing E. coli were isolated from two samples, 
which were collected on 13 July and 24 August 2016. 
NDM-producing E. coli were also isolated in samples 
collected on 15 September 2016 from the sewage col-
lection system (one of two samples), the storage tank 
(one of two samples) and the sewage outflow (one 
of one sample) (Table). All isolates were resistant to 

ampicillin, cefotaxime, cefoxitin, cefpodoxime, cef-
tazidime, ciprofloxacin, ertapenem, meropenem and 
nalidixic acid. The isolates obtained from the fresh 
water and sewage samples are indistinguishable by 
PFGE analysis from a human isolate submitted to the 
National Carbapenemase Producing Enterobacteriaceae 
Reference Laboratory Service (CPERLS) in early 2016 
(Figure 2).

NDM-producing K. pneumoniae were isolated from two 
of three sewage sampling sites on 15 September 2016 
and two of two sewage sampling sites on 18 January 
2017. NDM-producing K. pneumoniae was also detected 
in seawater samples collected at Beach A and Beach B 

Figure 1
Schematic diagram of water and sewage sampling points and their location relative to each other, Ireland, 2016–2017
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Figure 2
PFGE analysis of New Delhi metallo-beta-lactamase-producing Escherichia coli isolated from fresh water, sewage and a 
clinical source in Ireland, 2016–2017 (n = 6 isolates)
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on 18 January 2017 (Table). These isolates were resist-
ant to ampicillin, cefotaxime, cefoxitin, cefpodoxime, 
ceftazidime, ciprofloxacin, ertapenem, gentamicin, 
kanamycin, meropenem, nalidixic acid and tetracy-
cline. PFGE analyses of isolates from sewage, seawater 
and a human isolate (from CPERLS) show isolates to be 
between 83% and 97% similar (Figure 3).

Discussion
The rapid dissemination of carbapenemase-producing 
Enterobacteriaceae (CPE) in Europe and worldwide is 
making the delivery of effective healthcare an increas-
ing challenge [8]. The number of CPE confirmed by the 
national reference laboratory in humans in Ireland has 
increased every year, rising from 48 in 2013, to 369 in 
2016. In 2016, the three most commonly reported car-
bapenemases in Ireland were K. pneumoniae carbapen-
emase (KPC), carbapenem-hydrolysing oxacillinase-48 
(OXA-48), and NDM [9]. The NDM gene is primarily 
plasmid-encoded, enabling its easy transfer between 
bacterial species. The plasmids are diverse and usually 
harbour a large number of other resistance genes [10]. 
The NDM gene has been detected extensively in the 
Indian subcontinent where it has been reported from 
both environmental and clinical sources [11]. Rapid 
global spread has been aided greatly by intercontinen-
tal travel [12]. However, a recent study in 2016 reported 
an outbreak of NDM-1-producing Enterobacteriaceae in 
a number of hospitals in Ireland, where links to foreign 
travel were not identified [13].

In Europe, a number of studies have reported the pres-
ence of CPE in recreational water, including Verona 
integron-encoded metallo-beta-lactamase (VIM) pro-
ducing K. pneumoniae in a river in Switzerland in 2013 
[14], KPC-producing E. coli in a river in Portugal in 2012 
[15], VIM-1, VIM-34, and IMP-type metallo-beta-lacta-
mase (IMP)-8 producing E. coli in the same Portuguese 
river in 2016 [16], and NDM-1 producing K. pneumoniae 
in the River Danube in Serbia, in 2016 [17]. Here we 
identify NDM-producing Enterobacteriaceae in environ-
mental water samples collected at two adjacent beach 
sites in Ireland. As far as we are aware, this is the first 
such finding in bathing seawater in Europe. 

We consider that contamination of the environment 
with NDM-producing Enterobacteriaceae from the 
human sewage outflow is likely to be the source, and 
that the fresh water streams were contaminated by 
backwash of sewage onto the beach by tidal currents. 
The presence of NDM-producing Enterobacteriaceae in 
the bathing water (seawater) and at a separate bath-
ing site ca 950 m in a direct line indicates the extent of 
this contamination. It is important to note that by the 
established regulatory standards, the bathing water 
quality in the area concerned has been consistently 
of sufficient quality [18]. Notwithstanding compliance 
with regulatory standards however, it is reasonable 
to conclude that those using a beach such as this for 
recreational purposes might be at least intermittently 

Figure 3
PFGE analysis of New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae isolated from seawater, sewage and a 
clinical source in Ireland, 2016–2017 (n = 11 isolates)
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exposed to NDM-producing Enterobacteriaceae. 
Although, to date, there is no evidence that NDM-
producing Enterobacteriaceae has been acquired as a 
result of exposure to this beach environment, Leonard 
et al. have recently reported on the level of risk of 
exposure to antibiotic resistant bacteria in coastal 
waters and its relationship to different types of water 
sports [19].

It appears therefore that there is potential for envi-
ronmental contamination to contribute to a transition 
of CPE from largely healthcare-associated organisms, 
to organisms affecting the general population and the 
veterinary sector. From a public health perspective, the 
findings focus attention on the need to accelerate pro-
grammes to cease discharge of untreated sewage into 
the environment. This practice should be unacceptable 
in the context of discharges in the vicinity of popular 
bathing and recreation areas where human exposure is 
highly likely. 

We consider that our findings point to potential limita-
tions of the use of E. coli as an indicator bacteria for 
bathing water quality based on the number of colony 

forming units (CFU) per 100  mL [20]. In our view, this 
approach does not reflect the pathogenicity of some 
variants of E. coli, such as Shiga-toxigenic E. coli for 
which the infectious dose is very low, (<10 CFU/mL) [21].
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Table
Overview of sampling sites, dates and detection of carbapenemase-producing Enterobacteriaceae in a coastal region in 
Ireland, 2016–2017

Sample site Date of sampling Carbapenemase-producing Enterobacteriaceae

Fresh water Stream A 

25 May 2016 Not detected
22 Jun 2016 Not detected
13 Jul 2016 Not detected

10 Aug 2016 Not detected
24 Aug 2016 Not detected
7 Sep 2016 Not detected
15 Sep 2016 Not detected
18 Jan 2017 Not detected

Fresh water Stream B 

25 May 2016 Not detected
22 Jun 2016 Not detected
13 Jul 2016 NDM-producing E. coli

10 Aug 2016 Not detected
24 Aug 2016 NDM-producing E. coli
7 Sep 2016 Not detected
15 Sep 2016 Not detected
18 Jan 2017 Not detected

Sewage storage tank 
15 Sep 2016

NDM-producing E. coli
NDM-producing K. pneumoniae

18 Jan 2017 NDM-producing K. pneumoniae

Sewage collection system 
15 Sep 2016

NDM-producing E. coli
NDM-producing K. pneumoniae

18 Jan 2017 NDM-producing K. pneumoniae
Sewage outflow 15 Sep 2016 NDM-producing E. coli
Seawater Beach A 18 Jan 2017 NDM-producing K. pneumoniae
Seawater Beach B 18 Jan 2017 NDM-producing K. pneumoniae

E. coli: Escherichia coli; K. pneumoniae: Klebsiella pneumoniae; NDM: New Delhi metallo-beta-lactamase.
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An early increase in outbreaks of norovirus gastroen-
teritis characterised at the French National Reference 
Centre occurred this winter season. They were con-
current with an unusual pattern of circulating strains, 
with three predominant genotypes: the re-emergent 
variant GII.P4 2009-GII.4 2012 found in 28% of noro-
virus outbreaks and two new emergent recombinant 
strains GII.P16-GII.4 2012 and GII.P16-GII.2 never 
before observed in France, found in 24% and 14% of 
norovirus outbreaks, respectively. 

We report an early increase in norovirus (NoV) gastro-
enteritis outbreaks investigated during this 2016/17 
season at the French National Reference Centre for 
Gastroenteritis Viruses (NRCgev), compared with the 
previous season (Figure 1). Molecular characterisation 
and phylogenetic analysis of the strains responsible for 
these outbreaks showed that three predominant geno-
types were co-circulating, including two new emergent 
recombinant strains never before observed in France.

Laboratory investigation
From week 40 in 2016 to week 3 in 2017, 350 stool sam-
ples corresponding to 114 gastroenteritis outbreaks 
were investigated at the French NRCgev. NoV detec-
tion was performed by real-time RT-PCR as previously 
described [1]. A total of 222 stool samples, correspond-
ing to 87 outbreaks (76%), were positive for norovirus. 
In comparison, during the same period in 2015/16, 55 
of 76 outbreaks (72%) had been positive for norovirus 
(Figure 1). Interestingly, the increase in norovirus-pos-
itive outbreaks started earlier this winter season than 
in the previous season.

Two to three norovirus-positive specimens from 
each positive outbreak were genotyped as previ-
ously described [1], by sequencing a fragment of the 
RNA polymerase gene (open reading frame (ORF) 1) 
and a fragment of the capsid gene (ORF2). Genotype 
was determined using the Norovirus Genotyping Tool 

version 1.0 [2]. Furthermore, for a selection of samples 
for which ORF1 and ORF2 presented different geno-
types, direct sequencing of a 1,112 bp region spanning 
the 3’ end of ORF1 and the 5’ end of ORF2 was performed 
to confirm the recombination status. Amplification was 
performed using the primer set JV12/G2SKR. ORF1-
ORF2 amplification and sequencing confirmed a recom-
bination event for 27 samples. Nucleotide sequences 
of these samples were submitted to the GenBank data-
base under accession numbers KY817495 to KY817521. 
Figure 2 presents the diversity of NoV genotypes found 
in the current and the previous season, between week 
40 and week 3.

Three genotypes were predominant this season: the 
variant GII.P4 2009-GII.4 2012 found in 24 of 87 noro-
virus outbreaks (28%), the recombinant GII.P16-GII.4 
2012 in 21 outbreaks (24%), and the recombinant GII.
P16-GII.2 in 12 outbreaks (14%). Furthermore, 12 strains 
could only be partially characterised, 10 with a GII.4 
2012 capsid and two with a GII.2 capsid. In compari-
son, one single genotype GII.P17-GII.17 had predomi-
nated during the 2015/16 season (54% of outbreaks), a 
genotype that was rarely found at the beginning of the 
current season (n = 5; 6%).

Phylogenetic analysis showed that all the GII.P4 2009-
GII.4 2012 strains found in this study clustered with 
the strain GII.P4 2009-GII.4 2012 (GenBank KF199164) 
found in Denmark in March 2013 [3], in both the poly-
merase and capsid regions (Figures 3 and 4).

They also clustered in the sequenced capsid fragment 
with the reference strain GII.4 Sydney 2012 (JX459908) 
and with the GII.4 Melbourne 6623 (KX767083) found 
in Australia in June 2016 [4]. The polymerase region of 
the GII.P16-GII.4 2012 strains and GII.P16-GII.2 strains 
were all closely related to the GII.P16-GII.16 strain 
VannesL23/1999/FR (AY682551), but interestingly, they 
separated in two distinct clusters (Figure 3). Of note, 
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the polymerase sequence of the new recombinant GII.
P16-GII.2 GO831GerNRW (KY357449) found in Germany 
this winter season [5] appeared in the same cluster as 
the French GII.P16-GII.2 strains.

In the capsid region, the GII.P16-GII.2 strains clustered 
with the reference strain Melksham/1994/UK (X81879) 
and were closely related to the recombinant GII.P16-
GII.2 GO831GerNRW (KY357449) (Figure 4). Of note, 
two GII.2 capsid sequences for which no polymerase 
sequence could be determined also appeared in the 
same cluster. The capsid sequences of the GII.P16-
GII.4 2012 strains were closely related to the reference 
strains GII.4 Sydney 2012, but interestingly, they segre-
gated in a clearly distinct cluster from the GII.P4 2009-
GII.4 2012 (Figure 4). It has to be noted that of the 10 
GII.4 2012 strains for which polymerase gene amplifi-
cation and sequencing failed, eight clustered with the 
GII.P16-GII.4 2012 strains and two clustered with the 
GII.P4 2009-GII.4 2012 strains, suggesting that the for-
mer may bear a GII.16 polymerase genotype while the 
latter may bear a GII.4 polymerase genotype.

Discussion
We observed an unusual co-circulation of three norovi-
rus strains this winter season, including two emergent 
recombinant strains never before detected in France. 
The co-circulation of two strains has occasionally been 
observed, such as the 2006a with the 2006b variant, 
but this was geographically and temporally limited [6]. 
Usually and for more than 20 years, gastroenteritis epi-
demics reported all over the world have been linked to 
a single predominant strain, principally a succession 
every two to three years of GII.4 genotypic variants, 
including US95/96 1996, Farmington Hills 2002, Hunter 
2004, Den Haag 2006b, New Orleans 2009 and Sydney 

2012 [6-8]. Unexpectedly, in the winter of 2014/15, a 
GII.17 strain emerged in Asia and then replaced the pre-
viously predominant GII.4 Sydney 2012 [9]. In France, 
the GII.17 strain became predominant in the winter of 
2015/16 (data not shown). 

One of this season’s predominant strains, the variant 
GII.P4 2009-GII.4 2012, had already been detected 
in France during the seasons 2012/13, 2013/14 and 
2014/15, at a time when the variant Sydney 2012 
largely predominated, and to a lesser extent in 
2015/16, when the strain GII.17 predominated. This 
variant was described in Denmark and Italy during the 
season 2012/13 [3,10] and more recently in Australia 
in August 2015 and as an altered version in June 2016 
[4]. Interestingly, the Australian authors suggested that 
this current recombinant strain could have the poten-
tial to become a pandemic variant [4]. However, the 
partial sequences of the capsid gene obtained in our 
laboratory do not provide enough information to differ-
entiate between the 2012/13 variant and the derivative, 
and further molecular investigations are needed.

The two recombinant strains GII.P16-GII.4 2012 and GII.
P16-GII.2 had never been observed in France before this 
winter season and have to our knowledge never been 
reported as major strains responsible for outbreaks 
in any country before this season. Although they were 
circulating concurrently this season in Germany, the 
reported pattern of circulating strains was different 
from what was observed in France [5]. Indeed, the GII.
P16-GII.2 was the predominant strain responsible for 
42% of outbreaks in Germany, far ahead of the variant 
GII.P4 2009-GII.4 2012 (10%) and the recombinant GII.
P16-GII.4 2012 (10%), while in France it was third after 
GII.P4 2009-GII.4 2012 and GII.P16-GII.4. The reasons 

Figure 1
Cumulative number of norovirus outbreaks investigated at 
the French National Reference Centre for Gastroenteritis 
Viruses, France, week 40 to week 3, 2015/16 (n = 55) and 
2016/17 (n = 87)
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Diversity of norovirus genotypes found at the French 
National Reference Centre for Gastroenteritis Viruses, 
France, week 40 to week 3, 2015/16 (n = 61) and 2016/17 
(n = 90)
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Figure 3
Phylogenetic tree based on the partial nucleotide sequences (287 bp) of the norovirus polymerase gene
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for these differences are unclear. One could be the set-
ting of the outbreaks, since the majority of the investi-
gated outbreaks in France occurred in nursing homes 
(73%), while in Germany, they occurred mainly in child-
care facilities (56% vs 17% in nursing homes). However, 
a complete assessment will be necessary at the end 
of the season to draw any conclusions about the pat-
tern of predominant circulating strains in France, since 
the data reported here concern the outbreaks inves-
tigated between week 40 in 2016 and week 3 in 2017 
and the gastroenteritis outbreak season is not yet over. 
Already, according to the phylogenetic analysis of the 
capsid sequences, it seems that GII.P16-GII.4 strains 
could be more prevalent than the GII.P4 2009-GII.4 
2012 variants. Further molecular and epidemiological 
investigations are needed to confirm this tendency.
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Phylogeny was reconstructed using the maximum-likelihood method implemented in MEGA6 [11] with 
the Kimura 2-parameter substitution model (i.e. best nucleotide substitution model for the dataset). 
The number of substitutions per site is indicated by the scale bar. Bootstrap values were calculated 
for 500 replicates and are indicated at each node when ≥ 50%. French norovirus strains from this study 
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The increase in whooping cough (pertussis) incidence 
in many countries with high routine vaccination cov-
erage is alarming, with incidence in the US reaching 
almost 50,000 reported cases per year, reflecting 
incidence levels not seen since the 1950s. While the 
potential explanations for this resurgence remain 
debated, we face an urgent need to protect newborns, 
especially during the time window between birth and 
the first routine vaccination dose. Maternal immunisa-
tion has been proposed as an effective strategy for 
protecting neonates, who are at higher risk of severe 
pertussis disease and mortality. However, if mater-
nally derived antibodies adversely affect the immu-
nogenicity of the routine schedule, through blunting 
effects, we may observe a gradual degradation of herd 
immunity. ‘Wasted’ vaccines would result in an accu-
mulation of susceptible children in the population, 
specifically leading to an overall increase in incidence 
in older age groups. In this Perspective, we discuss 
potential long-term epidemiological effects of mater-
nal immunisation, as determined by possible immune 
interference outcomes.

Pertussis over the past 75 years
Since Jenner’s time, immunisation has been a promi-
nent instrument in the public health toolbox, espe-
cially against the microparasitic diseases of childhood. 
Ideally, it protects the vaccinee directly against sub-
sequent infection or at least clinical disease [1]. 
Accordingly, vaccination schedules for childhood dis-
eases have sought to reach infants as early as possi-
ble. An added bonus of transmission-blocking vaccines 
is the indirect protection they provide to unvaccinated 
individuals by reducing pathogen circulation, an effect 
known as herd immunity [1]. The Figure illustrates this, 
showing how incidence among unvaccinated infants 
drops as vaccine uptake increases.

Pertussis, a highly contagious childhood disease, was 
once considered a candidate for eradication due to the 
pronounced early success of immunisation in reduc-
ing morbidity and mortality in populations where high 
coverage was achieved [2]. In the 1940s and 1950s, a 
number of countries introduced routine pertussis vac-
cination with three doses of the whole cell vaccine (wP), 
delivered in infancy. The result was a marked drop in 
incidence and mortality including in infants too young 
to be immunised [2,3]. The last two decades, however, 
have seen pertussis incidence resurge in a number of 
populations where it had been under control [3]. In 
particular, the World Health Organization has raised 
concerns about the success of current vaccination 
strategies, following increases in pertussis incidence 
in some countries with long-standing high coverage, 
including the United States (US), the United Kingdom 
(UK) and Australia [2,3]. These resurgence events are 
characterised by increased incidence among teenag-
ers and adults but, for the first time in decades, recent 
pertussis outbreaks have included infant deaths (e.g. 
10 in California in 2010 and 14 in the UK in 2012) [2-4].

As yet, there is no consensus on the reasons for this 
resurgence. Improved diagnostics and heightened 
awareness appear to be partly responsible for some of 
the rise in incidence, but there is also clear evidence 
for increased bacterial circulation in these popula-
tions [3]. A variety of explanations for the latter have 
been proposed. These include the possibilities of (i) 
vaccine-driven evolution of the bacterium [5], (ii) pri-
mary vaccine failure, where some vaccinees fail to 
mount an immune response [6], (iii) failure of vaccines 
to block transmissible infection [7], (iv) increases in 
vaccine hesitancy [8], (v) waning of infection- and/or 
vaccine-induced immunity, where the loss of protection 
over time renders individuals susceptible [9] and (vi) 
gradual accumulation of susceptible individuals due 
to incomplete historical vaccination coverage (an ‘end 
of honeymoon’ effect) [10]. Some of these hypotheses 
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link resurgence to the switch to acellular vaccines (aP) 
that many countries made over the past two decades 
in response to concerns over the reactogenicity of wP 
vaccines [3,11]. While the debate regarding the underly-
ing causes of the resurgence continues, there remains 
an urgent need to protect newborns during the window 
of susceptibility, i.e. the interval between birth and the 
commencement of routine vaccination, which coincides 
with the period of maximum vulnerability to pertussis 
disease (Figure) [12]. During this period, immaturity of 
the neonate’s immune system leaves the infant par-
ticularly vulnerable to complications from pertussis 
infection, including death [2].

Neonatal pertussis vaccination is not a viable option 
[2]. Because of the immaturity of the infant immune 
system, vaccination at too early a stage produces only 
a weak serological response [13]. Moreover, maternal 
antibodies (MatAb) can interfere with vaccination, 
resulting in inhibited seroconversion, a phenomenon 
known as ‘blunting’ [11]. Blunting can occur, for exam-
ple, by epitope masking [14,15] and has been observed 
with some live vaccines (e.g. measles), where MatAb 
even in minute quantities can significantly inhibit 

seroconversion [14-16]; it is less clear whether blunting 
by MatAb is an actual concern in the case of pertussis. 
The recommended schedules for pertussis vaccination 
reflect these potential concerns, having been designed 
to prime and subsequently boost protection as the 
infant immune system matures and maternal antibody 
protection wanes [2,16].

To provide indirect protection to newborns, three main 
strategies have been proposed. Cocooning targets the 
immediate family and other likely close contacts for 
booster vaccination [2,4]. The second strategy aims to 
reduce incidence in adults and teenagers via an aug-
mented booster schedule. The overall impact of these 
two strategies has been modest [2,8,14], however, 
leading some countries to consider a third strategy, 
vaccination of pregnant women, as an additional means 
of protecting infants [2]. The rationale is that such vac-
cination provides direct antenatal passive immunity via 
active transfer of maternal IgG, with increasing concen-
tration of antibodies in the fetus until birth, in addition 
to the indirect protection as a form of cocooning [14]. 
Moreover, prenatal check-ups represent a convenient 
vehicle for such immunisations.

Figure 
Illustration of how routine pertussis vaccination schedule (2, 4 and 6 months of age) affects disease prevalence by age group
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Increasing vaccine coverage leads to a shift in the mean age of infection to older age groups. With an assumed basic reproduction ratio R0 of 
10 and no vaccination, mean age of infection is 6 years; with vaccine coverage of 45%, 65%, 85%, and 98% the mean age of infection rises to 
15, 22, 31 and 38 years, respectively. This figure was generated by numerical integration of an age-structured transmission model with age-
assortative mixing [12].
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The case for maternal immunisation
Studies in the 1930s and 1940s established a corre-
lation between antibody levels in mother and infant, 
with high titres in infants whose mothers had a his-
tory of pertussis infection or had been immunised dur-
ing pregnancy [17]. Because typically fewer than 50% 
of pregnant women have detectable serum antibod-
ies for pertussis [14], immunisation during pregnancy 
has been advocated. It is expected to result in higher 
neonate antibody levels, conferring clinical protection 
[11,14,16,17] during the window of vulnerability (Figure) 
[12,15]. This strategy is successfully demonstrated by 
maternal tetanus immunisation, which has been shown 
to be safe, immunogenic and protective of infants 
against neonatal tetanus [18].

Maternal immunisation unknowns: vaccine 
interference
While the motivation for maternal immunisation is 
clear, the need for caution in view of the potential for 
blunting has been noted [11,16,18-23]. To examine the 
risk of blunting, several studies have compared infant 
antibody response to the primary schedule in rela-
tion to maternal immunisation status [11,16,18-23]. 
In infants receiving the wP vaccine, a negative cor-
relation was observed between MatAb titres and the 
immune response elicited after routine vaccination 
[16]. Among infants receiving the aP vaccine, how-
ever, the evidence regarding blunting effects is less 
clear-cut, with substantial variability between studies 
[11,16,20-23]. Studies of aP vaccines have variously 
shown reduction [20,22,23], increase [21] or no impact 
[16] of MatAb on the pertussis toxin-specific antibody 
response. The response to other antigens (filamentous 
haemagglutinin, fimbriae and pertactin) has been simi-
larly inconsistent [21-23]. This discord is partly attrib-
utable to heterogeneity in study design and protocol, 
as well as differential vaccine histories in the included 
population.

Confident assessment of the epidemiological con-
sequences of maternal immunisation is challenging 
both due to the aforementioned inconsistency in the 
findings of clinical trial studies [18] and the absence 
of a serological correlate for protection against per-
tussis. Critically, no threshold or functional relation-
ship between antibody titres and protection is known 
[11,14,16,17,20-23]. Thus, the clinical or epidemio-
logical significance of altered antibody titres remains 
uncertain.

A concern, therefore, is that should maternal immu-
nisation adversely affect the strength or duration of 
protective vaccine-induced immunity following the 
primary schedule, it may ultimately give rise to higher 
pertussis incidence, perhaps among primary and mid-
dle school children. In a recent modelling study, we 
demonstrated that averting such an eventuality would 
require both prenatal and routine vaccination coverage 
to be sufficiently high [12]. Moreover, this study pre-
dicted that due to the slow rate of population turnover, 

such downstream increases in incidence would take 
decades to manifest. This phenomenon has been 
observed in other studies of the long-term outcomes of 
infection control strategies [3,10].

It is important to note that most studies of the impact 
of pertussis MatAb on the efficacy of the routine vac-
cination schedule have measured antibody responses 
at most one month after the administration of the 
third routine dose [11,16,21-23]. Studies of antibody 
titres after the fourth booster dose, however, found 
no effect of maternal immunisation history [18,20,24]. 
There may be two not mutually exclusive explanations 
for this finding: the absence of MatAb in 12–18-month-
olds due to waning [12,14], and the successful boost-
ing effect of the fourth dose, leading to antibody titres 
similar to control individuals.

Maternal immunisation unknowns: timing
Another aspect of maternal immunisation that warrants 
further research is the optimal timing of vaccination rel-
ative to pregnancy [14,19]. In newborns, MatAb levels 
from mothers infected or immunised before pregnancy 
are reduced compared with mothers immunised during 
pregnancy [16,17,21]. Thus, it is of practical relevance 
to ascertain when the most efficient transplacental 
transfer of antibodies occurs [14,19] as it determines 
the trimester during which maternal immunisation 
should be administered. The timing remains controver-
sial, with newer studies proposing the second trimes-
ter of pregnancy [19], while earlier studies advised the 
third trimester [14].

Concluding remarks
Maternal pertussis immunisation is safe for both 
mother and infant [2,11] and is currently recommended 
in Australia, Belgium, Brazil, Portugal, the UK and the 
US, in response to the rise in incidence [2,18]. Its prin-
cipal aim is to reduce pertussis mortality and morbidity 
in neonates. There is good reason to stress the direct 
benefits of maternal immunisation to both mother and 
infant. However, its potential adverse effects on rou-
tine vaccination efficacy and the subsequent long-term 
epidemiological legacy remain the subject of debate 
[11,12,16,17,20-23].

Given these unknowns, mathematical transmission 
models can be instrumental in predicting the mag-
nitude and time scale of potential effects of mater-
nal antibody interference at the population level. 
Our recent modelling study [12] identified a trade-off 
between the direct protection of infants via maternal 
immunisation and the reduced indirect effects of herd 
immunity, leading to a gradual increase in incidence 
among older age cohorts.

Ultimately, quantifying the efficacy and cost-effective-
ness of maternal immunisation requires a two-pronged 
approach combining long-term clinical trials (such as 
the ongoing and recently finished studies in the UK, 
Canada and the US [18]) with epidemiological and 



15www.eurosurveillance.org

health economics modelling. Longitudinal clinical tri-
als can resolve the immunological effects of MatAbs 
in response to routine vaccination. Furthermore, such 
research can shed light on the nature of any interfer-
ence effect. Specifically, it is important to establish 
whether interference leads to an increase in vaccine 
failure, reduces the protective effects of the vaccine 
or affects the duration of protection [12,18]. By inte-
grating information gleaned from clinical and immu-
nological studies within epidemiological transmission 
models, the effectiveness of alternative strategies can 
be evaluated.
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To the editor: A recent surveillance and outbreak report 
published in Eurosurveillance by Petrovay et al. on the 
‘Emergence of the lymphogranuloma venereum L2c 
genovariant, Hungary, 2012 to 2016’ [1] provides an 
observation of the first European cases of a genotype 
of Chlamydia trachomatis associated with severe haem-
orrhagic proctitis. The authors of this paper diagnosed 
the strains as lymphogranuloma venereum (LGV)-
associated and performed partial sequencing of the 
ompA gene (ca 1,070 bp), which is a standard typing 
method for C. trachomatis. The ompA gene sequence 
obtained was compared with those from reference iso-
lates, and reported to be 100% concordant with the 
ompA sequence belonging to an L2-D recombinant 
strain described in 2011 [2]. This strain was named 
‘L2c’, as it was found to possess a chimeric genome, 
not because it has a novel ompA-genotype. We would 
like to point out that the ompA gene sequence of this 
L2-D recombinant strain, and by implication those of 
the Hungarian isolates, is identical to that of archetypal 
L2 strains, for example the reference strain L2/434 [3].

Petrovay et al. found that the pmpH-genotype of the 
Hungarian strains reflect that of an LGV strain, contain-
ing a diagnostic 36 bp deletion. Unfortunately this locus 

does not discriminate between L2 strains and L2-D. As 
the authors appear not to have checked for concord-
ance between their strains and the L2-D recombinant 
strain in other genomic loci, it is not possible to deter-
mine whether the strains reflect the appearance of this 
L2-D recombinant, or rather a circulating L2 LGV strain. 
Thus, it is premature to assume that these Hungarian 
LGV strains reflect the presence of the ‘hypervirulent’ 
L2-D recombinant strain, despite the described clinical 
symptoms. We find it more likely that the authors have 
observed a resurgence in cases with ompA-genotype 
L2, as described last year [4].

For the Chlamydia community, it is important to rec-
ognise that the use of the term ‘L2c genotype’ in the 
case of the L2-D recombinant strain is a misnomer, as 
the ompA-genotype of this strain is an archetypal L2. 
This nomenclature was also the source of confusion in 
a recent paper from Slovenia describing the presence 
of ‘L2c’ [5], again with further analysis now showing 
that the ompA-genotype of this strain is also identical 
to L2. The distinct L2c ompA-genotype was described 
in a 2008 publication, and has 2 nucleotide differences 
to that of L2 [6].
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Given the high level of recombination observed in C. 
trachomatis [7], typing techniques based on a few 
loci can never give a full indication of the underlying 
genomic background: only whole genome sequenc-
ing and detailed phylogenetic analysis can provide 
this. Therefore we would recommend that future pub-
lications are absolutely clear as to which genotyp-
ing method they have used in strain descriptions, for 
example a common target such as the ompA-genotype. 
Furthermore, Chlamydia researchers should be aware 
of this awkwardness of nomenclature, should thor-
oughly compare their ompA sequences against a data-
base of known L2 ompA-genotypes (L2: AM884176; 
L2a: AB915594, L2b: AM884177; L2c: EF460796; 
L2d: EF460797; L2e: EF460798; L2f: EU676181; L2g: 
EU676180; L2bV1: JX971936; L2bV2: KU518893; L2bV3: 
KU518894; L2bV4: KU518892) [3,6,8-10], and report 
their findings more fully.

As it stands, the description of the Hungarian strains as 
‘L2c’ is inaccurate in the sense of the ompA-genotype. 
Importantly, it is not possible to make any conclusions 
about the European appearance of this ‘hypervirulent’ 
L2-D recombinant strain without further sequenc-
ing of additional genomic loci, ideally whole genome 
sequencing, or investigations into in vitro phenotypes.
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To the editor: A recent letter by Chlamydia researchers 
[1] reflected on our article [2], raising a question about a 
potential misclassification of the published Hungarian 
LGV genotypes that we characterised as ‘L2c’.

We agree with the authors of the letter that there is 
no established official nomenclature for lymphogranu-
loma venereum (LGV) genovariants. Moreover there are 
two so-called L2c variants reported in the literature, 
based on different typing methodologies [3,4]. The ref-
erence that we used to characterise the strains in our 
report was the L2c variant described by Somboonna 
et al. [4]. In particular, a partial sequence of the ompA 
gene of this variant was employed for typing, and, as 
stated in the letter, ‘It is important to recognise that the 
use of the term ‘L2c genotype’ in the case of the L2-D 
recombinant strain is a misnomer, as the ompA-geno-
type of this strain is an archetypal L2’, this sequence 
proved to be identical, at least at protein level, to the 
L2 sequence.

This fact was clarified by the LGV Genotype Dynamics 
Study Group, University of Basel. Due to the confusing 
situation of the LGV nomenclature, we have contacted 
this LGV research laboratory aiming to further collab-
orate and subtype the DNA-samples of the reported 
Hungarian LGV strains. We would like to point out that 
the Hungarian genovariants differ from the L2b variant 
spreading in western European countries, as was con-
firmed by comparison to different reference sequences 
of L2b sent by the LGV Genotype Dynamics Study 
Group, who suggested to describe the Hungarian iso-
lates as ‘L2‘ genovariants until further more detailed 
genomic analysis.

As we do not know yet whether they prove to be a new 
L2 type or not, we recommend to wait with the classi-
fication of these strains until we have the final typing 
results. We agree that only further investigation, such 

as whole genomic sequencing and phylogenetic analy-
sis can confirm the genomic background and these 
techniques may reveal some misnomers of LGV geno-
types reported previously in other publications.
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