1887
Outbreaks Open Access
Like 0

Abstract

An outbreak of an ertapenem-resistant clone occurred in a specialist children’s hospital in Liverpool, United Kingdom (UK), from April 2022 to February 2023. Carbapenem-resistant is unusual in the UK, and identification of two isolates exhibiting ertapenem resistance in the same ward in December 2022 raised concerns and triggered an outbreak investigation. Potential transmission through shared equipment was identified; a total of 11 patients were colonised and/or infected by phenotypically similar isolates. Multilocus sequence typing supported hospital transmission, and short-read whole genome sequencing (WGS) was performed on all isolates; long-read sequencing was conducted for three isolates to confidently resolve the plasmid structure. WGS confirmed a clonal outbreak and strongly supported the suspected nosocomial transmission. Detailed analysis of the resistance determinants indicated that ertapenem resistance was driven by a combination of different beta-lactamases, which would not alone convey this resistance profile, along with modifications in porin structure that suggested a synergistic interaction. These findings highlight how highly resistant strains could be mislabelled as predicted sensitive when considering genetic determinants in isolation and underscore the need to study beta-lactam resistances beyond the presence or absence of specific genes but also to consider co-occurrence.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.43.2500133
2025-10-30
2025-11-12
/content/10.2807/1560-7917.ES.2025.30.43.2500133
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/43/eurosurv-30-43-5.html?itemId=/content/10.2807/1560-7917.ES.2025.30.43.2500133&mimeType=html&fmt=ahah

References

  1. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629-61.  https://doi.org/10.1128/MMBR.00078-15  PMID: 27307579 
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  3. Mestrovic T, Aguilar GR, Swetschinski LR, Ikuta KS, Gray AP, Weaver ND, et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health. 2022;7(11):e897-913.  https://doi.org/10.1016/S2468-2667(22)00225-0  PMID: 36244350 
  4. Ling W, Furuya-Kanamori L, Ezure Y, Harris PNA, Paterson DL. Adverse clinical outcomes associated with infections by Enterobacterales producing ESBL (ESBL-E): a systematic review and meta-analysis. JAC Antimicrob Resist. 2021;3(2):dlab068.  https://doi.org/10.1093/jacamr/dlab068  PMID: 35233528 
  5. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18.  https://doi.org/10.1186/s12941-017-0191-3  PMID: 28356109 
  6. Nelson RE, Hatfield KM, Wolford H, Samore MH, Scott RD 2nd, Reddy SC, et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis. 2021;72(Suppl 1):S17-26.  https://doi.org/10.1093/cid/ciaa1581  PMID: 33512523 
  7. Palmieri M, Wyres KL, Mirande C, Qiang Z, Liyan Y, Gang C, et al. Genomic evolution and local epidemiology of Klebsiella pneumoniae from a major hospital in Beijing, China, over a 15 year period: dissemination of known and novel high-risk clones. Microb Genom. 2019;7(6):000520. PMID: 33629946 
  8. Changruenngam S, Modchang C, Bicout DJ. Modelling of the transmission dynamics of carbapenem-resistant Klebsiella pneumoniae in hospitals and design of control strategies. Sci Rep. 2022;12(1):3805.  https://doi.org/10.1038/s41598-022-07728-w  PMID: 35264643 
  9. Moran RA, Baomo L, Doughty EL, Guo Y, Ba X, van Schaik W, et al. Extended-spectrum β-lactamase genes traverse the Escherichia coli populations of intensive care unit patients, staff, and environment. Microbiol Spectr. 2023;11(2):e0507422.  https://doi.org/10.1128/spectrum.05074-22  PMID: 36916926 
  10. Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC, Gomi R, et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun. 2022;13(1):3017.  https://doi.org/10.1038/s41467-022-30717-6  PMID: 35641522 
  11. Rosas NC, Wilksch J, Barber J, Li J, Wang Y, Sun Z, et al. The evolutionary mechanism of non-carbapenemase carbapenem-resistant phenotypes in Klebsiella spp. eLife. 2023;12:e83107.  https://doi.org/10.7554/eLife.83107  PMID: 37410078 
  12. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015;112(27):E3574-81.  https://doi.org/10.1073/pnas.1501049112  PMID: 26100894 
  13. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Guidance document on broth microdilution testing of cefiderocol. Växjö: EUCAST; 2020. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/Cefiderocol_MIC_testing_EUCAST_guidance_document_201217.pdf
  14. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. Reproducibility of broth microdilution MICs for the novel siderophore cephalosporin, cefiderocol, determined using iron-depleted cation-adjusted Mueller-Hinton broth. Diagn Microbiol Infect Dis. 2019;94(4):321-5.  https://doi.org/10.1016/j.diagmicrobio.2019.03.003  PMID: 31029489 
  15. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.  https://doi.org/10.1093/bioinformatics/btu170  PMID: 24695404 
  16. Seemann T. Shovill: Faster SPAdes Assembly of Illumina Reads (v1. 1.0). 2018. Available from: https://github.com/kristyhoran/shovill-1
  17. Oxford Nanopore Technologies. Guppy. Available from: https://communitynanoporetechcom/downloads
  18. Wick RR, Menzel P. Filtlong. 2017. Available from: https://github com/rrwick/Filtlong
  19. Wick R. Porechop: adapter trimmer for Oxford Nanopore reads. 2018. Available from: https://github com/rrwick/Porechop
  20. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540-6.  https://doi.org/10.1038/s41587-019-0072-8  PMID: 30936562 
  21. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31(20):3350-2.  https://doi.org/10.1093/bioinformatics/btv383  PMID: 26099265 
  22. Oxford Nanopore Technologies. Medaka. 2025. Available from: https://githubcom/nanoporetech/medaka
  23. Wick RR, Holt KE. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLOS Comput Biol. 2022;18(1):e1009802.  https://doi.org/10.1371/journal.pcbi.1009802  PMID: 35073327 
  24. Bouras G, Judd LM, Edwards RA, Vreugde S, Stinear TP, Wick RR. How low can you go? Short-read polishing of Oxford Nanopore bacterial genome assemblies. Microb Genom. 2024;10(6):001254.  https://doi.org/10.1099/mgen.0.001254  PMID: 38833287 
  25. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv arXiv:13033997. 2013. Available from: https://arxiv.org/abs/1303.3997
  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.
  27. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944-5.  https://doi.org/10.1093/bioinformatics/16.10.944  PMID: 11120685 
  28. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188.  https://doi.org/10.1038/s41467-021-24448-3  PMID: 34234121 
  29. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131.  https://doi.org/10.1099/mgen.0.000131  PMID: 29177089 
  30. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023;51(D1):D690-9.  https://doi.org/10.1093/nar/gkac920  PMID: 36263822 
  31. Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023;51(W1):W484-92.  https://doi.org/10.1093/nar/gkad326  PMID: 37140037 
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10.  https://doi.org/10.1016/S0022-2836(05)80360-2  PMID: 2231712 
  33. Seemann T. Snippy: fast bacterial variant calling from NGS reads 2015. Available from: https://github.com//tseeman/snippy
  34. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15.
  35. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4):e000056.  https://doi.org/10.1099/mgen.0.000056  PMID: 28348851 
  36. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.  https://doi.org/10.1371/journal.pone.0009490  PMID: 20224823 
  37. Pupko T, Pe’er I, Shamir R, Graur D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol Evol. 2000;17(6):890-6.  https://doi.org/10.1093/oxfordjournals.molbev.a026369  PMID: 10833195 
  38. Revell LJ. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ. 2024;12:e16505.  https://doi.org/10.7717/peerj.16505  PMID: 38192598 
  39. Wailan AM, Coll F, Heinz E, Tonkin-Hill G, Corander J, Feasey NA, et al. rPinecone: Define sub-lineages of a clonal expansion via a phylogenetic tree. Microb Genom. 2019;5(4):e000264.  https://doi.org/10.1099/mgen.0.000264  PMID: 30920366 
  40. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127-8.  https://doi.org/10.1093/bioinformatics/btl529  PMID: 17050570 
  41. Ruan Y, Li M, Wang D, Duan J, Zhang H, Zhou Y. Characteristics of non-carbapenemase producing carbapenem-resistant Klebsiella pneumoniae from a tertiary hospital in China. J Infect Dev Ctries. 2024;18(1):106-15.  https://doi.org/10.3855/jidc.17779  PMID: 38377097 
  42. Schneiders T, Amyes SG, Levy SB. Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother. 2003;47(9):2831-7.  https://doi.org/10.1128/AAC.47.9.2831-2837.2003  PMID: 12936981 
  43. Shi Q, Zhao J, Wei L, Zhu F, Ji J, Meng Y, et al. Transmission of ST45 and ST2407 extended-spectrum β-lactamase-producing Klebsiella pneumoniae in neonatal intensive care units, associated with contaminated environments. J Glob Antimicrob Resist. 2022;31:309-15.  https://doi.org/10.1016/j.jgar.2022.10.006  PMID: 36265800 
  44. Cheong HS, Chung DR, Lee C, Kim SH, Kang C-I, Peck KR, et al. Emergence of serotype K1 Klebsiella pneumoniae ST23 strains co-producing the plasmid-mediated AmpC beta-lactamase DHA-1 and an extended-spectrum beta-lactamase in Korea. Antimicrob Resist Infect Control. 2016;5(1):50.  https://doi.org/10.1186/s13756-016-0151-2  PMID: 27933141 
  45. Cuzon G, Naas T, Guibert M, Nordmann P. In vivo selection of imipenem-resistant Klebsiella pneumoniae producing extended-spectrum β-lactamase CTX-M-15 and plasmid-encoded DHA-1 cephalosporinase. Int J Antimicrob Agents. 2010;35(3):265-8.  https://doi.org/10.1016/j.ijantimicag.2009.10.021  PMID: 20034767 
  46. Shin SY, Bae IK, Kim J, Jeong SH, Yong D, Kim JM, et al. Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol. 2012;61(Pt 2):239-45.  https://doi.org/10.1099/jmm.0.037036-0  PMID: 21940650 
  47. Barnaud G, Arlet G, Verdet C, Gaillot O, Lagrange PH, Philippon A. Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother. 1998;42(9):2352-8.  https://doi.org/10.1128/AAC.42.9.2352  PMID: 9736562 
  48. Chirabhundhu N, Luk-In S, Phuadraksa T, Wichit S, Chatsuwan T, Wannigama DL, et al. Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Sci Rep. 2024;14(1):5215.  https://doi.org/10.1038/s41598-024-55705-2  PMID: 38433246 
  49. Park S, Jin Y, Ko KS. Cross-resistance between tigecycline and cephalosporins regulated by expression of ompK35 and ompK36 in Klebsiella pneumoniae. Microb Pathog. 2025;205:107722.  https://doi.org/10.1016/j.micpath.2025.107722  PMID: 40398640 
  50. National Institute for Health Care Excellence (NICE). British National Formulary Treatment Summaries: tigecycline. London: BMJ Publishing Group Ltd and the Royal Pharmaceutical Society of Great Britain; 2025. Available from: https://bnf.nice.org.uk/drugs/tigecycline
  51. Iosifidis E, Violaki A, Michalopoulou E, Volakli E, Diamanti E, Koliouskas D, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant gram-negative bacteria. J Pediatric Infect Dis Soc. 2017;6(2):123-8. PMID: 27000866 
  52. Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother. 2008;62(5):895-904.  https://doi.org/10.1093/jac/dkn311  PMID: 18676620 
  53. He S, Hickman AB, Varani AM, Siguier P, Chandler M, Dekker JP, et al. Insertion sequence IS 26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. MBio. 2015;6(3):00762-15.  https://doi.org/10.1128/mBio.00762-15  PMID: 26060276 
  54. Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci USA. 2021;118(6):e2008731118.  https://doi.org/10.1073/pnas.2008731118  PMID: 33526659 
/content/10.2807/1560-7917.ES.2025.30.43.2500133
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error