Analysis of consumer food purchase data used for outbreak investigations, a review

Frederik T Møller1,2, Kåre Mølbak1,3, Steen Ethelberg1

1. Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
2. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
3. Institute of Veterinary and Animal Sciences, University of Copenhagen, Denmark

Correspondence: Steen Ethelberg (set@ssi.dk)

Background: Investigations of food-borne outbreaks are frequently unsuccessful and new investigation methods should be welcomed. Aim: Describe the use of consumer purchase datasets in outbreak investigations and consider methodological and practical difficulties. Methods: We reviewed published papers describing the use of consumer purchase datasets, where electronic data on the foods that case-patients had purchased before onset of symptoms were obtained and analysed as part of outbreak investigations. Results: For the period 2006–17, scientific articles were found describing 20 outbreak investigations. Most outbreaks involved salmonella or Shiga toxin-producing Escherichia coli and were performed in eight different countries. The consumer purchase datasets were most frequently used to generate hypotheses about the outbreak vehicle where case-interviews had not been fruitful. Secondly, they were used to aid trace-back investigation, where a vehicle was already suspected. A number of methodological as well as (in some countries) legal and practical impediments exist. Conclusions: Several of the outbreaks were unlikely to have been solved without the use of consumer purchase datasets. The method is potentially powerful and with future improved access to big data purchase information, may become a widely applicable tool for outbreak investigations, enabling investigators to quickly find hypotheses and at the same time estimate odds ratios or relative risks hereof. We suggest using the term ‘consumer purchase data’ to refer to the approach in the future.

Introduction

Food-borne illnesses are a considerable cause of mortality, in particular among children, in the developing world and an important cause of morbidity in the developed world. Work from the World Health Organization (WHO) Food-borne Disease Burden Epidemiology Reference Group has estimated that 600 million food-borne illnesses occurred worldwide in the year 2010, leading to 420,000 deaths. In the WHO European Region, an estimated annual 23 million illnesses occur [1]. In the United States (US), it has been estimated that food-borne illness that can be specifically attributed to the major pathogens affects more than 48 million citizens annually [2] and amounts to an economic burden of several billion US dollars [3].

In the European Union (EU), food-borne disease outbreaks occur also frequently. In 2015, 4,362 outbreaks were of such relevance that they were reported to the European Centre for Disease Prevention and Control (ECDC) and the European Food Safety Authority (EFSA) [4], and the control of outbreaks lies at the heart of the effort to reduce food-borne illnesses. Investigations of outbreaks help stop disease transmission, contribute to our understanding of the underlying outbreak drivers, and help to improve food safety. However, investigating food-borne outbreaks is often not a straightforward task. For dispersed outbreaks where microbiological proof often cannot readily be obtained, the steps of finding hypotheses, generally done via extensive interviews with outbreak cases – and proving/disproving hypotheses, generally done by use of analytical epidemiology, are difficult but critical factors for the success of the investigation. Outbreaks caused by agents with a long incubation time or by several different products, products with long shelf lives, low brand recognition, or representing subsets of foods that are very commonly consumed are especially hard to resolve through patient interviews. Thus alternative methods for their investigation should be considered. One such method utilises individualised consumer purchase data to resolve outbreaks, taking advantage of the fact that many retailers collect and store this information in searchable databases. The method has been used irregularly over the past decade with heterogeneous reporting and methodology and more wide-scale, systematic implementation has not ensued.
In this article, we review the literature on consumer purchase data use in outbreak investigations. We classify different categories of usage in the literature and address methodological difficulties and further outline some future perspectives.

Methods

We searched for and included published studies in English involving food-borne outbreaks where consumer purchase data (e.g. loyalty card or credit/debit card data) were applied in outbreak investigations. The search was conducted in August 2016 using the PubMed database and Google Scholar and was repeated in October 2017 with the additional inclusion of the Scopus and Web of Science databases. The latter search combined the search terms ("disease outbreak" AND "food") OR "food contamination" OR "foodborne disease" with the search terms "card" OR "receipt" OR "loyalty" OR "till" OR 'membership". MeSH terms were used in Medline. In addition, further studies cited within the papers or already known to the author group or collaborators were also included. The search included papers published from January 2006 to 20 October 2017. Papers describing simulated outbreaks were excluded, as were papers where consumer purchase data were not applied in relation to food-borne outbreak investigations. The search was done by one author. Papers selected for narrative synthesis
were assessed by two authors and discussed within the author group to reach consensus on methodology. A classification of use was made within the categories: hypothesis generation, trace back, corroboration of hypothesis, analytical usage.

References in papers found through the above-described search showed that, in each study, only a few other studies using the consumer card method were cited, possibly due to a marked heterogeneity in the nomenclature regarding the use of consumer purchase data. The terms used in the found studies [5-24] included: household shopping receipts [18], consumer loyalty cards [8], shopper cards data [23], customer loyalty cards [10], supermarket loyalty cards [21], warehouse store membership card [15], loyalty card [20], grocery store loyalty card [5], credit card information [24], shopper-card information [13,14,18] and till receipts [11].

In this paper we have used the term ‘consumer purchase data’ to cover different sources of information

Table 1	Overview of published papers of food-borne outbreak investigations using consumer purchase data (CPD) for investigations, 1 January 2006−20 October 2017					
Agent causing outbreak	No of cases	Country	Source or vehicle	Duration (weeks)	Year of outbreak	Reference and year of publication
Hepatitis A virus	9	Canada	Frozen fruit blend	10	2012	[8] Swinkels et al., 2014
Listeria monocytogenes	6	Switzerland	Cooked ham	14	2011	[9] Hächler et al., 2013
S. Newport	42	United States	Ground beef	10	2007	[16] Schneider et al., 2011
S. Newport	6	United States (1 state)	Fresh blueberries	3	2010	[17] Miller et al., 2013
S. Strathcona	71	Denmark (plus Germany, Italy, Austria, Belgium)	Tomatoes produced in Italy	23	2011	[18] Müller et al., 2016
S. Typhimurium	1,054	Denmark	Unknown	29	2008	[19] Ethelberg et al., 2008
S. Typhimurium, monophasic	110	France	Dried pork sausage	18	2010	[20] Bone et al., 2010
Shiga toxin-producing Escherichia coli						
STEC O104	60	Germany	Sprouts	9	2011	[22] Wilking et al., 2012
STEC O157	15	France	Beef burgers	6	2012	[23] Barret et al., 2013

STEC: Shiga toxin-producing Escherichia coli.
Table 2A
Category of use of consumer purchase data (CPD) for food-borne outbreak investigations, 1 January 2006−20 October 2017

<table>
<thead>
<tr>
<th>Reference</th>
<th>Purchase data source</th>
<th>Category of use of CPD</th>
<th>Description of use of CPD</th>
<th>Type of outbreak</th>
<th>Type of vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5] Shah et al., 2009</td>
<td>Loyalty card; 8 cases.</td>
<td>Hypothesis generation and trace-back investigation</td>
<td>CPD used for hypothesis generation/ support of hypothesis and aid in trace back</td>
<td>Dispersed one-province cyclosporiasis outbreak</td>
<td>Organic basil was the most likely vehicle</td>
</tr>
<tr>
<td>[6] Gillesberg Lassen et al., 2013</td>
<td>Debit card information, several supermarkets; no. of cases not stated (<10).</td>
<td>Trace back</td>
<td>Vehicle (frozen berries) found by case−control study; CPD used to identify type and identity of product.</td>
<td>National, later international (4 countries) hepatitis A outbreak</td>
<td>Brand of frozen strawberries sold in (internationally operating) supermarket chain</td>
</tr>
<tr>
<td>[7] Collier et al., 2014</td>
<td>Data from membership/loyalty cards from a retailer; no. of cases not stated.</td>
<td>Case finding, trace back, targeted intervention of exposed (information, post-exposure vaccination)</td>
<td>CPD Improved validity of initial hypothesis and targeted post exposure prophylaxis with both hepatitis A virus vaccine and immunoglobulin.</td>
<td>Dispersed national hepatitis A outbreak</td>
<td>Frozen pomegranate arils</td>
</tr>
<tr>
<td>[8] Swinkels et al., 2014</td>
<td>Loyalty card purchases in 3-month period; 6 cases.</td>
<td>Trace back</td>
<td>Vehicle identified in part using classical epidemiology, CPD used to locate particular producer and confirm the source. No case−control study done.</td>
<td>Dispersed province-wide hepatitis A outbreak</td>
<td>Frozen berry blend</td>
</tr>
<tr>
<td>[9] Hächler et al., 2013</td>
<td>Shopper cards/loyalty cards; 4 cases.</td>
<td>CPD support existing evidence</td>
<td>Supported existing evidence, use delayed by legal clarification. Consent from the patients and the retail company.</td>
<td>Dispersed local listeria outbreak</td>
<td>Cooked ham</td>
</tr>
<tr>
<td>[10] Taylor et al., 2012</td>
<td>Loyalty card purchases; 4 cases.</td>
<td>Assists hypothesis generation, trace back</td>
<td>Epidemiological investigation points to vehicle. CPD in subset of cases corroborates and leads to fast trace back.</td>
<td>Dispersed multi-province salmonella outbreak</td>
<td>Ready-to-eat pork product, known as head cheese</td>
</tr>
<tr>
<td>[11] Zenner et al., 2014</td>
<td>Till entries and receipts from single restaurant; 41 cases.</td>
<td>Hypothesis generation, analytical study</td>
<td>Helps locate dish on menu in take-away restaurant + makes analytical argument by comparing sale over different time periods.</td>
<td>Point-source (geographical) outbreak associated with single restaurant</td>
<td>Chicken dish, one item of many on a restaurant menu</td>
</tr>
<tr>
<td>[12] Bedard et al., 2014</td>
<td>Shopper card purchases, no. of cases not stated (<10)</td>
<td>Hypothesis generation</td>
<td>CPD gives 3 distinct hypotheses, leads to source identification by microbiological testing.</td>
<td>Local county investigation and multi-state cluster</td>
<td>Pine nuts sold in supermarket/stores</td>
</tr>
<tr>
<td>[13] Grinnell et al., 2013</td>
<td>Shopper card purchases; 9 cases.</td>
<td>Trace back</td>
<td>Standard epidemiological methods identify vehicle, CPD used to zoom in on producer and exact product.</td>
<td>Dispersed multi-state salmonella outbreak</td>
<td>Industrial chicken products sold in supermarket chain(s)</td>
</tr>
<tr>
<td>[14] Routh et al., 2015</td>
<td>Loyalty card purchases; 3 cases.</td>
<td>Trace back (helping to identify the vehicle, combined with traditional methods).</td>
<td>Dispersed national salmonella outbreak</td>
<td>Ground turkey</td>
<td></td>
</tr>
<tr>
<td>[15] Gieraltowski et al., 2012</td>
<td>Store membership card purchases; 7 cases initially, 19 cases at late stage.</td>
<td>Hypothesis generation (and trace back)</td>
<td>CPD information points to specific hypothesis. Also strongly aids trace back.</td>
<td>Dispersed multi-state salmonella outbreak, 2 serotypes and several vehicles</td>
<td>Salamis made with contaminated black and red pepper (dried spices)</td>
</tr>
<tr>
<td>[16] Schneider et al., 2011</td>
<td>Loyalty cards; 11 cases.</td>
<td>Aided trace back</td>
<td>CPD improves validity of questionnaire findings. CPD used to target trace back combined with records of beef processing.</td>
<td>National, multistate salmonella outbreak</td>
<td>Ground beef</td>
</tr>
<tr>
<td>[17] Miller et al., 2013</td>
<td>Shopper card purchases; 3 cases.</td>
<td>Trace back</td>
<td>Vehicle suspected by epidemiological methods, small outbreak, evidence in-conclusive. CPD gives GTIN numbers which leads to precise trace back, identifying product.</td>
<td>Dispersed, but small, salmonella outbreak in part of 1 state</td>
<td>Fresh berries, sold in supermarket chain, traced back to specific producer</td>
</tr>
</tbody>
</table>

CPD: consumer purchase data; GTIN: global trade item number; STEC: Shiga toxin-producing *Escherichia coli*.

www.eurosurveillance.org
Table 2B
Category of use of consumer purchase data (CPD) for food-borne outbreak investigations, 1 January 2006–20 October 2017

<table>
<thead>
<tr>
<th>Reference</th>
<th>Purchase data source</th>
<th>Category of use of CPD</th>
<th>Description of use of CPD</th>
<th>Type of outbreak</th>
<th>Type of vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18] Müller et al., 2016</td>
<td>Digital receipts from cashier systems from 2 supermarket chains of purchases in 6-week period; 15 cases.</td>
<td>Hypothesis generation</td>
<td>Initial hypothesis-generating interviews are inconclusive, but points to 2 supermarkets. CPD leads to quite specific hypothesis. Followed by traditional case–control study.</td>
<td>Dispersed national salmonella outbreak</td>
<td>Particular type of tomatoes, hidden among all tomatoes in interviews</td>
</tr>
<tr>
<td>[19] Ethelberg et al., 2008</td>
<td>Debit cards; digital receipts from several supermarket chains purchases in 6 week period; no. of cases not stated (ca 25).</td>
<td>Hypothesis generation</td>
<td>Many different investigation methods in use. CPD applied on several supermarkets/shops. No common pattern was identified.</td>
<td>Large and prolonged nation-wide salmonella outbreak</td>
<td>Vehicle/source never identified</td>
</tr>
<tr>
<td>[20] Bone et al., 2010</td>
<td>Loyalty card purchases three weeks before onset; 9 cases.</td>
<td>Trace back and corroboration of hypothesis</td>
<td>Epidemiological investigation points to vehicle. CPD corroborates (9/9 cases bought product) and points to single brand. Recall without case–control study or microbiological proof.</td>
<td>Dispersed national salmonella outbreak</td>
<td>Dried salami, distributed nation-wide, sold in single supermarket chain</td>
</tr>
<tr>
<td>[21] Gossner et al., 2012</td>
<td>Loyalty card purchases; 39 cases.</td>
<td>Trace back and semi-analytical use</td>
<td>Epidemiological investigation points to vehicle. Focused CPD corroborates and points to single brand. Proportions used for likelihood argument. Recall without case–control study or microbiological proof.</td>
<td>Dispersed national salmonella outbreak</td>
<td>Dried salami, distributed nation-wide, sold in supermarket chain</td>
</tr>
<tr>
<td>[22] Wilking et al., 2012</td>
<td>Employee cards used for cafeteria sales; 23 cases and 30 controls.</td>
<td>Analytical study</td>
<td>CPD data used for nested case–control study within cohort of company workers</td>
<td>Point-source outbreak, sub-outbreak within large national STEC outbreak</td>
<td>Raw sprouts served as part of lunch meals</td>
</tr>
<tr>
<td>[23] Barret et al., 2013</td>
<td>Shopper card purchases; 5 cases (though not clearly stated).</td>
<td>Trace back</td>
<td>Find the exact brand of product after vehicle has been identified using epidemiological methods</td>
<td>Regional (sub-national) STEC outbreak</td>
<td>Fresh ground beef (burgers) sold in supermarket chain.</td>
</tr>
<tr>
<td>[24] Ethelberg et al., 2009</td>
<td>Debit cards; digital receipts from purchases from 2 supermarket chains in 6-week period; 7 cases.</td>
<td>Hypothesis generation</td>
<td>Initial hypothesis-generating interviews are inconclusive, but points to single supermarket. CPD leads to specific hypothesis. Further proof from case–control study and microbiological testing.</td>
<td>Dispersed national STEC outbreak among children</td>
<td>Organic, fermented salami made of beef, distributed nation-wide, sold in supermarket chain.</td>
</tr>
</tbody>
</table>

CPD: consumer purchase data; GTIN: global trade item number; STEC: Shiga toxin-producing *Escherichia coli*.

For purchases of food, e.g. a credit card or a loyalty card, to cover the entire process of using the data as a method for outbreak investigations.

Results

The results of the publication search strategy are shown in the Figure. Over the study period, 20 papers published in international peer-reviewed journals were identified describing outbreaks where consumer purchase data were collected and used for food-borne outbreak investigations [5-24].

Outbreak characteristics

Table 1 gives an overview of the outbreaks. The outbreaks were primarily caused by *Salmonella enterica* of different serotypes and subtypes (12 outbreaks) [10-21], followed by Shiga-toxin producing *Escherichia coli* (STEC) of different O-groups (3 outbreaks) [22-24], hepatitis A virus (3 outbreaks) [6-8], as well as *Listeria monocytogenes* [5] and *Cyclospora cayetanensis* [9] (1 outbreak each). The outbreaks took place in North America [5,7,8,10,12-17] or Europe [6,9,11,18-24] and, except for two, were dispersed outbreaks, extended over time and geographical area. They were mostly nationwide outbreaks, although two outbreaks were international. Two outbreaks were point-source outbreaks examined using a cohort set-up [11,22]. The outbreaks were of varying size, the number of outbreak cases ranged from six to more than 1,000, with a median of 63 cases. The duration of the outbreaks ranged from 1 week to more than 1 year. The outbreak source was identified, with varying degrees of supporting evidence presented, for all but one [19] of the 20 investigated outbreaks.

Table 2 lists further details about each publication, categorising purchase data source and the general use of the method into categories. For the dispersed outbreaks, the purchase data were accessed from supermarket or similar type of store databases. The
hypothetical hypotheses. Comparison of purchase data from years, interviews with parents failed to produce work-
tions affecting primarily children under the age of 3 cases’ homes identified pine nuts as the source of the
biological examination of products collected from
and pine nuts. Further investigation, including micro -
ticated three possible hypotheses, tomatoes, avocado
gated. Use of the methods on a subset of cases iden
cases detected by routine surveillance was investi
Salmonella

In one example, a local cluster of Salmonella Enteritidis
recognized only 3% of all salami sales. Based on this,
recall of the sausage was undertaken [21].

Two reports concerned analytical usage in a point-
source outbreak setting. Following an S. Enteritidis
outbreak found to be associated with a take-away res-
aurant in London, sales data were used to point to a
particular chicken meal. This was done by comparing
sales made by cases with sales made by other costum-
ers at the same hour the day before [11].

The second report concerned an outbreak within the outbreak of
the larger German O104 STEC outbreak in 2011 [25].
It occurred among employees of a company and was
linked to the company canteen where employees paid
for lunch meals using their employee access cards.
This meant that the employees’ lunch choices were being
electronically registered. This way, in a retrospec-
tive nested case–control study within the cohort, the
strength of an association between cases and sprout-
containing salad meals could be estimated [22].

Trace back or trace forward

In 13 studies, trace-back and/or trace-forward inves-
tigation was performed by use of consumer purchase
data, once a probable source of the infections had been
identified (Table 2) [5-8,10,13-17,20,21,23]. The source
of the infections in the studies ranged from vegetables,
fruits and nuts (raw tomatoes, organic basil, blueber-
ries, frozen fruit blend, pine nuts), to meat products
(including beef burgers, poultry, delicatessen sau-
sages and meat as well as ground turkey, dried pork
sausages, fermented sausage, and rotisserie chicken
(Table 1). In some studies, this trace back formed part
of the evidence for what constituted the source of the
outbreak.

In one outbreak, hypothesis generation was guided by
loyalty card-derived purchase data, which revealed a
specific type of salami as a common food purchase. The purchase data therefore also facilitated locating the distributor. The resulting trace-back investigation indicated that dried pepper, used as an ingredient in the salamis, was the probable source of the outbreak. Trace forward led to further identification of tainted products including human cases affected by a second Salmonella serotype found in a red pepper storage facility, thereby extending the understanding of the outbreak [15]. In hepatitis A virus outbreaks in Canada and Scandinavia, frozen fruit/berries were identified as sources. The long incubation period and the fact that multiple similar product categories existed made trace back a challenge. Analysis of purchase data records allowed investigators to pinpoint the precise products via the food product identification codes without which trace back would most likely not have been possible [6,8,17].

Finally, in one outbreak [7] consumer purchase data was used to directly target exposed individuals. In this hepatitis A virus outbreak in the US, purchase data was used to define cases (purchase/exposure being part of the case definition) and further to warn customers who had purchased the product by use of automated voice-message phone calls and to target post-exposure immunisation to exposed costumers. This was carried out by the affected retail chain, and not through data sharing with public health officials.

Discussion
In this review, we found that consumer purchase data have been applied successfully in several phases of outbreak investigations. In the studies reviewed, the method was used for forming or assisting in forming hypotheses for the source/vehicle of the outbreaks where prior interviews had proven insufficient. Additionally, purchase data often aided source finding, providing a product subtype and sometimes even a lot or batch number. In some outbreaks, time to product recall was reduced, in others it was unlikely that the source would have been found, had it not been for the purchase data. The low number of documented purchase events needed in many of the studies to identify a probable source is a promising finding. Conversely, 20 papers published over the last decade represents a rather low number, suggesting the existence of obstacles to widespread use. We suggest using the term ‘consumer purchase data’ in future to refer to the approach as we think this term better captures the different aspects of the approach that we encountered than terms using the word ‘card’.

Critical steps in the investigation of food-borne outbreaks concern identification of suspect food products and providing proof of the source beyond reasonable doubt. We believe the evidence available from the papers reviewed here suggests that the use of purchase data may be a generalisable investigation method that could be very attractive for the investigation of challenging food-borne outbreaks. As some of the papers showed, searching through datasets across households with case-patients for common purchases may often be a more powerful method than the standard methods of interviewing case-patients, which are subject to incomplete recall. Interviews are less efficient in situations where, for instance, the period between interview and exposure is long [26] or the food is of a kind that is unlikely to be reported on, such as foods that are hard to remember (e.g. sprouts), food ingredients or sub-batches of common foods.

Establishing proof is generally possible using one of three strategies: microbiological evidence (finding the disease agent in the food using a specific typing method), epidemiological evidence (showing that a strong association between case status and a specific food consumption is present) or food supply evidence (showing a correlation between cases exposure and the presence of the incriminated foods). The papers we found generally did not use the purchase data method with the purpose of establishing proof. Potentially, however, strong evidence could be established by use of the purchase data method. If large purchase data-sets from retailers were to become routinely available to outbreak investigators, comparisons could be made between case and non-case consumers. Thus, odds ratios for purchase could be calculated immediately and the process of searching for candidate foods (hypothesis generation) and the subsequent step of assessing their likelihood as outbreak vehicles (analytical epidemiology) could be performed in a single step. In addition, the methods may be a powerful tool for product identification, trace-back/trace-forward investigation and assessing likelihood of a food being an outbreak vehicle through comparisons of distribution and intensity of sales. A purchase data analysis could provide codes identifying the foods uniquely, such as European/International Article Numbering (EAN) or Global Trade Item Number (GTIN). This may potentially lead to efficient and fast comparative analyses using food databases. The latter is important, because trace-back investigations for larger outbreaks may reach levels of complexity where they become impossible to perform with traditional methods in addition to being lengthy and labour-intensive.

Such a framework would be strengthened by the increased penetration of card or mobile phone-based payments, expected to occur in the coming years. Combined with the foreseen increased application of whole-genome sequencing for routine surveillance of food-borne infections, it might also be valuable for the investigation of small or protracted outbreaks from continuous sources where cases are currently regarded as sporadic. Likewise, it may also be valuable for source attribution purposes, i.e. to describe the relative distribution of the sources which give rise to sporadic cases. Finally, as seen in one outbreak [7], it may be used to find and warn customers who have bought a product found to be contaminated and may thereby also help stop further cases [27].
Importantly, however, a number of requirements of a structural nature would need to be resolved before widespread use of the method could take place. These requirements include legal frameworks for ensuring consumer protection and patients’ privacy and the need to establish and maintain agreements between public health institutions and retailers securing data access. Data protection regulations and other obstacles for data access differ between countries and this may be the reason for why application of the method was geographically skewed. Adding to that, a number of more general methodological obstacles exist. First, purchase does not equal consumption and cases may often be part of families or households so that food purchases by several persons may need to be collected. Secondly, capturing foods consumed in restaurants or smaller retailers including convenience food remains a challenge, and thirdly, purchases made without the use of loyalty or payment cards will go unnoticed with current coverage and payments systems. Finally, not all retailers may wish to share data, affecting the coverage of the purchasing data. However, even if only imperfect data can be retrieved, the method may still produce results. An analogy can be drawn with standard disease surveillance, which often also captures only a fraction of all cases, but nonetheless is useful for finding and solving outbreaks. Hence, incompleteness in exposure assessment should not preclude efficient use of the method.

Overall, the papers we found and included contained little detail on how purchase data analysis was applied. The handling of data was most often not described in detail. With few exceptions [18,21], the total number of receipts retrieved, the period and the fraction of total purchases these receipts covered were not accounted for. Also, restrictions or obstacles of a legal, cultural or habitual nature were generally not mentioned and we could therefore not extract data on such matters. The papers did in general mention good working relationships between public health authorities and food retailers. Efforts to protect citizen privacy were not described in detail. Secure systems to handle potentially sensitive purchase data, systems to obtain consent, and share data are prerequisites of a wider implementation of consumer purchase datasets, and descriptions hereof in future studies would be beneficial.

This review has several limitations. A broader literature search including more search terms, languages other than English or including unpublished outbreak reports might have revealed more studies. We also limited our search to after the year 2005, but we note that studies taking advantage of shopping receipts in paper form after the year 2005, but we note that studies taking advantage of shopping receipts in paper form may have been included if they were published during this period. Also, searching for results is a time-consuming process which makes a more comprehensive search including more search terms, languages other than English or including unpublished outbreak reports.

In conclusion, the reviewed papers describe a powerful outbreak investigation method. It holds promise of developing into a routinely applied tool provided that more automated procedures reducing labour for retailers as well as epidemiologists and ways of making data more available could be found. We envision a near future where food purchase information in some countries can be automatically collected from cases of food-borne infections and compared with that of a large panel of non-cases. Such a system would significantly improve source-identification and risk-assessment efforts, facilitate efficient trace back enabling timely interventions and reduce illness caused by food-borne pathogens.

Acknowledgements
This work was done as part of the NOVA project under the One Health EJP, a European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 773830.

FTM received grants from Helsefonden and from Nordforsk.

Conflict of interest
None declared.

Authors’ contributions
Frederik T Møller performed the publication database search. Frederik T Møller and Steen Ethelberg reached a conclusion on each reviewed paper and drafted the manuscript while Kåre Melbak revised it critically. All authors made substantial contributions to the conception or design of the work and interpretation of data for the work.

References

12. Bedard B, Kennedy BS, Weimer AC. Geographical information may share and adapt the material, but must give appropriate credit if changes were made.

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2018.