

Immune amnesia following infections with measles virus

perspective from a measles outbreak in the Netherlands

Rory D de Vries, PhD

Assistant Professor Department of Viroscience Erasmus MC, Rotterdam the Netherlands

Measles: the disease

• **Highly infectious:** R⁰: 12-18

The number of **people** that **one sick person** will infect (on average) is called R_0 . Here are the maximum R_0 values for a few viruses.

Erasmus MC

Measles: the disease

- Highly infectious: R⁰: 12-18
- Long incubation time: 9-19 days
- Symptoms:
 - rash, fever, cough, conjunctivitis
 - Immunosuppression: opportunistic infections
 - e.g. pneumonia, GI tract disease, otitis media
 - Rare but severe neurological complications
- Estimated global mortality: 207,500 deaths/yr (2019)

Cellular receptors for measles virus

I FTTFR

letters to nature

SLAM (CDw150) is a cellular receptor for measles virus

Hironobu Tatsuo*, Nobuyuki Ono*, Kotaro Tanaka & Yusuke Yanagi

Adherens junction protein nectin-4 is the epithelial receptor for measles virus

MV is a Lymphotropic, Myelotropic and Epitheliotropic virus

- 2000: Signalling Lymphocyte Activation Molecule (SLAM, CD150)
 - Expressed on subsets of thymocytes, macrophages, dendritic cells and lymphocytes
- **2011**: Nectin-4
 - Expressed on epithelial cells

MV-GFP viruses and animal models

Recombinant measles virus: Khartoum, Sudan (KS)

Lemon et al. PLOS Pathog 2011; Davis et al., CHM 2014

El Mubarak et al., J Gen Virol 2007

Dissemination throughout the host

Study objective (II): how is MV disseminated throughout the host?

Erasmus MC

edical Center Rotte

Dissemination via lymphoid / myeloid cells

OPEN 3 ACCESS Freely available online

PLOS PATHOGENS

Erasmus *N*

2 alms

Predominant Infection of CD150⁺ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques

Rik L. de Swart^{1*}, Martin Ludlow^{2®}, Lot de Witte^{3®}, Yusuke Yanagi⁴, Geert van Amerongen¹, Stephen McQuaid², Selma Yüksel¹, Teunis B. H. Geijtenbeek³, W. Paul Duprex², Albert D. M. E. Osterhaus¹

1 Department of Virology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands, 2 School of Biomedical Sciences, Queen's University of Belfast, United Kingdom, 3 Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands, 4 Department of Virology, Kyushu University, Fukuoka, Japan

- During peak virus replication MeV mainly targets lymphoid tissues
- Massive MeV replication in submucosal tissues

Measles immune suppression

Study objective: characterize mechanism of MV immunosuppression

Erasmus MC

zam

- Study design:
 - Percentage MV-infected lymphocytes in blood low (max 1-5%)?
 - Functional impairment of lymphocytes?
 - Functional impairment of antigen presenting cells?

MV targets lymphoid tissues in vivo

- MV infection of lymphocytes is mediated by CD150
- CD150 expression is mainly expressed on memory lymphocytes
- MV infection in PBMC < lymphoid tissues < subpopulations in lymphoid tissues</p>
- <u>Hypothesis</u>: infection and subsequent depletion of memory lymphocytes can explain measles immune suppression and increased susceptibility to opportunistic infections

MV infection of memory T cells in vivo

zam

Lymphocyte depletion in lymphoid tissue

Erasmus MC sity Medical Center Rotter

Immune amnesia model

How to explain short-duration lymphopenia but long duration immune suppression?

- <u>Immune suppression</u>: MeV infects and depletes pre-existing CD150⁺ memory cells (shown in red), resulting in <u>immune amnesia</u>
- <u>Immune activation</u>: MeV induces a strong MV-specific immune response, resulting in expansion of new lymphocytes (shown in green) which <u>mask depletion</u> of pre-existing cells
- New immune cells are effective against measles, but cannot fight common infectious diseases

PLoS Pathog 2012, 2014; Science 2015

Duration of measles immune suppression

Higher incidence rates of GP consultations after measles

Figure 2 Consultations in measies patients and matched controls. Incidence rates of consultations in children diagnosed with measies (blue lines) or matched controls (red lines) per 10 person-years, plotted by time (in months) before or after diagnosis of measies. The vertical dotted line indicates the time point of diagnosis in the measies patients. The shaded areas represent 95% Cls.

Conclusion Following measles, children had increased rates of diagnosed infections, requiring increased prescribing of antimicrobial therapies. This population-

based matched cohort study supports the hypothesis that measles has a prolonged impact on host resistance to non-measles infectious diseases.

Gadroen K, et al. BMJ Open 2018;8:e021465. doi:10.1136/bmjopen-2017-021465

Higher incidence rates of infections after measles

Figure 3 | Infections in measles patients and matched controls. Incidence rates of Infections in children diagnosed with measles (blue lines) or matched controls (red lines) per 10 person-years, plotted by time (in months) before or after diagnosis of measles. The vertical dotted line indicates the time point of diagnosis in the measles patients. The shaded areas represent 95% Cls.

Higher incidence rates of antibiotic prescription incidence rates after measles

Figure 4 | Anti-Infective prescriptions in measles patients and matched controls. Incidence rates of anti-Infective prescriptions in children diagnosed with measles (buie lines) or matched controls (red lines) per 10 person-years, plotted by time (in months) before or after diagnosis of measles. The vertical dotted line indicates the time point of diagnosis in the measles patients. The shaded areas represent 95% Cls.

Clinical study in unvaccinated children

- Title: Studies into the mechanism of measles-associated immune suppression during an outbreak of measles in The Netherlands (NL45323.078.13)
- **Objective:** Validate immune suppression model in measles patients
- Study design: Observational cohort study
- **Study population:** Unvaccinated children in families, 4-17 years of age

Cohort A: early acute measles

Cohort B: paired PBMC

Cohort B: paired PBMC

Erasmus MC University Medical Center Rotterdam

Effect on antibody repertoire

Systematic viral epitope scanning (VirScan)

- Comprehensive analysis of antibodies in human sera
- Bacteriophage display to create a uniform, synthetic representation of peptide epitopes comprising the entire human virome
- High-throughput DNA sequencing reveal peptides recognized y antibodies
- Antibodies to short contiguous epitopes (not comformational)

Effect on antibody repertoire

Erasmus MC University Medical Center Rotterdam

Effect on antibody repertoire

Subset of children had increased hits for particular pathogens

- Clustering of restoration by postal code / school / household
- Reconstruction of immune memory on a per pathogen basis
- Only respiratory viruses clustered spatially

Conclusions (4)

- MV preferentially infects memory cells
- MV decimates lymphoid organs
- Lymphocyte subsets are preferentially depleted after measles
- Antibody repertoire is significantly reduced after measles

Acknowledgements

Erasmus MC department Viroscience

Brigitta Laksono Joyce Verburgh Albert Osterhaus David van de Vijver Marion Koopmans **Rik de Swart**

Erasmus MC department Pediatrics

Eline Visser Pieter Fraaij Annemarie van Rossum

Erasmus MC department Immunology

Diana van den Heuvel Menno van Zelm

Erasmus MC department of General Practice Arthur Bohnen

Erasmus MC department of Medical Informatics Kartini Gadroen Caitlin Dodd Mirjam Sturkenboom

RIVM Bilthoven / GGD Gelderland Zuid Helma Ruijs

ARC Research Council

Princeton University Bryan Grenfell

Harvard University Michael Mina Stephen Elledge

Sanger Institute Velislava Petrova Paul Kellam Colin Russell

University of Pittsburgh Paul Duprex