Eighth * Eurosurveillance Scientific Seminar

Infectious Disease POC Testing: Ready or Not, Here It Comes Susan M. Poutanen MD MPH FRCPC Sinai Health System/University Health Network, University of Toronto, Toronto, Canada

November 27, 2019

Industry Disclosures 2014-2019

- Advisory Board/Consultant
 - Merck
 - Verity
 - Cipher
 - Paladin Labs
- Research Support
 - Accelerate Diagnostics
 - bioMérieux
 - Bio-Rad

- Honorarium – Merck
- Travel Reimbursement
 Merck
 - Copan

None of these industry disclosures relate to point-of-care devices

Objectives

By the end of this session, you should be able to:

- Describe the role of infectious disease POC testing along with predicted benefits
- 2. Illustrate **quality and ethical challenges** regarding the use of infectious disease POC tests
- 3. List **guidance documents** regarding the use of infectious disease POC to assure quality results

Paradigm Shift in Microbiology

NEN TECHNOLOGIES

- O Automation and Smart Incubation
- Rapid Microbial Identification
- B Rapid Antimicrobial Susceptibility Testing
- Automated Random Access Syndromic Assays
- 9 Point-of-Care Testing

BEFORE: 8-4pm LAB

NOW: 24/7 LAB

NOW/FUTURE: 24/7 LAB & POC

POC Testing Definition

1. Medical diagnostic testing at or near the **point** of care—that is, at the time and place of patient care.

2. POC laboratories set up in remote regions to facilitate access to testing.

POC Testing – Current State

- Previously lateral flow immunoassay based
- Now nucleic acid amplification based assays
- > Many available but primarily target:
 - 1. GAS 2. Influenza 3. HIV 4. Hepatitis C
- Performed in clinics, emergency departments, ICUs, some pharmacies
- Primarily performed by physicians as well as pharmacists, nurses

Disease or pathogen	Principle	Measurand	No. of tests ^b
Group A Streptococcus (GAS)	LFIA	GAS antigen	79
	Molecular	Bacterial DNA	2
Infectious mononucleosis	LFIA	Heterophile antibodies	44
Helicobacter pylori	LFIA	IgG antibodies to <i>H. pylori</i>	35
	Biochemical	Urease enzyme activity	7
	LFIA	H. pylori antigen	1
Influenza types A and B	LFIA	Influenza type A and B antigens	12
	Molecular	Viral RNA	2
	Biochemical	Neuraminidase enzyme activity	1
Respiratory syncytial virus	LFIA	Respiratory syncytial virus antigen	9
HIV-1 and HIV-2	LFIA	Antibodies to HIV-1/2	4
	LFIA	HIV-1 antigen, antibodies to HIV-1/2	1
HIV-1	LFIA	Antibodies to HIV-1	4
Influenza type A	LFIA	Influenza type A antigen	4
Influenza type B	LFIA	Influenza type B antigen	4
Urinary tract infections ^d	Biochemical	Catalase enzyme activity	2
Influenza A/B and RSV	Molecular	Viral RNA	2
Trichomonas vaginalis	LFIA	T. vaginalis antigen	2
Adenovirus	LFIA	Adenoviral antigen	2
Borrelia burgdorferi (Lyme disease)	LFIA	IgG and IgM antibodies to B. burgdorferi	1
Treponema pallidum (syphilis)	LFIA	Antibodies to T. pallidum	1
Hepatitis C virus	LFIA	Antibodies to hepatitis C virus	1
Gardnerella vaginalis, Bacteroides spp., Prevotella spp., and Mobiluncus spp.	Biochemical	Sialidase enzyme activity	1

TABLE 1 Examples of CLIA-waived tests for infectious diseases^a

Kozel et al. JCM 2017;(8):2313-20.

POC Testing Regulations

- US FDA:
 - Categorizes in vitro diagnostics (IVD) tests by their <u>complexity</u>
 - CLIA-Waived*
 - Moderate complexity
 - High complexity

* insignificant risk of an erroneous result:
 > Methods so simple & accurate that chance of erroneous result negligible
 > No unreasonable risk of harm to the patient if performed incorrectly

Lateral Flow Immunoassay with optical reader (results in 5 min)

Lateral Flow Immunoassay (results in 20 min)

NEAR* based (results in <15 min)

(*Nicking Enzyme Amplification Reaction)

Alere i, Abbott

PCR based (results in ~20 min)

cobas Liat System, Roche

- 1. Increased menu to include more targets
- NAAT based technologies
- Novel methodologies
- 2. Focus on syndromic testing
- Performed in increasing numbers of clinics, emergency departments, ICUs, pharmacies
- Performed by physicians, pharmacists, nurses, other health care providers, patients

 Increasing use of POC

 Increasing use of POC

 Reducing role of laboratory "proper'

 Increasing use of wearable POC with real-time data analysis & artificial intelligence

Wang et al. Trends in Biotechnology 2016;34(11):909-921

Motivators – Predicted Benefits

- Reduced turn-around-times
- Accessibility
- Presumed improved outcomes

Motivators – Predicted Benefits

Clinical Impact of Rapid Point-of-Care PCR Influenza Testing in an Urgent Care Setting: a Single-Center Study

Robert C. Benirschke,^{a,b} Erin McElvania,^a Richard B. Thomson, Jr.,^{a,b} Karen L. Kaul,^{a,b} Sanchita Das^{a,b}

POC flu A/B 20min POC (Liat) was associated with:

 ^↑ antiviral use for those with influenza (92 vs 70%) (P<0.05)
 </p>

 - ↓ antiviral use in those without influenza (2 vs 25%) (P<0.005)

Benirschke et al. JCM 2019:57(3):e01281-18

Challenges – Quality Management

- Device Selection
- Facilities
- Purchasing/Inventory
- Test Verification
- Operators
- Training
- Competency

- Documentation
- Quality Assurance
- Biosafety
- Critical Result Reporting
- Public Health Reporting
- ➢Enforcement
- ≻Oversight

Challenges – Ethics

 Ethics – potential for for-profit motivation (pharmacists, physicians)

Posted: Aug 15, 2016 5:00 AM MT | Last Updated: August 15, 2016

On-the-spot strep throat tests offered at some Shoppers Drug Mart pharmacies

Some experts worry about accuracy of swabs, available in Alberta, B.C. and Nova Scotia

Health

Pharmacies want to give \$15 strep throat tests – but pediatricians say they're not accurate enough for kids Medical guidelines say rapid point-of-care tests shouldn't

be used to rule out strep in children

November 13, 2018

Comparison of the Alere i Strep A Test and the BD Veritor System in the Detection of Group A *Streptococcus* and the Hypothetical Impact of Results on Antibiotic Utilization

Gregory J. Berry,^{a*} Catherine R. Miller,^a Mariana Moreno Prats,^a Christopher Marquez,^a Olajumoke O. Oladipo,^{a*} Michael J. Loeffelholz,^a John R. Petersen^a

^aDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

BD Veritor System (lateral flow immunoassay): Sn = 76.2%; Sp = 93.6%

Berry et al. J. Clin Micro 2018;56(3): e01310-17

Comparison of the Alere i Strep A Test and the BD Veritor System in the Detection of Group A *Streptococcus* and the Hypothetical Impact of Results on Antibiotic Utilization

Gregory J. Berry,^{a*} Catherine R. Miller,^a Mariana Moreno Prats,^a Christopher Marquez,^a Olajumoke O. Oladipo,^{a*} Michael J. Loeffelholz,^a John R. Petersen^a

^aDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

• BD Veritor System (lateral flow immunoassay):

Sn = 76.2%; Sp = 93.6%

• Alere i Strep A Test (NEAR):

Sn = 100 %; Sp = 91.3%

Berry et al. J. Clin Micro 2018;56(3): e01310-17

Convenience, at a cost? Pharmacies offering tests and treatment for strep, flu

Convenience, at a cost? Pharmacies offering tests and treatment for strep, flu

Convenience, at a cost? Pharmacies offering tests and treatment for strep, flu

Chapter 3 Ministry of Health and Long-Term Care Section 3.07 **Laboratory Services** in the Health Sector

Auditor General Report, Ontario, Dec 2017

Laboratory Services Ministry of Health and Long-Term Care in the Health Sector

Multiple Concerns Noted Based on 2015/2016 Data:

- 1. Limited Investigation of Large In-Office Lab Test Volumes and Billings by MDs
 - POC tests make up 4% of all laboratory testing
 - 50% of POC tests are ordered by <1% physicians
 - 15 highest billers billed \$600,000 to \$1.4 million CDN on 75,000 to 182,000 tests (average physician billed \$4,700 CDN for 600 tests)

Auditor General Report, Ontario, Dec 2017

Laboratory Services Ministry of Health and Long-Term Care in the Health Sector

Multiple Concerns Noted Based on 2015/2016 Data:

- 2. No Licensing and Quality Management of Physicians' In-Office Lab Testing
 - Noted in previous audits in 1995 and 2005 but the government has not taken action

Auditor General Report, Ontario, Dec 2017

POC Accreditation Requirements

Centre for Accreditation

Institute for Quality Management in Healthcare (IQMH) ISO 15189 *Plus*[™] Point-of-Care Testing Accreditation Requirements

Version 7.1, April 2017

IQMH ISO15189 Plus POC Testing Accreditation Requirements (2017)

MINISTRY OF HEALTH AND LONG-TERM CARE

Point-of-Care Testing Policy

The policy applies to:

- 1. hospitals with a licensed laboratory,
- 2. hospitals without a licensed laboratory,
- 3. long-term care homes.

The policy is supplemented by a **POCT Guidance Document** specific to each type of facility.

Oversight must be completed by laboratory personnel.

MOHLTC POC Testing Policy, 2007

Review

Point-of-care testing: A position statement from the Canadian Society of Clinical Chemists

P.M. Yip^a, A.A. Venner^b, J. Shea^c, A. Fuezery^d, Y. Huang^e, L. Massicotte^f, N. Tetreault^g, C. Tomalty^h, J.L.V. Shaw^{i,*}

Yip et al. Clin Biochemistry 2018;53:156-9.

Changing Diagnostic Paradigms for Microbiology

American Academy of Microbiology Report on POC Microbiology, 2017

Challenges with Enforcement

Guidelines must be enforced in order to assure quality POC testing

- Must reach all healthcare personnel who may be interested in using POC
- Cannot be done through the laboratory

Expert Consensus Statement for Microbiology Point of Care Testing

- 1. ENFORCEMENT & REGULATION
- 2. LABORATORY OVERSIGHT
- 3. DEVICE SELECTION
- 4. FACILITIES
- 5. PURCHASING/INVENTORY AND EQUIPMENT
- 6. TEST VERIFICATION
- 7. TEST OPERATORS
- 8. TRAINING
- 9. INFORMATION MANAGEMENT AND DOCUMENTATION
- **10. QUALITY ASSURANCE**
- 11. INFECTION PREVENTION AND CONTROL/BIOSAFETY AND BIOSECURITY
- 12. CRITICAL RESULTS REPORTING AND NOTIFIABLE DISEASES
- 13. ETHICS AND PROFESSIONAL CONDUCTS

AMMI Canada Initiative

Preventing and treating infectious diseases Prévenir et traiter les infections

Possible Solution

- Consensus document provided to local professional licensing bodies and hospitals
- Healthcare professional recertification and reappointments require:
 - 1. Documentation of use of POC tests
 - 2. Documentation of laboratory or expert oversight or relevant updated certified training

"The best way to predict the future is to create it"

FUTURE

Peter Drucker, Austrian-born Professor of Management, New York University Graduate School of Business

Eighth * Eurosurveillance Scientific Seminar

Infectious Disease POC Testing

