1887
Surveillance Open Access
Like 0

Abstract

BACKGROUND

(EC) is the leading cause of bloodstream infections (BSI). The emergence of extended-spectrum beta-lactamase (ESBL) production in EC is concerning, as it may worsen infection outcomes.

AIM

We aimed to assess the incidence and outcome of ESBL-EC and non-ESBL-EC BSIs in Finland in 2018–2023 and identify factors associated with death.

METHODS

Data from national registers were used to identify EC BSIs and to determine infection origin, patient comorbidities and death within 30 days. Isolates resistant or susceptible with increased exposure to third-generation cephalosporins were defined as ESBL-producing. Trends were analysed using a binomial regression model with log link. Factors associated with 30-day case-fatality were evaluated using a multivariable logistic regression model.

RESULTS

In total, 33,586 EC BSIs were identified, of which 1,916 (5.7%) were ESBL-EC BSIs. The annual incidence of ESBL-EC BSIs decreased from 7.2/100,000 to 4.9/100,000, being 3.3-fold larger for healthcare-associated than community-acquired ESBL-EC BSIs. Non-ESBL-EC BSIs showed similar but weaker trends. The 30-day case-fatality rate was 1.3-fold higher for ESBL-EC than non-ESBL-EC BSIs and 1.7–3.2-fold higher for healthcare-associated than community-acquired BSIs. Factors associated with 30-day case-fatality included age, comorbidity, male sex, and healthcare association and ESBL in patients with no or less severe comorbidities.

CONCLUSION

We observed a decline in EC BSIs in Finland in 2018-2023, especially those caused by ESBL-EC and healthcare-associated BSIs. ESBL-EC BSIs were associated with 30-day case-fatality only among patients with low comorbidity, a phenomenon requiring further investigation. Continuous surveillance of BSI pathogens, also covering BSI outcome, is essential.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.40.2500196
2025-10-09
2025-11-11
/content/10.2807/1560-7917.ES.2025.30.40.2500196
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/40/eurosurv-30-40-2.html?itemId=/content/10.2807/1560-7917.ES.2025.30.40.2500196&mimeType=html&fmt=ahah

References

  1. Skogberg K, Lyytikäinen O, Ollgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect. 2012;18(6):E170-6.  https://doi.org/10.1111/j.1469-0691.2012.03845.x  PMID: 22512663 
  2. Kontula KSK, Skogberg K, Ollgren J, Järvinen A, Lyytikäinen O. Population-based study of bloodstream infection incidence and mortality rates, Finland, 2004-2018. Emerg Infect Dis. 2021;27(10):2560-9.  https://doi.org/10.3201/eid2710.204826  PMID: 34546161 
  3. MacKinnon MC, McEwen SA, Pearl DL, Lyytikäinen O, Jacobsson G, Collignon P, et al. Increasing incidence and antimicrobial resistance in Escherichia coli bloodstream infections: a multinational population-based cohort study. Antimicrob Resist Infect Control. 2021;10(1):131.  https://doi.org/10.1186/s13756-021-00999-4  PMID: 34488891 
  4. MacKinnon MC, McEwen SA, Pearl DL, Lyytikäinen O, Jacobsson G, Collignon P, et al. Mortality in Escherichia coli bloodstream infections: a multinational population-based cohort study. BMC Infect Dis. 2021;21(1):606.  https://doi.org/10.1186/s12879-021-06326-x  PMID: 34172003 
  5. Martelius T, Jalava J, Kärki T, Möttönen T, Ollgren J, Lyytikäinen O, et al. Nosocomial bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae resistant to third-generation cephalosporins, Finland, 1999-2013: Trends, patient characteristics and mortality. Infect Dis (Lond). 2016;48(3):229-34.  https://doi.org/10.3109/23744235.2015.1109135  PMID: 26577519 
  6. Ling W, Furuya-Kanamori L, Ezure Y, Harris PNA, Paterson DL. Adverse clinical outcomes associated with infections by Enterobacterales producing ESBL (ESBL-E): a systematic review and meta-analysis. JAC Antimicrob Resist. 2021;3(2):dlab068.  https://doi.org/10.1093/jacamr/dlab068  PMID: 35233528 
  7. Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect. 2013;19(6):492-500.  https://doi.org/10.1111/1469-0691.12144  PMID: 23398633 
  8. MacKinnon MC, McEwen SA, Pearl DL, Parfitt EC, Pasquill K, Steele L, et al. Escherichia coli bloodstream infections in the western interior of British Columbia, Canada: a population-based cohort study. Epidemiol Infect. 2021;149:e195.  https://doi.org/10.1017/S0950268821001874  PMID: 34353396 
  9. Ling W, Paterson DL, Harris PNA, Furuya-Kanamori L, Edwards F, Laupland KB. Mortality, hospital length of stay, and recurrent bloodstream infections associated with extended-spectrum beta-lactamase-producing Escherichia coli in a low prevalence region: A 20-year population-based large cohort study. Int J Infect Dis. 2024;138:84-90.  https://doi.org/10.1016/j.ijid.2023.11.007  PMID: 37949363 
  10. Ilmavirta H, Ollgren J, Räisänen K, Kinnunen T, Hakanen AJ, Jalava J, et al. Increasing proportions of extended-spectrum β-lactamase-producing isolates among Escherichia coli from urine and bloodstream infections: results from a nationwide surveillance network, Finland, 2008 to 2019. Euro Surveill. 2023;28(43):2200934.  https://doi.org/10.2807/1560-7917.ES.2023.28.43.2200934  PMID: 37883040 
  11. Ilmavirta H, Ollgren J, Räisänen K, Kinnunen T, Hakanen AJ, Rantakokko-Jalava K, et al. Impact of the COVID-19 pandemic on extended-spectrum β-lactamase producing Escherichia coli in urinary tract and blood stream infections: results from a nationwide surveillance network, Finland, 2018 to 2022. Antimicrob Resist Infect Control. 2024;13(1):72.  https://doi.org/10.1186/s13756-024-01427-z  PMID: 38971782 
  12. Statistics Finland (StatFin). Statistical data. Helsinki: StatFin. [Accessed: 18 Sep 2025]. Available from: https://stat.fi/en
  13. Finnish Institute for Health and Welfare (THL). Finnish National Infectious Diseases Register. Helsinki: THL; 7 Dec 2023. Available from: https://thl.fi/en/topics/infectious-diseases-and-vaccinations/surveillance-and-registers/finnish-national-infectious-diseases-register
  14. Kontula KS, Skogberg K, Ollgren J, Järvinen A, Lyytikäinen O. Early deaths associated with community-acquired and healthcare-associated bloodstream infections: a population-based study, Finland, 2004 to 2018. Euro Surveill. 2022;27(36):2101067.  https://doi.org/10.2807/1560-7917.ES.2022.27.36.2101067  PMID: 36082683 
  15. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines, versions 8.0, 8.1, 9.0, 10.0, 11.0, 12.0, 13.1. [Accessed: 18 Sep 2025]. Available from: https://www.eucast.org
  16. Digital and Population Data Services Agency. Population Information System. Helsinki: Digital and Population Data Services Agency. [Accessed: 18 Sep 2025]. Available from: https://dvv.fi/en/population-information-system
  17. Laupland KB, Lyytikäinen O, Søgaard M, Kennedy KJ, Knudsen JD, Ostergaard C, et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect. 2013;19(5):465-71.  https://doi.org/10.1111/j.1469-0691.2012.03903.x  PMID: 22616816 
  18. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-9.  https://doi.org/10.1097/01.mlr.0000182534.19832.83  PMID: 16224307 
  19. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-83.  https://doi.org/10.1016/0021-9681(87)90171-8  PMID: 3558716 
  20. Agresti A. Categorical Data Analysis. 3rd ed. Hoboken: John Wiley & Sons; 2013. Available from: https://www.wiley.com/en-gb/Categorical+Data+Analysis%2C+3rd+Edition-p-9780470463635
  21. Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression. Hoboken: John Wiley & Sons; 2013. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118548387
  22. Graubard BI, Korn EL. Predictive margins with survey data. Biometrics. 1999;55(2):652-9.  https://doi.org/10.1111/j.0006-341X.1999.00652.x  PMID: 11318229 
  23. Richelsen R, Smit J, Schønheyder HC, Laxsen Anru P, Gutiérrez-Gutiérrez B, Rodríguez-Bãno J, et al. Outcome of community-onset ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteraemia and urinary tract infection: a population-based cohort study in Denmark. J Antimicrob Chemother. 2020;75(12):3656-64.  https://doi.org/10.1093/jac/dkaa361  PMID: 32862220 
  24. Stanley J, Sullivan B, Dowsey AW, Jones K, Beck CR. Epidemiology of Escherichia coli bloodstream infection antimicrobial resistance trends across South West England during the first 2 years of the coronavirus disease 2019 pandemic response. Clin Microbiol Infect. 2024;30(10):1291-7.  https://doi.org/10.1016/j.cmi.2024.03.018  PMID: 38527612 
  25. Statistics Finland (StatFin). Number of passengers at Finnish airports decreased by 99 per cent in April 2020. Helsinki: StatFin; 28 May 2020. Available from: https://www.stat.fi/til/ilma/2020/04/ilma_2020_04_2020-05-28_tie_001_en.html
  26. Statistics Finland (StatFin). Air transport, 12ib - Number of passengers and cargo tonnes at domestic airports by month, 2019M01-2025M01. Helsinki: StatFin. [Accessed: 18 Sep 2025]. Available from: https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/StatFin__ilma/statfin_ilma_pxt_12ib.px
  27. Kantele A, Lääveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60(6):837-46.  https://doi.org/10.1093/cid/ciu957  PMID: 25613287 
  28. Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med. 2019;26(8):taz036.  https://doi.org/10.1093/jtm/taz036  PMID: 31115466 
  29. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU / EEA (ESAC-Net) - Annual Epidemiological Report 2022. Stockholm: ECDC; 17 Nov 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2022
  30. Ventura-Gabarró C, Leung VH, Vlahović-Palčevski V, Machowska A, Monnet DL, Högberg LD, et al. Rebound in community antibiotic consumption after the observed decrease during the COVID-19 pandemic, EU/EEA, 2022. Euro Surveill. 2023;28(46):2300604.  https://doi.org/10.2807/1560-7917.ES.2023.28.46.2300604  PMID: 37971660 
  31. Kari H, Rättö H, Saastamoinen L, Koskinen H. Outpatient antibiotic prescribing during the first two years of the COVID-19 pandemic: A nationwide register-based time series analysis. PLoS One. 2023;18(12):e0296048.  https://doi.org/10.1371/journal.pone.0296048  PMID: 38109384 
  32. Statistics Finland (StatFin). Causes of death, 11ay - Deaths, age-standardised and crude deaths rates by underlying cause of death (time series classification) and sex, whole population and persons aged 15-64, 1971-2023. Helsinki: StatFin. [Accessed: 18 Sep 2025]. Available from: https://pxdata.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__ksyyt/statfin_ksyyt_pxt_11ay.px
  33. Räisänen K, Jalava J, Ilmavirta H, Mentula S, Hyyryläinen H-L. Bakteerien mikrobilääkeresistenssi Suomessa - Finres 2023. [Antimicrobial resistance in Finland - Finres 2023]. Helsinki: Finnish Institute for Health and Welfare; 2024. Finnish. Available from: https://www.julkari.fi/handle/10024/149986
  34. Hassoun-Kheir N, Guedes M, Arieti F, Pezzani MD, Gladstone BP, Robotham JV, et al. Expert consensus on antimicrobial resistance research priorities to focus development and implementation of antibacterial vaccines and monoclonal antibodies. Euro Surveill. 2024;29(47):2400212.  https://doi.org/10.2807/1560-7917.ES.2024.29.47.2400212  PMID: 39574390 
  35. Kadri SS, Lai YL, Warner S, Strich JR, Babiker A, Ricotta EE, et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect Dis. 2021;21(2):241-51.  https://doi.org/10.1016/S1473-3099(20)30477-1  PMID: 32916100 
  36. Mazzella A, Amin-Chowdhury Z, Andrews A, Charlett A, Brown CS, Hope R, et al. Health inequalities in incidence of bacteraemias: a national surveillance and data linkage study, England, 2018 to 2022. Euro Surveill. 2025;30(9):2400312.  https://doi.org/10.2807/1560-7917.ES.2025.30.9.2400312  PMID: 40051395 
/content/10.2807/1560-7917.ES.2025.30.40.2500196
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error