1887
Review Open Access
Like 0

Abstract

Background

Crimean-Congo haemorrhagic fever virus (CCHFV) is considered an emerging infectious disease threat in the European Union. Since 2000, the incidence and geographic range of confirmed CCHF cases have markedly increased, following changes in the distribution of its main vector, ticks.

Aims

To review scientific literature and collect experts’ opinion to analyse relevant aspects of the laboratory management of human CCHF cases and any exposed contacts, as well as identify areas for advancement of international collaborative preparedness and laboratory response plans.

Methods

We conducted a literature review on CCHF molecular diagnostics through an online search. Further, we obtained expert opinions on the key laboratory aspects of CCHF diagnosis. Consulted experts were members of two European projects, EMERGE (Efficient response to highly dangerous and emerging pathogens at EU level) and EVD-LabNet (Emerging Viral Diseases-Expert Laboratory Network).

Results

Consensus was reached on relevant and controversial aspects of CCHF disease with implications for laboratory management of human CCHF cases, including biosafety, diagnostic algorithm and advice to improve lab capabilities. Knowledge on the diffusion of CCHF can be obtained by promoting syndromic approach to infectious diseases diagnosis and by including CCHFV infection in the diagnostic algorithm of severe fevers of unknown origin.

Conclusion

No effective vaccine and/or therapeutics are available at present so outbreak response relies on rapid identification and appropriate infection control measures. Frontline hospitals and reference laboratories have a crucial role in the response to a CCHF outbreak, which should integrate laboratory, clinical and public health responses.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.5.1800093
2019-01-31
2024-03-29
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2019.24.5.1800093
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/5/eurosurv-24-5-2.html?itemId=/content/10.2807/1560-7917.ES.2019.24.5.1800093&mimeType=html&fmt=ahah

References

  1. Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98(2):248-60.  https://doi.org/10.1016/j.antiviral.2013.02.007  PMID: 23458713 
  2. Dreshaj S, Ahmeti S, Ramadani N, Dreshaj G, Humolli I, Dedushaj I. Current situation of Crimean-Congo hemorrhagic fever in Southeastern Europe and neighboring countries: a public health risk for the European Union? Travel Med Infect Dis. 2016;14(2):81-91.  https://doi.org/10.1016/j.tmaid.2016.03.012  PMID: 27044611 
  3. Yon L, Duff JP, Ågren EO, Erdélyi K, Ferroglio E, Godfroid J, et al. Recent changes in infectious diseases in European wildlife. J Wildl Dis. 2018; (Forthcoming). PMID: 30284963 
  4. Nisii C, Grunow R, Brave A, Ippolito G, Jacob D, Jureen P, et al. EMERGE Viral Pathogens Working Group. Prioritization of High Consequence Viruses to Improve European Laboratory Preparedness for Cross-Border Health Threats. Adv Exp Med Biol. 2017;972:123-9.  https://doi.org/10.1007/5584_2016_152  PMID: 28032326 
  5. Al-Abri SS, Abaidani IA, Fazlalipour M, Mostafavi E, Leblebicioglu H, Pshenichnaya N, et al. Current status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions. Int J Infect Dis. 2017;58:82-9.  https://doi.org/10.1016/j.ijid.2017.02.018  PMID: 28259724 
  6. Papa A, Weber F, Hewson R, Weidmann M, Koksal I, Korukluoglu G, et al. Meeting report: First International Conference on Crimean-Congo hemorrhagic fever. Antiviral Res. 2015;120:57-65.  https://doi.org/10.1016/j.antiviral.2015.05.005  PMID: 26022198 
  7. Gargili A, Estrada-Peña A, Spengler JR, Lukashev A, Nuttall PA, Bente DA. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res. 2017;144:93-119.  https://doi.org/10.1016/j.antiviral.2017.05.010  PMID: 28579441 
  8. Papa A, Tsergouli K, Tsioka K, Mirazimi A. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Front Cell Infect Microbiol. 2017;7:213.  https://doi.org/10.3389/fcimb.2017.00213  PMID: 28603698 
  9. Leblebicioglu H, Ozaras R, Irmak H, Sencan I. Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res. 2016;126:21-34.  https://doi.org/10.1016/j.antiviral.2015.12.003  PMID: 26695860 
  10. Fajs L, Jakupi X, Ahmeti S, Humolli I, Dedushaj I, Avšič-Županc T. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Kosovo. PLoS Negl Trop Dis. 2014;8(1):e2647.  https://doi.org/10.1371/journal.pntd.0002647  PMID: 24416468 
  11. Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, et al. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018;150:137-47.  https://doi.org/10.1016/j.antiviral.2017.11.019  PMID: 29199036 
  12. European Centre for Disease Prevention and Control (ECDC). Annual Epidemiological Report 2016 - Crimean-Congo haemorrhagic fever. Stockholm: ECDC. 2016. Available from: https://ecdc.europa.eu/sites/portal/files/documents/CrimeanCongo%20haemorrhagic%20fever%20AER.pdf
  13. Jauréguiberry S, Tattevin P, Tarantola A, Legay F, Tall A, Nabeth P, et al. Imported Crimean-Congo hemorrhagic Fever. J Clin Microbiol. 2005;43(9):4905-7.  https://doi.org/10.1128/JCM.43.9.4905-4907.2005  PMID: 16145173 
  14. Lumley S, Atkinson B, Dowall S, Pitman J, Staplehurst S, Busuttil J, et al. Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014. Euro Surveill. 2014;19(30):20864.  https://doi.org/10.2807/1560-7917.ES2014.19.30.20864  PMID: 25108534 
  15. Papa A, Markatou F, Maltezou HC, Papadopoulou E, Terzi E, Ventouri S, et al. Crimean-Congo haemorrhagic fever in a Greek worker returning from Bulgaria, June 2018. Euro Surveill. 2018;23(35):1800432.  https://doi.org/10.2807/1560-7917.ES.2018.23.35.1800432  PMID: 30180928 
  16. Conger NG, Paolino KM, Osborn EC, Rusnak JM, Günther S, Pool J, et al. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21(1):23-31.  https://doi.org/10.3201/eid2101.141413  PMID: 25529825 
  17. Negredo A, de la Calle-Prieto F, Palencia-Herrejón E, Mora-Rillo M, Astray-Mochales J, Sánchez-Seco MP, et al. Crimean Congo Hemorrhagic Fever@Madrid Working Group. Autochthonous Crimean-Congo Hemorrhagic Fever in Spain. N Engl J Med. 2017;377(2):154-61.  https://doi.org/10.1056/NEJMoa1615162  PMID: 28700843 
  18. Efficient response to highly dangerous and emerging pathogens at EU level (Emerge). Berlin: Emerge; 2018. Available from: http://www.emerge.rki.eu/Emerge/EN/Home/Homepage_node.html
  19. EVD-LabNet. Rotterdam: EVD-Labnet. [Accessed 21 Jun 2018]. Available from: https://www.evd-labnet.eu
  20. Hardestam J, Simon M, Hedlund KO, Vaheri A, Klingström J, Lundkvist A. Ex vivo stability of the rodent-borne Hantaan virus in comparison to that of arthropod-borne members of the Bunyaviridae family. Appl Environ Microbiol. 2007;73(8):2547-51.  https://doi.org/10.1128/AEM.02869-06  PMID: 17337567 
  21. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100(1):159-89.  https://doi.org/10.1016/j.antiviral.2013.07.006  PMID: 23906741 
  22. Papa A, Chaligiannis I, Kontana N, Sourba T, Tsioka K, Tsatsaris A, et al. A novel AP92-like Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis. 2014;5(5):590-3.  https://doi.org/10.1016/j.ttbdis.2014.04.008  PMID: 24953797 
  23. Cajimat MNB, Rodriguez SE, Schuster IUE, Swetnam DM, Ksiazek TG, Habela MA, et al. Genomic Characterization of Crimean-Congo Hemorrhagic Fever Virus in Hyalomma Tick from Spain, 2014. Vector Borne Zoonotic Dis. 2017;17(10):714-9.  https://doi.org/10.1089/vbz.2017.2190  PMID: 28836897 
  24. Bodur H, Akinci E, Ongürü P, Carhan A, Uyar Y, Tanrici A, et al. Detection of Crimean-Congo hemorrhagic fever virus genome in saliva and urine. Int J Infect Dis. 2010;14(3):e247-9.  https://doi.org/10.1016/j.ijid.2009.04.018  PMID: 19656706 
  25. Gürbüz Y, Sencan I, Oztürk B, Tütüncü E. A case of nosocomial transmission of Crimean-Congo hemorrhagic fever from patient to patient. Int J Infect Dis. 2009;13(3):e105-7.  https://doi.org/10.1016/j.ijid.2008.08.002  PMID: 18948048 
  26. Pshenichnaya NY, Sydenko IS, Klinovaya EP, Romanova EB, Zhuravlev AS. Possible sexual transmission of Crimean-Congo hemorrhagic fever. Int J Infect Dis. 2016;45:109-11.  https://doi.org/10.1016/j.ijid.2016.02.1008  PMID: 26972040 
  27. Ergonul O, Battal I. Potential sexual transmission of Crimean-Congo hemorrhagic fever infection. Jpn J Infect Dis. 2014;67(2):137-8.  https://doi.org/10.7883/yoken.67.137  PMID: 24647261 
  28. Ergunay K, Kocak Tufan Z, Bulut C, Kinikli S, Demiroz AP, Ozkul A. Antibody responses and viral load in patients with Crimean-Congo hemorrhagic fever: a comprehensive analysis during the early stages of the infection. Diagn Microbiol Infect Dis. 2014;79(1):31-6.  https://doi.org/10.1016/j.diagmicrobio.2013.12.015  PMID: 24630756 
  29. Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203-14.  PMID: 16554245 
  30. Tishkova FH, Belobrova EA, Valikhodzhaeva M, Atkinson B, Hewson R, Mullojonova M. Crimean-Congo hemorrhagic fever in Tajikistan. Vector Borne Zoonotic Dis. 2012;12(9):722-6.  https://doi.org/10.1089/vbz.2011.0769  PMID: 22217164 
  31. Thomas S, Thomson G, Dowall S, Bruce C, Cook N, Easterbrook L, et al. Review of Crimean Congo hemorrhagic fever infection in Kosova in 2008 and 2009: prolonged viremias and virus detected in urine by PCR. Vector Borne Zoonotic Dis. 2012;12(9):800-4.  https://doi.org/10.1089/vbz.2011.0776  PMID: 22925025 
  32. Hasanoglu I, Guner R, Carhan A, Kocak Tufan Z, Yagci-Caglayik D, Guven T, et al. Crucial parameter of the outcome in Crimean Congo hemorrhagic fever: Viral load. J Clin Virol. 2016;75:42-6.  https://doi.org/10.1016/j.jcv.2015.12.006  PMID: 26780111 
  33. Saksida A, Duh D, Wraber B, Dedushaj I, Ahmeti S, Avsic-Zupanc T. Interacting roles of immune mechanisms and viral load in the pathogenesis of crimean-congo hemorrhagic fever. Clin Vaccine Immunol. 2010;17(7):1086-93.  https://doi.org/10.1128/CVI.00530-09  PMID: 20484568 
  34. Dilcher M, Koch A, Hasib L, Dobler G, Hufert FT, Weidmann M. Genetic characterization of Erve virus, a European Nairovirus distantly related to Crimean-Congo hemorrhagic fever virus. Virus Genes. 2012;45(3):426-32.  https://doi.org/10.1007/s11262-012-0796-8  PMID: 22864548 
  35. Ward VK, Marriott AC, Polyzoni T, el-Ghorr AA, Antoniadis A, Nuttall PA. Expression of the nucleocapsid protein of Dugbe virus and antigenic cross-reactions with other nairoviruses. Virus Res. 1992;24(2):223-9.  https://doi.org/10.1016/0168-1702(92)90009-X  PMID: 1529645 
  36. Zeller H. Laboratory diagnosis of crimean congo hemorrhagic fever. In: O. Ergonul, C.A. Whitehouse, editors. Crimean Congo Hemorrhagic Fever: A Global Perspective. Dordrecht, NL: Springer; 2007. p. 233-243.
  37. Akıncı E, Bodur H, Leblebicioglu H. Pathogenesis of Crimean-Congo hemorrhagic fever. Vector Borne Zoonotic Dis. 2013;13(7):429-37.  https://doi.org/10.1089/vbz.2012.1061  PMID: 23663164 
  38. Weidmann M, Avsic-Zupanc T, Bino S, Bouloy M, Burt F, Chinikar S, et al. Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2016;97(11):2799-808.  https://doi.org/10.1099/jgv.0.000610  PMID: 27667586 
  39. European Committee for Standardisation (CEN). CWA 15793:2011 D/E/F. CEN Workshop Agreement. Brussels: CEN; 2011. Available from: http://www.cen.eu/CEN/sectors/technicalcommitteesworkshops/workshops/Pages/ws31.aspx
  40. Efficient response to highly dangerous and emerging pathogens at EU level (Emerge). Integrated European Checklist for Laboratory Biorisk Management in Handling of High Consequence Risk Group 3 and 4 Agents (ECL-Biorisk). Berlin: Emerge; 2016. Available from: https://www.emerge.rki.eu/Emerge/EN/Content/Topics/Rules/ECL_Biorisk.html
  41. Appannanavar SB, Mishra B. An update on crimean congo hemorrhagic Fever. J Glob Infect Dis. 2011;3(3):285-92.  https://doi.org/10.4103/0974-777X.83537  PMID: 21887063 
  42. Smither S, Phelps A, Eastaugh L, Ngugi S, O’Brien L, Dutch A, et al. Effectiveness of Four Disinfectants against Ebola Virus on Different Materials. Viruses. 2016;8(7):E185.  https://doi.org/10.3390/v8070185  PMID: 27399759 
  43. Krauss H, Weber A, Appel M, Enders B, Isenberg HD, Schiefer HG, et al. Viral zoonoses. Zoonoses. Infectious Diseases Transmissible from Animals to Humans. 3rd ed. Washington, D.C: ASM Press; 2013. p. 172.
  44. Stadtlander CTKH. Control of Communicable Diseases Manual. David L. Heymann. Washington DC, USA: American Public Health Association, 18th (edn). Int J Epidemiol. 2004;34(6):35-7.
  45. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15(4):307-417.  https://doi.org/10.1093/jmedent/15.4.307  PMID: 113533 
  46. Haddock E, Feldmann F, Feldmann H. Effective Chemical Inactivation of Ebola Virus. Emerg Infect Dis. 2016;22(7):1292-4.  https://doi.org/10.3201/eid2207.160233  PMID: 27070504 
  47. Cutts T, Grolla A, Jones S, Cook BW, Qiu X, Theriault SS. Inactivation of Zaire ebolavirus Variant Makona in Human Serum Samples Analyzed by Enzyme-Linked Immunosorbent Assay. J Infect Dis. 2016;214(suppl 3):S218-21.  https://doi.org/10.1093/infdis/jiw289  PMID: 27571899 
  48. Cap AP, Pidcoke HF, Keil SD, Staples HM, Anantpadma M, Carrion R Jr, et al. Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates Ebola virus in vitro. Transfusion. 2016;56(Suppl 1):S6-15.  https://doi.org/10.1111/trf.13393  PMID: 27001363 
  49. Lau R, Wang A, Chong-Kit A, Ralevski F, Boggild AK. Evaluation of Ebola virus inactivation procedures for Plasmodium falciparum malaria diagnostics. J Clin Microbiol. 2015;53(4):1387-90.  https://doi.org/10.1128/JCM.00165-15  PMID: 25631810 
  50. Mifsud A, Peelen D, Brincat P, Abela S, Debattista N, Laspina S, et al. A feasibility study on the effects of Triton X-100 for the in vitro inactivation of Ebola virus on haematological assays. J Clin Pathol. 2016;69(7):637-42.  https://doi.org/10.1136/jclinpath-2015-203331  PMID: 26670745 
  51. Tempestilli M, Pucci L, Notari S, Di Caro A, Castilletti C, Rivelli MR, et al. Diagnostic performances of clinical laboratory tests using Triton X-100 to reduce the biohazard associated with routine testing of Ebola virus-infected patients. Clin Chem Lab Med. 2015;53(12):1967-73.  https://doi.org/10.1515/cclm-2015-0119  PMID: 26053010 
  52. van Kampen JJA, Tintu A, Russcher H, Fraaij PLA, Reusken CBEM, Rijken M, et al. Ebola Virus Inactivation by Detergents Is Annulled in Serum. J Infect Dis. 2017;216(7):859-66.  https://doi.org/10.1093/infdis/jix401  PMID: 28961947 
  53. World Health Organisation (WHO). Guidance on regulations for the transport of infectious substances 2013–2014. WHO/HSE/GCR/2012.12. Geneva: WHO; 2012. Available from: http://apps.who.int/iris/bitstream/handle/10665/78075/WHO_HSE_GCR_2012.12_eng.pdf;jsessionid=FEEA1509AA9DBFD27F8B1F1EBBA622E1?sequence=1
  54. United Nations (UN). Secretariat of the Convention on Biological Diversity, United Nations Environmental Programme. Nagoya Protocol on Access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Quebec: UN; 2011. Available from: https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
  55. Schuster I, Mertens M, Köllner B, Korytář T, Keller M, Hammerschmidt B, et al. A competitive ELISA for species-independent detection of Crimean-Congo hemorrhagic fever virus specific antibodies. Antiviral Res. 2016;134:161-6.  https://doi.org/10.1016/j.antiviral.2016.09.004  PMID: 27623345 
  56. Dowall SD, Richards KS, Graham VA, Chamberlain J, Hewson R. Development of an indirect ELISA method for the parallel measurement of IgG and IgM antibodies against Crimean-Congo haemorrhagic fever (CCHF) virus using recombinant nucleoprotein as antigen. J Virol Methods. 2012;179(2):335-41.  https://doi.org/10.1016/j.jviromet.2011.11.020  PMID: 22155577 
  57. Emmerich P, Avsic-Zupanc T, Chinikar S, Saksida A, Thomé-Bolduan C, Parczany-Hartmann A, et al. Early serodiagnosis of acute human Crimean-Congo hemorrhagic fever virus infections by novel capture assays. J Clin Virol. 2010;48(4):294-5.  https://doi.org/10.1016/j.jcv.2010.05.002  PMID: 20541967 
  58. Vanhomwegen J, Alves MJ, Zupanc TA, Bino S, Chinikar S, Karlberg H, et al. Diagnostic assays for Crimean-Congo hemorrhagic fever. Emerg Infect Dis. 2012;18(12):1958-65.  https://doi.org/10.3201/eid1812.120710  PMID: 23171700 
  59. Zivcec M. Structure-Function Assays for Crimean-Congo Hemorrhagic Fever Virus Polymerase. Methods Mol Biol. 2018;1604:229-35.  https://doi.org/10.1007/978-1-4939-6981-4_17  PMID: 28986838 
  60. European Centre for Disease Prevention and Control (ECDC). Crimean-Congo haemorrhagic fever - Annual Epidemiological Report for 2014. Stockholm: ECDC; 2016. Available from: https://ecdc.europa.eu/en/publications-data/crimean-congo-haemorrhagic-fever-annual-epidemiological-report-2016-2014-data
  61. Ergonul O. Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol. 2012;2(2):215-20.  https://doi.org/10.1016/j.coviro.2012.03.001  PMID: 22482717 
  62. European Centre for Disease Prevention and Control (ECDC). Meeting Report. Consultation on Crimean-Congo haemorragic fever prevention and control. Stockholm: ECDC; 2009. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0809_MER_Crimean_Congo_Haemorragic_Fever_Prevention_and_Control.pdf
  63. European Commission. The list of diseases and their case definitions are based on the Commission Implementing Decision on the communicable diseases and related special health issues to be covered by epidemiological surveillance – Annex 1 (replacing Commission Decision No 2000/96/EC).Available from. https://ecdc.europa.eu/en/surveillance-and-disease-data/eu-case-definitions Available from. http://ec.europa.eu/health/ph_threats/com/docs/1589_2008_en.pdf
  64. European Commission. Decisions Commission Implementing Decision of 8 August 2012 amending Decision 2002/253/EC laying down case definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council (notified under document C(2012) 5538) (Text with EEA relevance) (2012/506/EU). Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012D0506&qid=1428573336660&from=EN#page=38
  65. World Health Organization (WHO). An R&D blueprint for action to prevent epidemics. Geneva: WHO; 2016. Available from: http://www.who.int/entity/blueprint/about/r_d_blueprint_plan_of_action.pdf?ua=1
  66. Leblebicioglu H, Ozaras R, Fletcher TE, Beeching NJESCMID Study Group for Infections in Travellers and Migrants (ESGITM). Crimean-Congo haemorrhagic fever in travellers: A systematic review. Travel Med Infect Dis. 2016;14(2):73-80.  https://doi.org/10.1016/j.tmaid.2016.03.002  PMID: 26970396 
  67. Fernandez-García MD, Negredo A, Papa A, Donoso-Mantke O, Niedrig M, Zeller H, et al. European survey on laboratory preparedness, response and diagnostic capacity for Crimean-Congo haemorrhagic fever, 2012. Euro Surveill. 2014;19(26):20844.  https://doi.org/10.2807/1560-7917.ES2014.19.26.20844  PMID: 25011064 
  68. Escadafal C, Olschläger S, Avšič-Županc T, Papa A, Vanhomwegen J, Wölfel R, et al. First international external quality assessment of molecular detection of Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2012;6(6):e1706.  https://doi.org/10.1371/journal.pntd.0001706  PMID: 22745842 
  69. Gale P, Stephenson B, Brouwer A, Martinez M, de la Torre A, Bosch J, et al. Impact of climate change on risk of incursion of Crimean-Congo haemorrhagic fever virus in livestock in Europe through migratory birds. J Appl Microbiol. 2012;112(2):246-57.  https://doi.org/10.1111/j.1365-2672.2011.05203.x  PMID: 22118269 
  70. Drosten C, Göttig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40(7):2323-30.  https://doi.org/10.1128/JCM.40.7.2323-2330.2002  PMID: 12089242 
  71. Deyde VM, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST. Crimean-Congo hemorrhagic fever virus genomics and global diversity. J Virol. 2006;80(17):8834-42.  https://doi.org/10.1128/JVI.00752-06  PMID: 16912331 
  72. Schwarz TF, Nsanze H, Longson M, Nitschko H, Gilch S, Shurie H, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996;55(2):190-6.  https://doi.org/10.4269/ajtmh.1996.55.190  PMID: 8780459 
  73. Midilli K, Gargili A, Ergonul O, Sengöz G, Ozturk R, Bakar M, et al. Imported Crimean-Congo hemorrhagic fever cases in Istanbul. BMC Infect Dis. 2007;7(1):54.  https://doi.org/10.1186/1471-2334-7-54  PMID: 17553137 
  74. Midilli K, Gargili A, Ergonul O, Elevli M, Ergin S, Turan N, et al. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect Dis. 2009;9(1):90.  https://doi.org/10.1186/1471-2334-9-90  PMID: 19515251 
  75. Elata AT, Karsany MS, Elageb RM, Hussain MA, Eltom KH, Elbashir MI, et al. A nosocomial transmission of crimean-congo hemorrhagic fever to an attending physician in North Kordufan, Sudan. Virol J. 2011;8(1):303.  https://doi.org/10.1186/1743-422X-8-303  PMID: 21672268 
  76. Yapar M, Aydogan H, Pahsa A, Besirbellioglu BA, Bodur H, Basustaoglu AC, et al. Rapid and quantitative detection of Crimean-Congo hemorrhagic fever virus by one-step real-time reverse transcriptase-PCR. Jpn J Infect Dis. 2005;58(6):358-62. PMID: 16377867 
  77. Duh D, Saksida A, Petrovec M, Dedushaj I, Avsic-Zupanc T. Novel one-step real-time RT-PCR assay for rapid and specific diagnosis of Crimean-Congo hemorrhagic fever encountered in the Balkans. J Virol Methods. 2006;133(2):175-9.  https://doi.org/10.1016/j.jviromet.2005.11.006  PMID: 16343650 
  78. Garrison AR, Alakbarova S, Kulesh DA, Shezmukhamedova D, Khodjaev S, Endy TP, et al. Development of a TaqMan minor groove binding protein assay for the detection and quantification of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2007;77(3):514-20.  https://doi.org/10.4269/ajtmh.2007.77.514  PMID: 17827370 
  79. Wölfel R, Paweska JT, Petersen N, Grobbelaar AA, Leman PA, Hewson R, et al. Low-density macroarray for rapid detection and identification of Crimean-Congo hemorrhagic fever virus. J Clin Microbiol. 2009;47(4):1025-30.  https://doi.org/10.1128/JCM.01920-08  PMID: 19225100 
  80. Atkinson B, Chamberlain J, Logue CH, Cook N, Bruce C, Dowall SD, et al. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne Zoonotic Dis. 2012;12(9):786-93.  https://doi.org/10.1089/vbz.2011.0770  PMID: 22217175 
  81. Jääskeläinen AJ, Kallio-Kokko H, Ozkul A, Bodur H, Korukruoglu G, Mousavi M, et al. Development and evaluation of a real-time RT-qPCR for detection of Crimean-Congo hemorrhagic fever virus representing different genotypes. Vector Borne Zoonotic Dis. 2014;14(12):870-2.  https://doi.org/10.1089/vbz.2014.1577  PMID: 25514124 
  82. Kamboj A, Pateriya AK, Mishra A, Ranaware P, Kulkarni DD, Raut AA. Novel molecular beacon probe-based real-time RT-PCR assay for diagnosis of Crimean-Congo hemorrhagic fever encountered in India. BioMed Res Int. 2014;2014(496219):4.  https://doi.org/10.1155/2014/496219  PMID: 24877102 
  83. Pang Z, Li A, Li J, Qu J, He C, Zhang S, et al. Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS One. 2014;9(4):e95635.  https://doi.org/10.1371/journal.pone.0095635  PMID: 24752452 
  84. Schneeberger PHH, Pothier JF, Bühlmann A, Duffy B, Beuret C, Utzinger J, et al. Development and evaluation of a bioinformatics approach for designing molecular assays for viral detection. PLoS One. 2017;12(5):e0178195.  https://doi.org/10.1371/journal.pone.0178195  PMID: 28542435 
  85. Osman HA, Eltom KH, Musa NO, Bilal NM, Elbashir MI, Aradaib IE. Development and evaluation of loop-mediated isothermal amplification assay for detection of Crimean Congo hemorrhagic fever virus in Sudan. J Virol Methods. 2013;190(1-2):4-10.  https://doi.org/10.1016/j.jviromet.2013.03.004  PMID: 23542058 
  86. Bonney LC, Watson RJ, Afrough B, Mullojonova M, Dzhuraeva V, Tishkova F, et al. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Negl Trop Dis. 2017;11(10):e0006013.  https://doi.org/10.1371/journal.pntd.0006013  PMID: 29028804 
/content/10.2807/1560-7917.ES.2019.24.5.1800093
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error