No increase in primary nosocomial candidemia in 682 German intensive care units during 2006 to 2011

E Meyer (elisabeth.meyer@charite.de)1,2, C Geffers1,2, P Gastmeier1,2, F Schwab1,2
1. Institute of Hygiene and Environmental Medicine, Charité University Medicine Berlin, Berlin, Germany
2. National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany

Citation style for this article:

We evaluated the epidemiology of and trends in primary nosocomial candidemia within a network of 682 German intensive care units (ICUs) during 2006 to 2011. Nosocomial laboratory-confirmed bloodstream infection (NLCBI) was diagnosed using standard definitions from the United States Centers for Disease Control and Prevention. Incidences were calculated by NLCBI per 1,000 patients and incidence densities per 1,000 patient-days and per 1,000 central-line days. In the 682 ICUs, there were 2,220,803 patients, 7,943,615 patient-days and 5,363,026 central-line days. A total of 381 of the 6,666 NLCBIs were associated with Candida albicans, 142 with non-albicans Candida. Non-albicans Candida made up 26% of all the Candida isolates. The mean incidence density of Candida central line-associated NLCBIs was 0.09 per 1,000 central-line days and remained unchanged between 2006 and 2011. Crude ICU mortality was 21.9% for C. albicans and 29.7% for non-albicans Candida. Candida was the fourth leading cause of primary NLCBIs, accounting for 6.5% of all bloodstream infections acquired in ICUs. Based on an incidence density of 0.07 per 1,000 patient-days, extrapolation of our data resulted in 465 primary nosocomial Candida NLCBIs in German ICUs per year. Our data show that there was no increase in primary Candida NLCBIs during 2006 to 2011.

Introduction
Candida species are frequently isolated in nosocomial bloodstream infections [1]. Depending on the geographical region, Candida is the third to the tenth most commonly isolated pathogen in blood cultures [2-4]. Candida spp. are common inhabitants of the mucosal surfaces in the tracheal, gastrointestinal and genitourinary tracts. In most cases, candidemia is deemed to arise endogenously, preceded by colonisation with the infecting strain [5]. Patients in an intensive care unit (ICU) are at particular risk for candidemia because of their debilitated condition, presence of central lines and the fact they are often subject to renal dialysis or receipt of broad-spectrum antibiotics or parenteral nutrition [6].
January 2006 to December 2011, all ICU patients who
developed nosocomial laboratory-confirmed blood-
stream infections (NLCBIs) were included in our study.
A total of 682 ICUs reported the type of ICU, and size
and type of hospital. Of these, 366 ICUs were interdis-
ciplinary, 119 surgical, 109 medical, 17 neurosurgical,
17 paediatric, 16 cardiac surgical, 10 neurological and
29 other ICUs.

For every patient with an NLCBI, the time from admi-
sion to the ICU to time of onset of infection is reported,
as is sex, age, central-line use within 48 hours before
the infection, type of pathogen (up to four pathogens)
and mortality. The onset of infection is defined as
either the onset of the first clinical symptom or the
day the samples were taken for microbiology cultures
that led to diagnosis of the infection. The earlier date
is defined as the onset of infection. All ICUs also report
the number of central central-line days and patient
days.
ICUs report only primary NLCBIs [16].

NLCBIs were defined as central-line associated if a cen-
tral line was in place at the time of, or within 48 hours
before, the onset of the infection.

Fungal pathogens were reported as *C. albicans*, non-
albicans spp., *Aspergillus* spp. or other fungi and could
be isolated in a blood culture as the only pathogen
(monomicrobial case) or as one of several pathogens
(polymicrobial case).

As the frequency of NLCBIs might be biased because of
different types of ICUs, the type of hospital and, most
importantly, by the frequency of microbiological diag-
nostics (blood cultures) we analysed changes over time
for all ICUs and also for a subgroup of ICUs that partici-
pated continuously over the six years.

Definition of nosocomial primary candidemia
The Krankenhaus Infektions Surveillance System
uses the United States Centers for Disease Control
and Prevention (CDC) standard definitions [16]. ICUs
reported only primary NLCBIs [17]. Nosocomial primary
candidemia was defined as occurring in an ICU patient
without signs and symptoms of infection at the time
of admission to the ICU, with one or more blood cultures
positive for *Candida*, while candidemia was not related
to *Candida* infection of another site.

Statistics
Incidence was calculated as the number of NLCBIs per
1,000 patients. Incidence density was calculated as the
number of NLCBIs per 1000 patient days or per 1,000
central-line days. Time from ICU admission to onset of
infection and crude ICU mortality was calculated for
monomicrobial cases only.

All analyses were performed using SPSS (IBM SPSS sta-
tistics, Somer, NY, United States), SAS (SAS Institute,
Cary, NC, United States) and Epi Info 6 (CDC, Atlanta,
GA, United States).

Results
From January 2006 to December 2011, 682 German
ICUs submitted data to the Krankenhaus Infektions
Surveillance System. A total of 2,220,803 patients
were included, accounting for 7,943,615 patient days,
5,363,026 central-line days and a median length of
stay of 3.6 days (interquartile range (IQR): 2.8–5.0).
ICUs submitted data for a median of 39 months (IQR:
18–64). The number of ICUs increased over time, from
347 in 2006 to 455 in 2009 and to 527 in 2011. A total
of 205 ICUs submitted the data continuously from 2006
to 2011.

A total of 6,666 NLCBIs associated with 7,453 patho-
gen types were reported. Among the 6,666 NLCBIs, 5,970
(90%) were monomicrobial cases while the rest were
polymicrobial (618 cases with two pathogens, 65 with
three and 13 with four). A total of 6,382 (96%) NLCBIs
were central-line associated.

Fungi were isolated 575 times from 563 (8%) of the
NLCBIs. Of these 575, a total 381 (66%) were associ-
ated with *C. albicans* and 142 (25%) with non-*albicans
Candida*. Some 288 (76%) of the cases with *C. albicans*
fungal infection were monomicrobial.

The mean incidence density of the NLCBIs stratified by
pathogen type in 2006 to 2011 is shown (Figure 1). In
4,591 (69%) of the NLCBIs, Gram-positive bacteria were
reported, in 1,458 (22%) Gram-negative bacteria and in
563 (8%) fungi. If only monomicrobial NLCBIs (n=5,960)
were analysed, Gram-positive bacteria were the causa-
tive agent in 4,021 (67%), Gram-negative bacteria in
1,109 (19%) and fungi in 428 (7%).

The mean incidence density of fungal NLCBIs per 1,000
patient days did not change significantly between
2006 and 2011 (0.09 (95% CI): 0.07–0.11) in 2006; 0.08
(95% CI: 0.07–0.10) in 2011 (Figure 1).

The incidence of fungal NLCBIs per 1,000 patients also
did not change significantly between 2006 and 2011. It
was 0.30 in 2006 (95% CI: 0.24–0.37) and 0.29 in 2011
(95% CI: 0.24–0.35).

With respect to candidemia, the mean incidence den-
sity of *Candida* spp. from 2006 to 2011 was 0.07 per
1,000 patient-days (Figure 2A) and of the central-line
-associated NLCBIs, it was 0.09 per 1,000 central-line
days (Figure 2B).

The mean incidence density of *Candida* spp. revealed
no significant difference over time. It was 0.08 per
1,000 patient-days in 2006 (95% CI: 0.06–0.10) and
0.07 per 1,000 patient-days in 2011 (95% CI: 0.06–
0.09) (Figure 2A).
The mean incidence density of NLCBIs with non-
albicans Candida per 1,000 patient days was 0.02 in 2006 (95% CI: 0.01–0.03) and 0.02 in 2011 (95% CI: 0.01–0.03) and of Candida albicans 0.06 in 2006 (95% CI: 0.05–0.08) and 0.05 in 2011 (95% CI: 0.04–0.07).

If only ICUs with continuous participation over all six years were included in the analysis (n=205), there was also no significant change over time in the Candida incidence in this subgroup analysis (data not shown).

For monomicrobial NLCBIs, the length of stay in the ICU before onset of infection differed, depending on the pathogen. The median time was generally shorter for Gram-positive pathogens (13–16 days) than for the Gram-negative pathogens Klebsiella spp. and Pseudomonas aeruginosa (18 and 19 days, respectively) and was 15 days for C. albicans (Figure 3).

C. albicans ranked fourth among the most frequently isolated pathogens in NLCBIs, after coagulase-negative staphylococci, Enterococcus spp. and Staphylococcus aureus. C. albicans accounted for 4.8% of all NLCBIs and all Candida spp. for 6.5% (Table 1). Non-albicans Candida made up 26% of all Candida spp. With respect to crude ICU mortality of NLCBIs Candida spp. took second place, with a mortality of 23.9% after P. aeruginosa with 24.5%.

We extrapolated the data of our study of Candida NLCBIs: it resulted in 465 primary nosocomial Candida NLCBIs in German ICUs (based on an incidence density of 0.07 per 1,000 patient days and a total of 7,042,898 ICU-patient days in 2008) [18,19].

The reported number of cases and incidence per 100,000 population of candidemia in countries with nationwide, coded-discharge diagnosis or a laboratory-based notification system (Denmark, Finland, Germany, and United States) is shown in Table 2.

Discussion

The most important finding of our multicentre study of German ICUs was that the mean incidence density...
Figure 2
Mean incidence density of the number nosocomial primary laboratory-confirmed bloodstream (NLCBIs) infections per 1,000 patient days (panel A) or central-line associated NLCBIs per 1,000 central-line days (panel B) with *Candida albicans* and non-∗albicans Candida* species in 682 intensive care units, Germany, 2006–2011

Note: numbers may not sum up because of rounding to the second decimal place.

* Mono- and polymicrobial cases.
The median and interquartile range are depicted.

Data from 1,116 ICUs reporting to the United States National Nosocomial Infection Surveillance System showed that the incidence density of NLCBIs due to Candida decreased significantly from more than 0.9 NLCBI per 1,000 central-line days in 1989 to about 0.35 per 1,000 central-line days in 1999 [21]. Data from 2006 to 2007 reported 0.6 NLCBI per 1,000 central lines (2,223,650 central-line days and 1,342 Candida isolates in NLCBIs) [2]. This shows that the pooled mean incidence density of Candida central-line-associated NLCBIs of 0.09 of our 682 German ICUs was several folds lower than that in United States ICUs. We cannot fully explain why the incidence densities in the United States and German ICUs were very different. Differences in healthcare systems should be taken into consideration and differences in the job description of medical staff might also contribute. Unlike in the United States, taking blood cultures cannot be delegated to nurses in Germany but have to be performed by physicians themselves. This might lead to underdetection of isolates that cause infections. The frequency of blood cultures per 1,000 patient days in German ICUs was considerably below the mean of all European ICUs (55 blood cultures per 1,000 bed days in German ICUs compared with 73 per 1,000 bed days in all European ICUs in 2004) [22].

In the United States, Candida was in 2008 the third leading pathogen responsible for NLBSIs, after coagulase-negative staphylococci and enterococci – ahead even of S. aureus and outnumbering all Gram-negative bacilli [2]. C. albicans and other Candida species account for 11.8% (each 5.9%) to all central-line-associated bloodstream infections, according to data of the National Healthcare Safety Network [2].

Candida ranked second in the Extended Prevalence of Infection in the ICU (EPIC) II study, which included culture-positive infections in 1,265 ICUs in 75 countries in 2007 [23]. In contrast to our study, EPIC II focused on all infections (not only nosocomial); on all bloodstream infections (not only on primary bloodstream infections) and EPIC II was a prevalence study. Furthermore, the majority of all ICU infections in Western Europe were respiratory tract infections and only 14.8% were bloodstream infections. Only 8.2% of all bloodstream infections were caused by Candida if only monomicrobial bloodstream infections were analysed [9]. In our study, 6.5% were caused by Candida. Candida lies far behind the Gram-positive pathogens, coagulase-negative staphylococci, S. aureus and Enterococci.

Unfortunately, non-albicans Candida are not differentiated at species level in the Krankenhaus Infektions Surveillance System. However, the National Reference Centre for Systemic Mycoses published 2004–2005 data on the incidence and antifungal susceptibilities of Candida spp. in Germany: the majority of non-albicans Candida were C. glabrata (accounting for 44.9%), followed by C. parapsilosis (22.5%), C. tropicalis (15.2%), C. kefyr (5.1%) and C. krusei (3.9%) [24].
In our study, non-albicans accounted for only a quarter of all Candida species. In other words, the frequency of C. albicans was 74%, which was comparable with the 72% C. albicans in EPIC II in western European ICUs, whereas C. albicans was isolated less frequently in other geographical regions (e.g. only in 57% in Latin American ICUs) [9]. In a Swiss nationwide study, C. albicans remained the predominant Candida species recovered in 66% of all candidemias over a period of 10 years (1991-2000), which is also in accordance with our results [25]. Nonetheless, the predominance of Candida species differs geographically.

There are numerous studies demonstrating the shift from C. albicans to non-albicans species and describing the temporal and geographical influences on Candida species distribution [3,4,26]. Several factors may have contributed to these differences in species distribution and in frequency of isolation. They include attention to infection control, catheter-care guidelines and probably most importantly lack of drug pressure.

The rise of non-albicans species is generally correlated to infection control, catheter-care guidelines distribution and in frequency of isolation. They include the therapeutic and prophylactic use of fluconazole [4]. Similar to antibiotic use, antymycotic use can be hypothesised to be higher in the United States, for example, because of a more defensive type of medicine with more calculated or prophylactic anti-infective therapy because of the high risk of medical malpractice lawsuit [27]. This might influence endogenous colonisation. Although there are scarce comparative quantitative data on antifungal consumption, also within Europe, antifungal use, risk groups and healthcare budgets vary largely [28,29]. In Denmark, for example, over the last years from 2004 to 2009, consumption increased by 140% [30].

Many studies state that candidemia is recognised as a leading cause of morbidity and mortality in severely ill patients and that crude (all-cause) mortality rates range between 20% and 60% [10]. We advocate differentiating between primary and secondary candidemia, because this has an impact on mortality rates, i.e. primary Candida bloodstream infections have lower mortality rates. It is of interest that non-albicans Candida species had the highest crude mortality rates (of almost 30%), which underlines the importance of early and standardised detection of Candida species and drug-susceptibility testing.

Nationwide data for candidemia from the German Institute for the Hospital Remuneration System (InEK) identified by the presence of the *International classification of diseases, tenth revision* (ICD-10) diagnosis code B37.7 [31].

Table 1
Most frequently isolated pathogens in 5,970 monomicrobial primary nosocomial laboratory-confirmed bloodstream infections and related crude mortality in 682 intensive care units, Germany, 2006–2011

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Number (%) of NLCBIs</th>
<th>Number (%) of related ICU deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>2,128 (35.6)</td>
<td>339 (15.9)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>895 (15.0)</td>
<td>150 (16.8)</td>
</tr>
<tr>
<td>MSSA</td>
<td>568 (9.5)</td>
<td>80 (14.1)</td>
</tr>
<tr>
<td>MRSA</td>
<td>327 (5.5)</td>
<td>70 (21.4)</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>954 (16)</td>
<td>194 (20.3)</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>389 (6.5)</td>
<td>93 (23.9)</td>
</tr>
<tr>
<td>C. albicans</td>
<td>288 (4.8)</td>
<td>63 (21.9)</td>
</tr>
<tr>
<td>non-albicans Candida</td>
<td>101 (1.7)</td>
<td>30 (29.7)</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>254 (4.3)</td>
<td>43 (16.9)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>159 (2.7)</td>
<td>39 (24.5)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>213 (3.6)</td>
<td>43 (20.2)</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>183 (3.1)</td>
<td>27 (14.8)</td>
</tr>
<tr>
<td>Serratia spp.</td>
<td>95 (1.6)</td>
<td>13 (13.7)</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>60 (1)</td>
<td>14 (23.3)</td>
</tr>
<tr>
<td>Total</td>
<td>5,970 (100)</td>
<td>1,077 (18.0)</td>
</tr>
</tbody>
</table>

ICU: intensive care unit; NLCBIs: nosocomial laboratory-confirmed bloodstream infections; MRSA: meticillin-resistant *Staphylococcus aureus*; MSSA: meticillin-sensitive *Staphylococcus aureus*.

Table 2
Cases and incidence of candidemia in Denmark, Finland, Germany and United States

<table>
<thead>
<tr>
<th>Data for the year specified</th>
<th>Candidemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Denmark<sup>a</sup></td>
</tr>
<tr>
<td>Number of cases</td>
<td>470</td>
</tr>
<tr>
<td>Incidence per 100,000</td>
<td>8.6</td>
</tr>
</tbody>
</table>

^a Data from six departments of clinical microbiology, which serve a third of the Danish population [30].
^b Data from the Finish National Infectious Disease Register, to which all clinical laboratories in Finland notify all fungal (and bacterial) isolates from blood [34].
^c Data from the German Institute for the Hospital Remuneration System (InEK) identified by the presence of the *International classification of diseases, tenth revision* (ICD-10) diagnosis code B37.7 [31].
^d Data from the United States Agency for Healthcare Research and Quality identified by the presence of the *International Classification of Diseases, Ninth Revision* (ICD-9) diagnosis code 112.5 [35].
identified by presence of the International Statistical Classification of Diseases and Related Health Problems
ICD-10 diagnosis code for candidemia – in 2008 in Germany (population of 82 million inhabitants) [31].
Use of these ICD-10 diagnosis codes seems unlikely to lead to the underestimation of the burden of candi-
demia, because they are required for reimbursement of hospital expenses. In the light of the results of our
study, as well as remuneration data and increase in the consumption of antifungals, it seems reasonable
to include antifungal use in antibiotic (or antimicrobial) stewardship programmes.

Our study has several strengths. The data result from a large network of 682 ICUs based on a comparatively
long study period of six years. Surveillance data from the Krankenhaus Infektions Surveillance System are
representative and validated [32,33]. Standard definitions were applied in all ICUs.

Several limitations of our study have to be taken into consideration: firstly, differences in the fre-
tency of taking blood cultures across different ICUs. Furthermore, misclassification by the laboratories (e.g.
non-albicans Candida for Saccharomyces) cannot be excluded. In addition, our data highlight only primary
and not secondary NLCBIs. Secondary NLCBIs also play an important role in the ICU. The frequency of non-albi-
cans bloodstream infections can also be influenced by the duration of incubation and subculture practices.
A major limitation of the study is that non-albicans Candida species were not further classified. However,
this is also the case in other surveillance systems on healthcare-associated infections, such as the United
States National Healthcare Safety Network [2].

In conclusion, primary Candida NLCBIs showed no increase in the six-year study period in a network of 682 German ICUs. Primary Candida NLCBIs remain a rare event in spite of an upsurge in invasive procedures and therapies in an aging population and they should therefore not be overestimated.

Acknowledgements
We thank Ryan Plocher for his help in preparing the manuscript.

Financial support was provided by the German Ministry of Health

Conflict of interest
None declared.

Authors’ contributions
EM conceived of the study, and wrote the manuscript. FS managed the data and performed the statistical analysis.
CG and PG designed and coordinate the National Nosocomial Infection Surveillance System and helped to draft the manu-
script. All authors read and approved the final manuscript.

References
org/10.1080/13693780701218689 PMid:17510856
potent pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare
PMid:18947320
dx.doi.org/10.1111/j.1439-0507.2009.01691.x PMid:19391253
PMid:17223626 PMCID:1797637
5. Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R. Candida colonization and subsequent infections in critically ill
org/10.1097/00000658-1994120000-00008 PMid:7986142
PMCID:1234477
CCM.b013e318de8c7c60 PMid:19325678
7. Renaud B, Brun-Buisson C; ICU-Bacteremia Study Group. Outcomes of primary and catheter-related bacteremia. A cohort
and case-control study in critically ill patients. Am J Respir Crit
ajrccm.163.7.9912080 PMid:11401878
Surveillance Group. Nationwide sentinel surveillance of bloodstream Candida infections in 40 tertiary care hospitals in
org/10.1128/JCM.00720-10
PMid:20826656 PMCID:2030295
9. Kett DH, Azoulay E, Echeverria PM, Vincent JL; Extended Prevalence of infection in ICU Study (EPIC II) Group of
Investigators. Candida bloodstream infections in intensive care
units: analysis of the extended prevalence of infection in intensive
PMid:21169817
10. Méné M, Marchetti O, Calandra T. Bench-to-bedside review:
PMCID:3274590
unit candidemia: epidemiology, risk factors, outcome, and a
12. Diekema DJ, Pfaller MA. Nosocomial candidemia: an
ounce of prevention is better than a pound of cure. Infect
org/10.1086/302451 PMid:15357158
13. BCC Research. Antifungal drugs:technologies and global
PMI609C.html
Bekämpfung von Infektionskrankheiten beim Menschen
(Infektionsschutzgesetz - IfSG). [Infection Control and
Prevention Act]. Berlin: Bundesministerium der Justiz; 2001
from: http://www.gesetze-im-internet.de/bundesrecht/ifsg/
gesamt.pdf
C, et al. Ten years of KISS: the most important requirements for
org/10.1016/S0195-6701(08)60005-5
16. Robert Koch Institute (RKI). Definitionen nosokomialer
Infektionen (CDC-Definitionen). [Definitions of nosocomial
infections (CDC definitions)]. Berlin: RKI; 2011. German.
nrz-hygiene.de/surveillance/kiss/cdc-definitionen/
aaj5e62e/591/733/

