20 YEARS

of communicating facts and figures

1996–2016

• Featuring a selection of articles published between 1996 and 2016

www.eurosurveillance.org
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe</td>
<td>48</td>
</tr>
<tr>
<td>2008</td>
<td>Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe</td>
<td>48</td>
</tr>
<tr>
<td>2009</td>
<td>New influenza A(H1N1) virus infections in Spain, April-May 2009</td>
<td>60</td>
</tr>
<tr>
<td>2010</td>
<td>Spotlight on measles 2010: An epidemiological overview of measles outbreaks in Poland in relation to the measles elimination goal</td>
<td>64</td>
</tr>
<tr>
<td>2011</td>
<td>Large and ongoing outbreak of haemolytic uraemic syndrome, Germany, May 2011</td>
<td>70</td>
</tr>
<tr>
<td>2012</td>
<td>Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013</td>
<td>73</td>
</tr>
<tr>
<td>2013</td>
<td>Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013</td>
<td>80</td>
</tr>
<tr>
<td>2014</td>
<td>Concurrent outbreaks of dengue, chikungunya and Zika virus infections – an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014</td>
<td>95</td>
</tr>
<tr>
<td>2015</td>
<td>Working group of Ebola outbreak investigation team of Madrid. First secondary case of Ebola outside Africa: epidemiological characteristics and contact monitoring, Spain, September to November 2014</td>
<td>103</td>
</tr>
<tr>
<td>2016</td>
<td>Migration-related tuberculosis: epidemiology and characteristics of tuberculosis cases originating outside the European Union and European Economic Area, 2007 to 2013</td>
<td>109</td>
</tr>
<tr>
<td>2001</td>
<td>Bioterrorism preparedness and response in European public health institutes</td>
<td>21</td>
</tr>
<tr>
<td>2002</td>
<td>Commissioner again pledges European centre for disease control by 2005</td>
<td>28</td>
</tr>
<tr>
<td>2003</td>
<td>Retrospective cohort study among German guests of the Hotel ‘M’, Hong Kong</td>
<td>29</td>
</tr>
<tr>
<td>2004</td>
<td>West Nile outbreak in horses in Southern France: September 2004</td>
<td>31</td>
</tr>
<tr>
<td>2005</td>
<td>Surveillance of listeria infections in Europe</td>
<td>33</td>
</tr>
<tr>
<td>2006</td>
<td>Clostridium difficile PCR ribotype 027 outbreaks in the Netherlands: recent surveillance data indicate that outbreaks are not easily controlled but interhospital transmission is limited</td>
<td>40</td>
</tr>
<tr>
<td>2007</td>
<td>Reasons for the sharp increase of genital chlamydia infections reported in the first months of 2007 in Sweden</td>
<td>42</td>
</tr>
</tbody>
</table>
20 years of communicating facts and figures

Ines-Steffens1
1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
Correspondence: Ines-Steffens (ines.steffens@ecdc.europa.eu)

Since 1995, when a first pilot issue was published, Eurosurveillance has provided the European public health community with a platform to exchange relevant findings on communicable disease surveillance, prevention and control. From the outset, the journal has been open access and has not charged article processing costs.

In 2016, we celebrate 20 years of regular publication. A glimpse at the Eurosurveillance archives demonstrates how the journal has matured over the years in terms of format and content. It shows, for example, the merging of the formerly weekly and monthly issues, acceptance of the ‘weekly’ for indexing in PubMed/MEDLINE and the evolution from a print and online journal to a full online journal and a gradual geographical expansion of the origin of published articles.

However, already from the start, topics covered were remarkably similar to those that are high on the public health agenda today. One of the articles in the pilot issue in 1995 gave an overview of immunisation schedules in Europe [1], a topic still of interest nowadays. Our aim to provide insightful and balanced information on vaccination was shown after the later retracted publication by Wakefield et al. that included subsequently falsified claims of an association of measles mumps and rubella vaccines with autism [2]. Just one week afterwards, Eurosurveillance ran a commentary in its weekly edition, followed, two months later, by one entitled ‘Further evidence that MMR vaccine, inflammatory bowel disease, and autism are not linked’ [3,4]. The public health challenges that Europe faces in reaching the measles elimination goal in Europe were marked in a ‘Spotlight on measles’ series on ongoing outbreaks and their implications [5].

Since the early days of the journal, surveillance network outputs and outbreak reports have been regular content [6], with topics such as HIV/AIDS and other sexually transmitted infections [7-9], emerging (vector-borne) diseases [10], influenza [11], antimicrobial resistance [12], tuberculosis [13,14] and food- and waterborne diseases [15]. As illustrated by the following subjective selection of articles from the past two decades, public health events and other topics with general public health relevance have also been covered, such as the preparedness for bioterrorism after the 11 September attacks in 2001 in the United States [16], the outbreak of severe acute respiratory syndrome (SARS) [17], the 2009 influenza pandemic [18], the emergence of Middle East respiratory syndrome (MERS) [19], as well as the setup of the European Programme for Intervention Epidemiology Training (EPIET) programme [20] and discussions about establishing a European Centre for Disease Control [21].

Rapid communications were an early feature for the journal at a time when rapid processing of articles was not a common element of scientific journals. The evolution, growth and opportunities offered by the Internet facilitated timely communication and fast turnaround times tremendously. The initially short news-like items are the element of the journal that has most evolved. Today, rapid communications are well-recognised short scientific dispatches. Several of them are among our most highly cited articles, but more importantly, their value has been in their impact on public health practice.

While we have been able to present ‘firsts’ on several occasions [22,23] and track epidemics and emerging diseases in a timely manner [24], we are publishing an increasing number of (systematic) reviews to provide sound evidence and support for decisionmaking [25]. Working with Eurosurveillance is rewarding. The journal has many supporters and collaborators in Europe and beyond whom we are not able to name individually. We would like to express our gratitude to them and also thank our board members, colleagues and publisher wholeheartedly for their continued support. Our 20th anniversary is a reason to celebrate. We marked the occasion on Wednesday 30 November with a lunchtime seminar ‘20 years of communicating facts and figures in a changing environment’, held on the margins of the European Scientific Conference on Applied Infectious Diseases Epidemiology (ESCAIDE). Two eminent speakers, David Heymann and Lawrence Madoff, highlighted changes in sharing information about communicable diseases from a public health perspective over the past 20 years. In addition, we present this selection of articles as a snapshot of the journal’s publications and evolution. The topics covered match those that have remained relevant over two decades and we hope our readers will enjoy browsing through this compilation.
The WHO Regional Office for Europe organises meetings on immunisation programmes for national experts from all countries of the European Union (EU) and data on the incidence of diseases and immunisation coverage are regularly submitted to WHO. We have analysed immunisation schedules from information included in national plans developed by each country. It is difficult to keep this information up to date since immunisation policies are often adapted in response to epidemiological changes and the development of new vaccines. Furthermore, policies may vary between regions within the same country. Belgium, Denmark, Italy, and Spain have decided not to use or to discontinue BCG immunisation. Other countries immunise children at high risk only: neonates in Austria, Germany, and Luxembourg, or at 6 months of age in the Netherlands and Sweden. Some countries immunise children at a particular age: at birth in Finland, Ireland, and Portugal, at 6 years in France and Greece, and at 12 years in the United Kingdom. France and the United Kingdom immunise high-risk children at birth.

In addition to this range of policies on primary immunisation, tuberculin tests and reimmunisation of children with negative skin reactions are carried out at the age of 10 and 15 in France, between 13 and 14 years and 20 and 25 years in Greece, 12 years in Ireland, 5 and 11 years in Portugal. In France, a maximum of two intradermal immunisations is recommended.

Diphtheria, Tetanus, Pertussis (DPT), and Poliomyelitis

Although diphtheria, tetanus, pertussis and polio immunisations are generally combined in young children, vaccination schedules vary so much that it is clearer to present them individually.

Diphtheria

All the countries of the European Union give at least three doses of diphthetia vaccine during the first two years of life. France, Greece, Ireland, Luxembourg, Portugal, and the United Kingdom start at 2 months; Austria, Belgium, Finland, Germany, Italy, the Netherlands, Spain, and Sweden at 3 months; and Denmark at 5 months. Consecutive injections are usually separated by one or two months, but there are nine months between the second and third doses in Denmark. Booster doses are given in most countries one year after the third injection, then approximately every 5 years. Childhood immunisation stops at the age of 6 years in Belgium, Ireland, Italy, and Portugal, 10 years in the Netherlands and Sweden, 15 years in Austria, Greece, and Luxembourg, 15 to 19 years in the United Kingdom, and 18 to 20 years in France. Only Austria, Finland and Germany systematically maintain adult immunity with tetanus toxoid and a low dose of diphtheria vaccine (th) every 10 years. The recent epidemic of diphtheria in the former Soviet Union led WHO to recommend systematic immunisation of travellers to these states.

Tetanus

Tetanus and diphtheria vaccinations are always given in combination to young children. Primary immunisation of children consists of four doses of tetanus antitoxin in their first 2 years in Austria, Belgium, Finland, France, Germany, Greece, Italy, Luxembourg, the Netherlands, Portugal, and Spain, but only three doses in Denmark, Ireland, Sweden, and the United Kingdom. Children in the United Kingdom receive a fourth dose at school entry. A booster dose is given at the age of 15 to 16 years. Boosters of tetanus vaccine in adults are given more systematically than for diphtheria: in addition to Austria, Finland and Germany, they are recommended every 10 years in the French, Greek and Portuguese programmes.

Pertussis

Denmark, Ireland, Spain, and the United Kingdom give three doses of pertussis vaccine in the first year of life. Austria, Belgium, Finland, France, Germany, Greece,
TABLE 1
Calendriers vaccinaux dans l’Union Européenne - Août 1995 (w = week / m = month / y = year)

<table>
<thead>
<tr>
<th>Countries</th>
<th>BCG</th>
<th>DPT</th>
<th>DT</th>
<th>TT</th>
<th>OVP</th>
<th>IPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>At birth 1</td>
<td>3,4,5,16-18 m</td>
<td>7,14-15 y</td>
<td>Every 10 y adults/pref.th 4</td>
<td>4,5,6,7,16-18 m</td>
<td>7,14-15 y</td>
</tr>
<tr>
<td>Belgium</td>
<td>3,4,5,13 m</td>
<td>6 y</td>
<td>16 y</td>
<td>3,5,13 m; 6 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td>5,6,15 m 5</td>
<td>2,3,4 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>At birth 1</td>
<td>3,4,5,20-24 m</td>
<td>11-13 y th 4</td>
<td>6,12,20-24 m; Every 10 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>At birth 1 6,10,14,18 y</td>
<td>2,3,4,18 m</td>
<td>6,11,15,18 y</td>
<td>Every 10 y</td>
<td>2,3,4,18 m; 6,11,15 y</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>At birth 1</td>
<td>3,4,5 m; 2 y</td>
<td>6,11-15 y</td>
<td>Every 10 y</td>
<td>3,5 m; 2,10 y</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>5-6y;13-14y; 20-25y</td>
<td>2,4,6,18 m; 4 y</td>
<td>14-16 y</td>
<td>Every 10 y</td>
<td>2,4,6,18 m; 4 y</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>At birth; 12 y</td>
<td>2,3,4 m</td>
<td>5 y</td>
<td>2,3,4 m; 5 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>3,4,7,18 m; 5 y</td>
<td>ou 3,4,7,18 m; 5 y</td>
<td></td>
<td>3,4,10 m; 3 y</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>At birth 1</td>
<td>2,3,4,18 m</td>
<td>5,15 y</td>
<td></td>
<td>3,4,10,18 m; 3 y</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>6 m 1</td>
<td>3,4,5,11 m</td>
<td>4,9 y</td>
<td></td>
<td>3,4,5,11 m; 4,9 y</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>At birth ; 5,11 y</td>
<td>2,4,6,18; 5 y</td>
<td>Every 10 y</td>
<td></td>
<td>2,4,6 m; 5 y</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>3,5,7 m</td>
<td>18 m 3</td>
<td>6,14 y</td>
<td></td>
<td>3,5,7,18 m; 6,14 y</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>After 6 m 1</td>
<td>3,5,12 m;10 y</td>
<td></td>
<td></td>
<td>3,5,12 m; 5-6 y</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>At birth 1; 12 y</td>
<td>2,3,4 m</td>
<td>4 y, 16 y, th (4)</td>
<td></td>
<td>2,3,4 m; 4,15 y</td>
<td></td>
</tr>
</tbody>
</table>

1 for at risk only
2 pertussis vaccine given alone at 5, 9w and 10m
1 DPT in a few autonomous communities
4 th Tetanus and low title Diphteria associated vaccin

TABLE 2
Calendriers vaccinaux dans l’Union Européenne - Août 1995 (w = week / m = month / y = year)

<table>
<thead>
<tr>
<th>Countries</th>
<th>MMR</th>
<th>Measles</th>
<th>Rubella</th>
<th>Mumps</th>
<th>Hib/Hib</th>
<th>VHB/HBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>14 m;6 y</td>
<td>Girls : 13 y</td>
<td></td>
<td></td>
<td>3,4,5,14-18 m</td>
<td>¹ et ²</td>
</tr>
<tr>
<td>Belgium</td>
<td>15 m</td>
<td></td>
<td></td>
<td></td>
<td>3,4,5,13 m</td>
<td>¹</td>
</tr>
<tr>
<td>Denmark</td>
<td>15 m;:12 y</td>
<td></td>
<td></td>
<td></td>
<td>5,6,16 m</td>
<td>¹</td>
</tr>
<tr>
<td>Finland</td>
<td>14-18 m; 6 y; 11-13 y 5</td>
<td></td>
<td></td>
<td></td>
<td>4,6,14-18 m</td>
<td>¹ et ²</td>
</tr>
<tr>
<td>France</td>
<td>12 m</td>
<td>9 m 4</td>
<td>Girls : 11 y</td>
<td>11 y</td>
<td>2,3,4,15 m</td>
<td>Infants 12y; ¹ and ²</td>
</tr>
<tr>
<td>Germany</td>
<td>15 m; 6 y</td>
<td>Girls : 11,15 y</td>
<td></td>
<td></td>
<td>3,5,15 m</td>
<td>¹</td>
</tr>
<tr>
<td>Greece</td>
<td>15 m; 10 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>¹ et ²</td>
</tr>
<tr>
<td>Ireland</td>
<td>15 m; 12 y</td>
<td></td>
<td></td>
<td></td>
<td>2,4,6 m</td>
<td>¹</td>
</tr>
<tr>
<td>Italy</td>
<td>15 m</td>
<td>Girls : 11 y</td>
<td></td>
<td></td>
<td>3,5,15 m</td>
<td>¹</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>15 m</td>
<td></td>
<td></td>
<td></td>
<td>3,4,10 m; 12 y</td>
<td>¹</td>
</tr>
<tr>
<td>Netherlands</td>
<td>14 m; 9 y</td>
<td></td>
<td></td>
<td></td>
<td>3,4,5,11 m</td>
<td>¹ et ²</td>
</tr>
<tr>
<td>Portugal</td>
<td>15 m; 11 y</td>
<td></td>
<td></td>
<td></td>
<td>¹</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>15 m; 11 y</td>
<td></td>
<td></td>
<td></td>
<td>12y ³</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>18 m; 12 y</td>
<td></td>
<td></td>
<td></td>
<td>3,5,12 m</td>
<td>¹</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>12 m</td>
<td>Girls : 10 y ¹</td>
<td></td>
<td></td>
<td>2,3,4 m</td>
<td>¹ et ²</td>
</tr>
</tbody>
</table>

¹ for at risk only
² Infants born of HbsAg positive mother
³ in a few autonomous communities
⁴ for children living in collectivities
⁵ If MMR not already given
Luxemburg and the Netherlands recommend four doses; three in the first and one in the second year. Italy and Portugal recommend 5 doses: 3 in the first year, one in the second year, and a booster in the sixth year. Sweden does not immunise against pertussis, but immunisation policies may change in the light of recent results of clinical trials of acellular vaccines in Sweden and Italy which showed acellular pertussis vaccines to be more protective and elicit fewer adverse reactions than a whole cell vaccine.

Poliomyelitis
All countries vaccinate against poliomyelitis but some recommend the inactivated injectable vaccine (IPV) (Finland, France, the Netherlands, and Sweden) and others the live oral polio vaccine (OPV) (Austria, Belgium, Germany, Greece, Ireland, Italy, Luxemburg, Portugal, Spain and the United Kingdom). In Denmark IPV is recommended at 5, 6, and 15 months and OPV at 2, 3, and 4 years of age. In Europe the first vaccination is given between 2 and 6 months. Intervals between the doses of the primary course vary from one country to another, between four and six weeks. Booster doses are given up to the age of 6 years in Belgium, Denmark, Greece, Ireland, Italy, Luxemburg, Portugal, and Sweden; 10 years in Germany, and the Netherlands; 14 to 15 years in Austria, Spain, and the United Kingdom; in Finland every 10 years or every 5 years when travelling to polio endemic areas, and adulthood in France.

Measles, Mumps, and Rubella (MMR)
All countries in the European Union have introduced MMR immunisation in the second year in their child immunisation schedules. Belgium, France, Italy, Luxemburg, and the United Kingdom currently recommend only one dose. In 1994 analysis of surveillance data, including mathematical modelling, in the United Kingdom led the Department of Health to conduct a national campaign of vaccination against measles and rubella for children aged 5 to 16 years of age to prevent a measles epidemic predicted for 1995 and 1996. Most of the other countries in Europe recommend two doses of combined MMR vaccine. The second dose is given at the age of 6 in Austria, Finland and Germany and between 9 and 10 in Denmark, Greece, Ireland, the Netherlands, Portugal, Spain, and Sweden. Among the countries that have not yet included a second dose of MMR vaccine, three recommend immunisation against rubella for girls aged 12 to 13 and, in France, immunisation against mumps is recommended for all children at 11 years of age.

Haemophilus influenzae type b (Hib)
Immunisation against Hib infections was first introduced in Finland, but other European countries followed as soon as the conjugate PRP-T became available. In Austria, Denmark, Finland, Germany, Ireland, Luxemburg, Sweden, and the United Kingdom three doses are given, the first between 2 and 5 months and the third between 4 and 18 months. In Belgium, France, and the Netherlands four doses are given starting at 2 or 3 months. The first 3 doses are each separated by a month, and the fourth is given at 11, 13, or 15 months. Greece, Italy, Portugal, and Spain have not introduced routine immunisation against Hib.

Hepatitis B virus (HBV)
Most countries in the European Union immunise health care workers and “high risk” groups. Austria, Finland, France, Italy, Greece, Netherlands and the United Kingdom also immunise children born of HBsAg positive mothers. Italy and France now immunise all infants and cohorts of children aged 10 to 12 years for 12 years in order to quickly increase the protection in young people. In Spain, some autonomous communities have chosen to immunise infants and others have chosen to immunise children aged 10 to 12 years. Ireland and Sweden have no systematic immunisation policy against hepatitis B.

Conclusion
All countries in the EU share the same aims for the control, elimination, or eradication of vaccine preventable diseases, as defined by WHO. Important variations exist in strategies for child immunisation and programmes set up to achieve these aims. All countries aim to immunise all children against hepatitis, tetanus, poliomyelitis, measles, rubella, and mumps by the age of 2 years. On the other hand, immunisation against pertussis, Hib, and hepatitis B are not systematically applied, and adult immunisation policies are still developing.

Immunisation schedules and policies for each country depend more on health care systems, established immunisation practices, and the results of national surveys than on real differences in the epidemiology of infectious diseases. Harmonisation of immunisation policies within the EU could be considered while maintaining some flexibility in schedules. It is difficult to compare the effectiveness of immunisation programmes, particularly their impact on morbidity and mortality of the target diseases, due to variations in the epidemiological surveillance of infectious diseases between countries in the European Union. One of the goals of collaborative projects currently under development is to strengthen and harmonise surveillance activities.
The European Programme for Intervention Epidemiology Training (EPIET) provides practical experience in infectious disease epidemiology. EPIET aims to create a network of professionals throughout Europe trained to use a standard approach in intervention epidemiology including field work, surveillance, applied research, communication, and the use of epidemiological information as a basis for public health action. EPIET is financed through a grant from the Directorate General V of the Commission of the European Communities.

So far 17 fellows have been recruited, in two cohorts, representing 13 European nations. The fellows are now based in various European public health institutes offering action orientated training. The first cohort of EPIET fellows was enrolled in November 1995 and the second cohort of nine EPIET fellows entered the programme in June 1996. It is hoped to enrol the third cohort in 1997.

Each cohort of EPIET fellows starts its two year training period with a residential introductory course held in Veyrier du Lac, France. The course aims to provide participants with basic knowledge in epidemiological methods, outbreak investigation and surveillance techniques, and communication skills. During each course a field survey is developed and completed by the fellows. Surveys conducted at the World Health Organization (WHO) and United Nations headquarters in Genève in 1995 and 1996 concerned staff compliance with WHO recommendations for overseas travel and to smoking in the work place. The team of facilitators for these courses was composed of experienced epidemiologists and senior trainers who were to host fellows during their subsequent placement.

In addition to the introductory course, up to seven additional weeks of course work are included in the two years training. A module on immunisation, organised by the National Public Health Institute (KTL) in Helsinki, in March 1996, provided up to date information on vaccines and discussed epidemiological methods used in vaccine trials, programme evaluation, and in developing vaccination strategies. A second module, at the PHLS Communicable Disease Surveillance Centre in London, focused on communication techniques including radio and television interviews. A module on multivariate analysis will be held in the Istituto Superiore di Sanità, Roma, in January 1997.

Since the first cohort began their training in November 1995 they have carried out various tasks including outbreak investigations, evaluations of surveillance systems, and applied research studies. Some of the studies crossed national borders - for example, the Franco-Belgian collaborative study on hantavirus. A scientific seminar held at the end of the second introductory course in June 1996 enabled fellows from the first EPIET cohort, and their colleagues from the Spanish, German, and Hungarian Field Epidemiology Training Programmes (FETP) to present work in progress at host institutes to the directors and supervisors from participating countries and to fellows from the second training cohort.

During its first year the EPIET programme has already contributed to the promotion and the development of intervention epidemiology in Europe. "Learning by doing" and the collaboration process involved is fostering strong professional, institutional, and interpersonal links between fellows, course facilitators, and training supervisors. In collaboration with other European public health projects, the EPIET programme is contributing to coordinated surveillance and intervention within the European Union (EU). It is already becoming clear that requests for collaborative links and help will be sought from the EU by countries beyond its borders.

Reference

A total of four cases of influenza A virus subtype H\(_5\)N\(_1\) infection have been reported, among people living in Hong Kong. The first case was a 3 year old boy who became ill in May 1997 and died (1,2). The boy was believed to have acquired the infection through contact with chickens. Epidemiological investigations of the local population during the following months revealed no transmission to other cases. Three further cases have occurred in November; the first one a 2 year old child who recovered, and two other cases in late November, one a 13 year old girl who is recovering and the other a 54 year old man who has died.

The United States’ Centers for Disease Control and Prevention (CDC) are assisting the Hong Kong health authorities in their investigations into the source of infection of the three new cases. So far there is no evidence of human to human transmission, but contacts of the known cases are being investigated intensively. The season when influenza activity in Europe is likely to occur has just begun. Although the probability of any cases of the new influenza A H\(_5\)N\(_1\) strain being imported into Europe is currently very low, laboratories are nevertheless advised to remain vigilant about the travel history of any suspected cases of influenza.

What is influenza A H\(_5\)N\(_1\)?
Influenza A H\(_5\)N\(_1\) is a subtype of the influenza A virus that has previously been found only in birds. This ‘avian’ influenza virus was obtained from specimens from a 3 year old child in Hong Kong who became ill in May 1997. The child subsequently died with a respiratory illness and Reye’s syndrome and the identity of the virus was confirmed in August. This is the first known case of illness in a human due to infection with this virus. Influenza A H\(_5\)N\(_1\) is known to be circulating among chickens in Hong Kong. The child was reported to have had contact with chickens before the onset of illness.

How many people have been infected with influenza A H\(_5\)N\(_1\)?
Four cases of infection in humans had been identified by 8 December 1997: one case occurred in May 1997 and the other three in November 1997. All were residents of Hong Kong. Influenza surveillance was intensified in Hong Kong and southern China following the identification of influenza A H\(_5\)N\(_1\) infection in the first case in August.

How did the people become infected with influenza A H\(_5\)N\(_1\)?
Following the first case of influenza H\(_5\)N\(_1\) infection, intensive local surveillance efforts were put in place to determine if there was any evidence of transmission to other people who had come into contact with the child or in the local population. No evidence of transmission was found. No evidence has been found to indicate transmission between the four cases so far identified in residents of Hong Kong.

It is thought most likely that the first case contracted influenza infection from contact with infected chickens. Information is not yet available on where the further three cases are likely to have contracted their infections, including whether or not they had significant exposure to chickens or other birds. These cases are being investigated actively.
How likely is a pandemic (worldwide epidemic) due to influenza A H5N1?
To date, only four cases have been identified in six months in one small geographic area. A pandemic occurs when a new influenza virus not only causes illness in humans but also spreads from person to person. No links between the cases have yet been identified and there is no evidence, as yet, of person to person transmission.

How severe is the illness caused by influenza A H5N1?
Influenza virus infection can by asymptomatic or cause illness of varying severity, from a cold to a rapidly fatal pneumonia. Most influenza illnesses, though unpleasant, are self limiting and do not require medical attention. Although two of the four patients with illness found to be due to influenza A H5N1 infection have died, there is still insufficient information to be able to say how severe the illness might be in the population if the infection spread. The only cases identified so far have been in hospital, where patients with more severe illness would be likely to be identified.

Is there a vaccine to protect against influenza A H5N1?
Not at present. Work is currently underway, as a precautionary measure, to see how best to develop a vaccine. Widescale production would not take place unless there was good evidence of extensive spread of the virus in the human population.

What is the role of this year’s influenza vaccine?
The current vaccine contains components of three strains of influenza virus (two subtypes of influenza A - H1N1 and H3N2 - and one influenza B strain) that are most likely to circulate in the northern hemisphere this winter. Influenza A viruses similar to each of the vaccine strains have been isolated in the United Kingdom in November and December although current levels of influenza activity are at baseline levels. Thus the current vaccine remains the best protection against the most likely strains of influenza in this country this winter.

Is the antiviral drug amantadine effective against influenza A H5N1?
Influenza A viruses are generally susceptible to amantadine. The first two isolates of influenza A H5N1 have been susceptible to amantadine and future strains are also likely to be so.

What should individuals do who become unwell with an influenza-like illness?
Rest, take analgesics (paracetamol for all ages, but aspirin may also be taken by adults), and drink plenty of fluids. Symptomatic treatment at home reduces the amount of further spread in the community. Medical advice should be sought if symptoms become severe or recovery does not start after about a week. People with chronic illnesses may need to seek advice earlier.

What advice should be given to people travelling to Hong Kong?
There is currently no evidence of human to human transmission of influenza A H5N1 infection in Hong Kong and only four cases have been confirmed to date. People at high risk of complications of influenza infection as a result of pre-existing disease should be immunised, as usual, with the current vaccine. From information received so far (1100 on Thursday 11 December) - from Belgium, Denmark, England and Wales, Finland, Scotland, Spain, and Sweden - no additional measures or restrictions have been recommended for travellers to and from Hong Kong.

The Portuguese Influenza Surveillance System has registered only mild activity in recent weeks (maximum: 11 cases/100 000 inhabitants). Regarding influenza A H5N1 in Portugal are existing surveillance systems giving special attention to identifying influenza cases occurring in people coming from Asian countries (mainly Hong Kong and Macao); any local increase in numbers of cases in comparison with the same period last year; and the occurrence of severe cases. Health authorities and the media are being kept informed.

Finnish authorities are reinforcing their laboratories’ diagnostic capacities and consulting vaccine manufacturers. The public and media are being kept informed. Virologists in Scotland are being contacted to encourage the taking of specimens for virus isolation and typing.

Prepared by PHLS Surveillance of Influenza, Respiratory Diseases Section (respcdsc@phls.co.uk), PHLS Communicable Disease Surveillance Centre and Influenza Section (mzambon@phls.co.uk), Enteric and Respiratory Viruses Laboratory, PHLS Central Public Health Laboratory, England. Thanks also to members of the Eurosurveillance editorial board for further material.

Further information can be found at:
• Government of Hong Kong Special Administrative Region Department of Health (http://www.info.gov.hk/dh/new/index.htm)
• World Health Organization, Emerging and other Communicable Diseases (EMC) (http://www.who.ch/programmes/emc/news.htm)
Surveillance of tuberculosis in Europe: first data emerge from “EuroTB”

Recommendations for standardising the reporting of tuberculosis cases in Europe made by a working group set up by the World Health Organization (WHO) and the European Region of the International Union Against Tuberculosis and Lung Disease (1) were approved by representatives of 37 countries in September 1995. The results of a one year pilot study have just been published (2).

A national correspondent was identified in 49 of the 50 countries of WHO’s European region (not Ukraine). Forty-six of the 48 countries sent the total numbers of cases of tuberculosis notified in 1995 and 41 provided further details: 40 gave the sex of cases, 39 the site of disease, 34 the new or recurrent status of the cases, 34 supplied bacterial confirmation, 33 the age of cases, 27 the result of sputum smear examination, and 21 the geographic origin of patients. Nineteen countries provided computerised information about individual cases.

Forty-six countries of WHO’s European region notified 276 811 cases of tuberculosis in 1995, representing an overall incidence of 34.6 cases per 100 000 population (range 2.7 in Malta to 101.9 in Romania). The incidence was lower than 20/100 000 in 22 countries, all of which were in western Europe apart from Albania, the Czech Republic, and Israel. These countries accounted for 44% of the population but contributed 16% of the cases of the 46 countries. Countries where the incidence was 20/100 000 or more were mostly in eastern Europe, with the exception of Portugal and Spain. Countries of the European Union (EU) notified 54 133 cases in 1995, an incidence of 14.5/100 000 (range 6.4 in Sweden to 56.8 in Portugal). Thirteen of the 15 EU countries had incidences lower than 20/100 000.

Countries where the incidence of tuberculosis was lower reported greater numbers of adult and elderly patients proportionately. More male than female cases were notified. Patients originating from parts of the world where the incidence of tuberculosis is high accounted for substantial numbers of cases in several countries of western Europe. Most cases were new episodes in people never diagnosed previously, and 80% of cases were of pulmonary tuberculosis. Less than a half of all notified cases were bacteriologically confirmed, and 40% were sputum smear positive.

References:

Copies of the report can be found at: http://www.b3e.jussieu.fr/ceses/eurotb or obtained from: EuroTB, CESES - Hôpital National de Saint-Maurice, 14 rue du Val d’Osne, 94410 Saint-Maurice, France

Reported by Stuart Handysides (shandysi@phls.co.uk) PHLS Communicable Disease Surveillance Centre, England
A detailed report on the global HIV epidemic issued this week by the Joint United Nations Programme on HIV/AIDS (UNAIDS) and the World Health Organization (WHO), and based on data to the end of 1997, forms a backdrop for the 12th World AIDS Conference that starts next week (1). The global estimates are similar to those issued last year(2): 30.6 million people living with HIV infection, 5.8 million new infections (16 000 per day), and 2.3 million deaths attributable to HIV in 1997 (1).

The report describes the continuing spread of HIV, its emergence in some countries previously little affected, and its increased transmission in countries where infection was already established. The very low prevalence in China seems to have doubled in two years and infection reports in many parts of the former Soviet Union have risen dramatically; prevalence in the Ukraine has risen 70-fold in four years. Rapid increases in Southern Africa are illustrated by the most recent reports of HIV prevalence in pregnant women: 43% in Francistown (Botswana), 32% in Harare (Zimbabwe), and 28% in Kwa Zulu–Natal (South Africa) (1). Nigeria with 2.3 million estimated infections, equivalent to a prevalence of 4.1% in those aged 15 to 49 years) and India (4.1 million, 0.82%) cause particular concern because, although prevalences are lower than in some nearby counties, the potential exists for large rises in numbers of infections. India is already estimated to have more prevalent infections than any other country.

HIV has become one of the top ten causes of death worldwide (1). Independent surveys show that the emergence of HIV infection has more than doubled death rates among young adults in some African countries. Life expectancy in hard hit areas of Uganda has fallen by 16 years. The report is by no means overwhelmingly gloomy, however, and presents national successes in HIV prevention in Thailand, Uganda, Senegal, and the United Kingdom, for instance.

The report estimates that 30 000 new HIV infections arose in western Europe in 1997. The HIV infection rate is decreasing in general, and the new infections are concentrated among drug injectors in southern Europe. A 38% decrease in the number of new AIDS cases - 23 954 in 1995 to 14 874 in 1997 - reflects prevention measures taken in the late 1980s in the gay communities, and increased condom use among young people, but most significant has been the use of antiretroviral treatment which has postponed the onset of AIDS.

References:

Reported by Angus Nicoll (anicoll@phls.co.uk), PHLS Communicable Disease Surveillance Centre, London, England
Rapid communications

Reported association between measles, mumps, and rubella (MMR) vaccine, autism, and bowel syndrome

Last week’s Lancet contained a paper reporting 12 children with bowel symptoms and “regressive developmental disorder”, 10 of whom had autism or autistic like features (1). In 8 of the 12 children a temporal association between onset of symptoms and measles, mumps, and rubella (MMR) immunisation was reported. An abstract of the paper published last year was reviewed by the United Kingdom’s Joint Committee on Vaccination and Immunisation, which did not recommend any changes to the MMR vaccination policy.

A statement in the Lancet paper that both measles virus and measles vaccination have been implicated as risk factors for Crohn’s disease (1) contradicts a review of evidence recently published in the World Health Organization’s (WHO) Weekly Epidemiological Record (2). WHO’s review concluded that the hypothesis remains unproven and that immunisation programmes throughout the world should continue. Further negative virological evidence from workers at the UK’s National Institute for Biological Standards and Control was published in last week’s Lancet (3). The BMJ said recently that the links between measles and Crohn’s disease “were dead” (4).

The Lancet published an independent commentary from Dr Robert Chen, of the United States Centers for Disease Control, which made the point that although hundreds of millions of individuals worldwide have received measles containing vaccine since the mid-1960s, this syndrome of regressive developmental disorder with bowel symptoms has not previously been reported (5). Chen also drew attention to the lack of any virological or epidemiological evidence in the accompanying paper to support a causal association with MMR vaccine and warned of the dangers of confusing a chance temporal association with causality.

Several studies on autism have reported on the occurrence of associated medical conditions (6) but none has mentioned an association with Crohn’s disease. About one third of children with autistic disorder exhibit regression after apparently normal development in the first year of life (7). The mean age at which parents of children with autism first report concern about their child’s development is 18 to 19 months, and 14 months for experienced parents (8,9). Since over 90% of children receive MMR vaccine before their 2nd birthday, the probability that parents of autistic children will first notice abnormal behaviour shortly after MMR vaccination in a child who was previously developing normally is therefore high.

References:
4. Editor’s choice: beware individual issues of journals. BMJ 1998; 316: (Jan 17)

Reported by Elizabeth Miller emiller@phls.co.uk PHLS Communicable Disease Surveillance Centre, London, England.
Introduction
The European Surveillance Scheme for Travel Associated Legionnaires’ Disease was set up by the European Working Group on Legionella Infections (EWGLI) in 1987 to identify cases of legionella infection in returning travellers and to detect outbreaks and clusters of legionnaires’ disease. The scheme was initially run from the Swedish Institute for Infectious Disease Control (SIIDC) in Stockholm where it was funded by the World Health Organization (WHO). In 1993 it moved to its present location in the Public Health Laboratory Service (PHLS) Communicable Disease Surveillance Centre (CDSC) in London, a move which coincided with the beginning of funding by Directorate General V of the European Commission.

Methods
The surveillance scheme methods have been described previously (1). Twenty-four countries took part in the scheme in 1997 and seven joined in 1998. There are now 36 collaborating centres in 31 countries (figure 1). A case of travel associated legionnaires’ disease is defined as follows:

- Clinical or radiographic evidence of pneumonia accompanied by appropriate laboratory diagnosis.

- A history of travel in the ten days before the onset of illness. Travel is defined as staying away from home for one night or more. Overnight stays in private accommodation are not included.

Cases diagnosed by the detection of specific legionella antigen in urine using validated reagents have been regarded as confirmed since 1 January 1998. Details of cases ascertained by national or regional surveillance systems of participating countries are sent by fax or email to the coordinating centre at CDSC. The information collected includes the full travel itinerary and clinical and microbiological data. When a new case is added to the database at CDSC, the database is searched to see if previous cases have been reported at the same accommodation site. The collaborator, or ministry of health, in the presumed country of infection is immediately informed by fax of all cases associated with their country. All collaborators and WHO are informed immediately if the case is part of a cluster. Clusters are defined as two or more cases associated with the same accommodation site who became ill within six months of each other. If the case stayed at accommodation associated with previous cases, but became ill over six months later, then the cases are said to be linked. Collaborators and WHO are informed of linked groups at the end of each month. Some countries choose to inform representatives of their national organisations of tour operators about cases that arise in tourist accommodation.

All collaborating countries maintain a copy of the EWGLI data set. Most countries have a copy of the EWGLI database which is updated by email at the end of each month.

Results
The number of cases reported has increased from three cases in 1987 to 242 cases in 1997 and 232 in 1998 (table 1). Clustered cases accounted 32% (78) of the total in 1997 and 26% (62) in 1998, within the range of previous years. The average size of a cluster in both 1997 and 1998 was three cases (figure 2).

The most commonly used methods of diagnosis have changed during 1997/8. Forty-one per cent (99 in 1997, and 96 in 1998) of cases are now being diagnosed by detection of urinary antigen. The increase has been at the expense of serological methods; the proportion of cases confirmed by culture and by other methods remain similar (figure 3).
The age and sex profile of cases is similar to previous years (3). In 1997 and 1998 there were more than twice as many men as women (table 1). The age of cases was normally distributed around a mean of 57 in 1997 and 56 in 1998.

The outcome of illness was reported for most cases, but if the case was still ill when reported the information was often not updated and the outcome remained unknown. Fifty-six per cent of cases in 1997 are known to have recovered and 57% in 1998. Twenty-six deaths were reported in 1997 and 25 in 1998, a provisional case fatality rate of 11% in both years. Cases whose outcome was unknown at report accounted for 5% of reports in 1997 and 10% in 1998.

The seasonal pattern, based on dates of onset, has not changed significantly from previous years. Two peaks were seen in both 1997 and 1998, the first in June/July and the second in September/October. The timing of these peaks varies slightly from year to year (figure 4). A small peak seen around Easter time in 1998 had not been observed in previous years.

Most cases are reported from countries in northern Europe - in particular from England and Wales, Scotland, the Netherlands, Sweden, France, and Denmark - but 12 cases (almost 3%) were reported from Italy in 1997/8. Infections are usually diagnosed after return to the country of residence. Twelve countries reported cases in 1997 and 16 in 1998.

Travel
The 474 cases with onset in 1997/8 had made 697 visits to 51 countries. The Mediterranean region was the most popular destination. In both 1997 and 1998 more than 20% of cases had visited Spain. Italy, Greece, and Turkey combined accounted for 30% of cases. France and Germany had 15% of the visitors in 1997 and 14% in 1998 (figure 5). Cases who took their holidays in northern Europe stayed in a wider variety of places than those who went to Mediterranean coastal resorts.
The number of cases associated with a country is usually proportionate to the total number of people who visit the country. Therefore, although Spain has a high number of cases, the rate per million travellers from the United Kingdom (the only country for which information on the number of travellers is available) is no higher than in countries that receive fewer visitors (Office for National Statistics, unpublished data) (table 2).

Twenty-five clusters were detected in 1997 and 19 in 1998. Six of the clusters in 1997 and 10 in 1998 would not have been detected without the surveillance scheme since each included only one national from several countries. Most of the clusters detected occurred in the most visited countries, but there were some exceptions. For instance, the number of clusters on cruise ships was higher than would be expected given the numbers of people who take cruise holidays.

Outbreaks and clusters

Cruise ship 1: An outbreak of six cases (one fatal) in English and Scottish residents occurred on a Rhine cruise ship in 1997. The cases arose between July and October 1997 and had travelled on four separate cruises. The Dutch owned ship was taken out of operation when the outbreak was detected. The temperature of the hot water system was found to be inadequate and the whirlpool spa had been improperly maintained. *Legionella pneumophila* serogroup (sg) 4 was isolated from this pool but although there was strong epidemiological evidence that this was the source (4,8,9) evidence of *L. pneumophila* sg 4 infection was found in none of the patients.

Turkey: Sixteen cases and one suspected case of legionnaires’ disease were identified in an outbreak at a hotel in Istanbul in September and October 1997. Four people died. Sixteen of the cases were French and one was Belgian. Isolates were obtained from six patients; typing showed that all were infected with the same strain of *L. pneumophila* sg 1 of a distinct, and previously unknown, type. There was no opportunity for environmental investigation of the hotel and the source of infection was never found. The epidemiology strongly suggested an extended point source. Two tour companies used the hotel and reported that the hotel was closed for renovation after the outbreak was detected (B Decludt, personal communication).

Cruise ship 2: Three cases of legionnaires’ disease and one case of non-pneumonic legionellosis arose on a British ship in May and June 1998. The ship had previously been registered in Italy and the new owners were unaware that it had been associated with two previous cases of legionnaires’ disease, one of which had been fatal. The ship was inspected and serious flaws were found in the temperature regulation of the hot and cold water system and in the electrical system. The ship’s itinerary was disrupted while these faults were rectified. *L. pneumophila* sg 1 was isolated from the ship’s water supply but no clinical isolates were available for comparison (5).
France: An increase in the number of cases reporting travel to Paris was observed in June 1998. None of the cases was associated with the same buildings but several were visiting France for the football world cup. Investigation by the French authorities and case searching through EWGLI resulted in the detection of nine travel associated cases: four English, three Scottish, one Swedish, and one Danish. Eleven cases were French residents. A case control study by the Institut de Veille Sanitaire (formerly known as Réseau de Santé Publique (RNSP)) demonstrated an association with an area of Paris and cooling towers in this area were sampled. Several towers yielded legionella and isolates from one tower were indistinguishable by subtyping and subgrouping analysis from clinical isolates (6).

Spain: A outbreak of 11 cases occurred at a hotel in Benidorm between August and December 1998. Two cases had previously been associated with the hotel, one in 1990 and one in 1996. The first case in the cluster was reported to EWGLI in September 1998. The second and third cases were reported on 21 and 24 December, and a cluster alert was issued. The tour operators using the hotel withdrew their clients on 24 December. Inspections of the hotel and sampling of the water systems were carried out by the local health authorities and a private company. The water system had been chlorinated before samples were taken and no legionella were isolated. Over the next few weeks, as more cases were reported to CDSC, it transpired that eight cases had occurred by the time the cluster alert was issued but that they had not been reported (7).

Table 2

<table>
<thead>
<tr>
<th>Country of travel</th>
<th>UK cases/million travellers from UK (percentage of cases that came from the UK)</th>
<th>1997</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td></td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td>14</td>
<td>22.7</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>3.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td>4.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td>7.7</td>
<td>0.8</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Tunisia</td>
<td></td>
<td>-</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Discussion

The surveillance scheme has continued to expand during 1997 and 1998. The gradual increase in the numbers of cases reported since the start of the scheme in 1987 is thought to be due to improved detection and reporting, rather than increased incidence. The characteristics of the cases reported to EWGLI have remained consistent over the past few years, although the methods used to diagnose patients with legionnaires’ disease changed during 1997/8 with more widespread use of urinary antigen detection techniques. The proportions of single, linked, and clustered cases have changed very little as have the seasonal distribution and the countries visited by cases. The importance of the scheme, in promptly detecting clusters and outbreaks, is illustrated by the fact that 24% of the clusters in 1997 and 53% in 1998 would not have been detected without EWGLI. Collaboration with tour operators is proving valuable in the prevention of further cases, by ensuring prompt action after clusters are reported at tourist accommodation sites.

Acknowledgements

We would like to thank all the collaborators for reporting their cases and all the people involved in public health control and prevention programmes for travel associated legionnaires’ disease.

References

Introduction

AIDS case reporting has been an essential tool for monitoring HIV infection in western Europe. Recent trends in AIDS have been affected by improved antiretroviral treatments that delay HIV disease progression, however, and no longer serve as indicators of HIV transmission trends. Reporting of all diagnosed HIV infections is increasingly advocated as a central component of surveillance (1). A European HIV reporting system including 39 countries of the World Health Organization (WHO) European Region was set up in 1999 to complement AIDS reporting. This paper describes national HIV reporting systems in western European countries and presents the first data collected.

Methods

The characteristics of national HIV reporting were explored in a preliminary survey in 1997 (2) and updated in 1999. Individual anonymous data (or, if not possible, aggregate data) on HIV infections diagnosed at any clinical stage and reported by the end of 1998 were collected from national HIV/AIDS surveillance institutes taking part in European AIDS reporting. The number of HIV cases reported in 1998 was compared to the number of AIDS cases reported in the same year. Western Europe was defined as the 15 countries of the European Union plus Iceland, Norway, and Switzerland in Italy and the Netherlands will be expanded in the near future.

Thirteen countries began reporting before 1991 and two countries (Greece and Luxembourg) in 1999. Spain began a gradual process to implement national HIV reporting in 1999. Reporting is mandatory in eight countries, in most Italian regions, and in the national system planned in France. Cases of HIV infection are reported by laboratories only in four countries, by clinicians only in two countries, and by both in ten countries. Clinician reporting has recently been added to laboratory reporting in Germany (1998) and in the United Kingdom (UK) (2000).

Apart from Iceland, none of the national HIV reporting systems records named cases. Twelve countries eliminate duplicate reports and carry out linkage with other sources of data (e.g. AIDS or death reports) at national level using date of birth (or part thereof), sex, and other personal information, such as parts of the name (nine countries and most regions in Italy) or parts of the social security number (two countries). Three systems (Denmark, Norway, and the laboratory reporting system in Germany) collect no personal information other than date of birth and sex. In these countries, linkage with other data sets is impossible and HIV reports of cases with a history of previous positive tests are excluded from national statistics to reduce repeat counting of the same case. Recent or planned changes in the personal information collected on HIV reports include a shift to named reporting (Iceland, 1999), and the introduction of name initials (Switzerland, 1999), full date of birth (Germany, planned), and the social security number (Denmark, under discussion).

All countries collect data on the route of HIV transmission and clinical stage, using similar categories. Other data often collected include geographic origin (nationality, country of birth, or country of permanent
residence), probable date and place of infection, previous negative and positive HIV tests, reasons or circumstances of testing, and indicators of disease progression (such as CD4 lymphocyte count).

Reporting data

Data on HIV infection for 1998 were available from 11 countries, the French region of Aquitaine (2.8 million, 4.6% of the total population) and the Lazio and Trento regions of Italy (5.6 million, 10% of the population) (table 2), which together represent 201 million (52%) of the 388 million population of western Europe. A total of 8104 cases of HIV infection and 4088 AIDS cases were reported in 1998. Numbers of cases of HIV infection per million population ranged from 16 in Finland to 90 in Switzerland and 94 in the two Italian regions combined. All countries reported more cases of HIV infection than AIDS, with ratios ranging from 1.5 in Switzerland to 4.5 in Belgium. Under 5% of cases in Norway and the UK were reported without transmission category and over 30% in Greece, Italy, and Switzerland. Among the 6444 cases reported with known transmission category, 44% were homo/bisexual men, 42% heterosexuals, 10% were injecting drug users (IDUs), and 2% had acquired infection vertically. As data from countries in southern Europe with large epidemics mainly among IDUs are very limited, these data are not representative of the situation in Europe as a whole.

Discussion

HIV infection reporting systems are an established part of HIV surveillance in most countries in western Europe. In the three countries that account for two thirds of the cumulative total of reported AIDS cases, however, HIV reporting either began only recently (Spain, 1999) or has yet to be implemented at national level (France, Italy). Differences exist in the organisation of reporting and in the type and format of information collected. As with AIDS, reports of HIV infection from clinicians provide detailed epidemiological and clinical information. Since diagnosis of HIV infection is less concentrated in specialised centres, HIV infection reporting by

Table 1

Characteristics of HIV reporting systems in western European countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Start of reporting</th>
<th>Legal status</th>
<th>Source of reports</th>
<th>Nr of laboratories reporting (potentially)</th>
<th>Case identifiers *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(4)</td>
<td>Date of birth, Personal information</td>
</tr>
<tr>
<td>Belgium</td>
<td>1986</td>
<td>V</td>
<td>L</td>
<td>8</td>
<td>d/m/y, initials</td>
</tr>
<tr>
<td>Denmark</td>
<td>1990</td>
<td>M</td>
<td>L, C</td>
<td>6</td>
<td>y, none</td>
</tr>
<tr>
<td>Finland</td>
<td>1986</td>
<td>M</td>
<td>L, C</td>
<td>20</td>
<td>d/m/y, part of SSN</td>
</tr>
<tr>
<td>France (13 regions)**</td>
<td>1988-1996</td>
<td>V</td>
<td>L,C</td>
<td>na</td>
<td>m/y, none</td>
</tr>
<tr>
<td></td>
<td>(nationwide)</td>
<td>planned</td>
<td>M</td>
<td>5000</td>
<td>d/m/y, to be defined</td>
</tr>
<tr>
<td>Germany</td>
<td>1988</td>
<td>M</td>
<td>L, C</td>
<td>153</td>
<td>y, none</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>V</td>
<td>C</td>
<td></td>
<td>y, name based</td>
</tr>
<tr>
<td>Greece</td>
<td>1998</td>
<td>M</td>
<td>L, C</td>
<td>9</td>
<td>d/m/y, initials</td>
</tr>
<tr>
<td>Iceland</td>
<td>1985</td>
<td>M</td>
<td>L, C</td>
<td>1</td>
<td>m/y, name (from 1999)</td>
</tr>
<tr>
<td>Ireland</td>
<td>planned</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Italy (7 regions)</td>
<td>1985-1999</td>
<td>M</td>
<td>L</td>
<td>na</td>
<td>d/m/y, name based ***</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1999</td>
<td>V</td>
<td>L</td>
<td>1</td>
<td>m/y, initials</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1989</td>
<td>V</td>
<td>L</td>
<td>na</td>
<td>y, initials</td>
</tr>
<tr>
<td>Norway</td>
<td>1986</td>
<td>M</td>
<td>L, C</td>
<td>5</td>
<td>m/y, aucune</td>
</tr>
<tr>
<td>Portugal</td>
<td>1983</td>
<td>V</td>
<td>C</td>
<td>(10)</td>
<td>d/m/y, initials</td>
</tr>
<tr>
<td>Spain</td>
<td>1999</td>
<td>V</td>
<td>L, C</td>
<td>na</td>
<td>d/m/y, initials</td>
</tr>
<tr>
<td>Sweden</td>
<td>1985</td>
<td>M</td>
<td>C</td>
<td>(5)</td>
<td>m/y, part of SSN</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1985</td>
<td>M</td>
<td>L, C</td>
<td>8</td>
<td>d/m/y, initials (from 1999)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1984</td>
<td>V</td>
<td>L, C (C from 2000)</td>
<td>500</td>
<td>d/m/y, « soundex » code</td>
</tr>
</tbody>
</table>

V= voluntary; M= mandatory
L = laboratories; C = clinicians
na = not available
d/m/y = day/month/year
SSN = social security number
* in addition to sex, all countries
** all regional systems ended in 1998
*** not standardised across regions
clinicians may be less complete than AIDS reporting, for which 75% to 100% of cases are estimated to be reported (3). For this reason, in most countries cases of HIV infection are (also) reported from laboratories, which are usually few in number and may provide a more exhaustive count of diagnosed cases (e.g., higher than 95% in Denmark (4)).

The elimination of duplicate reports and the ability to match reports of HIV infection with other data sets are essential requirements of an effective HIV reporting system. This implies the collection of personal information which, in turn, creates a potential risk for breaches of confidentiality. Among the measures taken to ensure data security, most western European countries exclude names from the collected personal information in HIV reports. In the UK, the use of 'soun-dex' codes (based on the surname) and date of birth provides efficient identification of duplicates and linkage with AIDS case reports (5). The use of initials, date of birth, and sex in a simulation made on the nominal AIDS data set in Spain resulted in a very low proportion of truly new cases being erroneously classified as duplicates (0.1%) (I. Noguer, personal communication). When non nominal HIV reporting is implemented, the efficiency of matching and removal of duplicates also depends on the completeness of the identifying information collected (6), however, and on the (increasing) size of data sets. Further evaluations of this issue are needed in Europe.

Reporting of HIV infection must be interpreted with caution, taking into account other available epidemiological data, because these reports do not provide a direct measurement of the incidence or prevalence of HIV infection. The proportion of HIV infected individuals who are diagnosed and reported varies according to the phase of the epidemic (4), HIV testing patterns (7), and characteristics of surveillance systems. In countries where HIV infection reporting began early, the cumulative number of HIV reports can provide a minimum estimate of prevalence if mortality data are also available or can be estimated. Numbers of cases of HIV infection reported in 1998 are higher than numbers of AIDS reports. HIV reporting is helping to improve assessment of the scale and extent of recent HIV transmission in the population. Annual numbers of HIV infections reported in the 1990s were relatively stable in some countries and decreased in others (not shown here) (8). The comparison of HIV and AIDS reporting data suggests that the level of HIV transmission has remained relatively stable in recent years and that the sudden decline of AIDS incidence has been due mainly to the effect of treatments. Overall, sexual transmission accounts for the vast majority of reported HIV infections, but the countries with the largest numbers of HIV infected IDUs are poorly represented in these data. HIV trends by transmission group are difficult to interpret in some countries because the proportion of cases with unknown mode of transmission is high and has changed over time.

Table 2

<table>
<thead>
<tr>
<th>Country</th>
<th>Data from</th>
<th>total number</th>
<th>Nr</th>
<th>HIV rate per million</th>
<th>Ratio HIV:AIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1986</td>
<td>11 067</td>
<td>740</td>
<td>77</td>
<td>4.5</td>
</tr>
<tr>
<td>Denmark</td>
<td>1990</td>
<td>2482</td>
<td>179</td>
<td>34</td>
<td>2.5</td>
</tr>
<tr>
<td>Finland</td>
<td>1986</td>
<td>945</td>
<td>801</td>
<td>16</td>
<td>4.0</td>
</tr>
<tr>
<td>Aquitaine (France)</td>
<td>1988</td>
<td>3719</td>
<td>217*</td>
<td>78</td>
<td>3.7</td>
</tr>
<tr>
<td>Germany (labs)</td>
<td>1993</td>
<td>13 359</td>
<td>2247</td>
<td>27</td>
<td>2.4</td>
</tr>
<tr>
<td>Greece</td>
<td>1998</td>
<td>1917 **</td>
<td>278*</td>
<td>26</td>
<td>1.9</td>
</tr>
<tr>
<td>Iceland</td>
<td>1985</td>
<td>121</td>
<td>8</td>
<td>29</td>
<td>4.0</td>
</tr>
<tr>
<td>Lazio + Trento (Italy)</td>
<td>1985</td>
<td>18 019</td>
<td>535</td>
<td>94</td>
<td>1.7***</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1985</td>
<td>397</td>
<td>301</td>
<td>71</td>
<td>3.0</td>
</tr>
<tr>
<td>Norway</td>
<td>1986</td>
<td>1869</td>
<td>981</td>
<td>22</td>
<td>2.5</td>
</tr>
<tr>
<td>Portugal</td>
<td>1983</td>
<td>10 012</td>
<td>na</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>1985</td>
<td>4911</td>
<td>246</td>
<td>28</td>
<td>3.9</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1985</td>
<td>23 821</td>
<td>657</td>
<td>90</td>
<td>1.5</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1984</td>
<td>33 329</td>
<td>2789</td>
<td>48</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td>125 968</td>
<td>8104</td>
<td>40</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

* Data by year of diagnosis
** Includes retrospective reporting before 1997
*** AIDS data by year of diagnosis, not adjusted for reporting delays
na : not available
Four countries (Belgium, Greece, Luxembourg, United Kingdom) already provided to the European system complete individual data on cases reported since 1997, which include clinical stage at diagnosis (around 80% of cases reported in 1998 were diagnosed before AIDS), the probable year of infection (estimated for around 10% of cases) and follow-up information on AIDS and death. These data should contribute to a better description of recent HIV transmission trends, of disease progression and of care at the population level.

HIV reporting has been recently introduced, expanded, or improved in most western European countries and further developments are underway. In particular, new and planned systems in southern countries should contribute to a more representative surveillance picture of the HIV epidemic in Europe. The widespread participation in the European HIV reporting system reflects strong motivation for the collaborative development of this surveillance tool. The current momentum of change should facilitate better standardisation of surveillance definitions and practices, which remains a major challenge for international surveillance.

* The European Centre for the Epidemiological Monitoring of AIDS (EuroHIV) is supported by the European Commission (contract VS/1999/5227 (99CVVF4-023))

References

The terrorist attacks on 11 September 2001 and the deliberate release of anthrax in the United States had consequences for public health not only there, but also in Europe. Europe's public health systems had to manage numerous postal materials possibly contaminated with anthrax. Our survey aimed to document the response of European public health institutes to recent bioterrorist events to identify the gaps that need to be addressed: 18 institutes from 16 countries participated in this Euroroundup. Bioterrorist threats in Europe were hoaxes only, and should be considered as a "preparedness exercise" from which three lessons can be drawn. Firstly, because of inadequate preparedness planning and funding arrangements, Europe was not ready in October 2001 to respond to bioterrorism. Secondly, although European institutes reacted quickly and adapted their priorities to a new type of threat, they need adequate and sustained support from national governments to maintain their overall capacity. Thirdly, the recent crisis demonstrated the need for increased investment in epidemiology training programmes and the establishment of a technical coordination unit for international surveillance and outbreak response in the European Union.

Introduction
Within 24 hours of the terrorist attacks on 11 September, the Centers for Disease Control and Prevention (CDC) deployed epidemiologists to assess the consequences of the disaster and to reinforce surveillance for potential acts of bioterrorism (BT) (1). Less than a month later, on 4 October 2001, CDC reported a fatal case of inhalation anthrax in Florida (2). Subsequently, a total of 22 cases of anthrax have been identified in five different states; five of the patients died. All but two have been directly associated with the deliberate release of anthrax. More than 100 epidemiologists were deployed by CDC during one of its most challenging investigations, which is still in progress (3-9).

Although the terrorist events took place in the United States (US), European armed forces were put on heightened alert, and public health systems in European countries had to manage numerous letters containing powders suspected to be contaminated with Bacillus anthracis spores. Neither terrorist attacks nor anthrax cases occurred in the following weeks; all bioterrorist threats seemed to be hoaxes. The pressure on European countries, however, was high, as they quickly had to devote public health resources to face a new type of threat.

The objective of our survey was to document the role of European public health institutes in BT preparedness and response (P&R) in the year before and the month after 4 October 2001, with special emphasis on their recent response to possible bioterrorist threats.

Population and Methods
For each European public health institute, key contacts in the area of BT P&R were identified with the help of Eurosurveillance editorial board members. Seventeen institutes – in the 15 countries of the European Union, Norway, and Estonia – were included.

The survey was conducted using a self administered questionnaire, which addressed the following issues on BT P&R: description of the national public health institute, response to recent threats, P&R in the year before and the month after 4 October 2001, communication, and plans for the future. Eurosurveillance editorial board members reviewed the questionnaire, which was mailed electronically to all participants on 22 November. Participation in the survey was voluntary, and the questionnaires had to be sent back by 14 December. Data were entered and analysed using Epi Info version 6.04d and EpiMap version 2.
Results

Respondents
Of 17 countries contacted, all but one participated in the survey. Answers from the United Kingdom were received separately for England and Wales, Northern Ireland, and Scotland. Our results therefore include answers from 18 institutes in 16 countries.

All institutes were in charge of communicable disease surveillance and control in their country. Other areas of expertise included microbiology in 14 institutes and environmental health in 12 institutes. Seven institutes reported additional activities, such as vaccinology, vaccine production, chronic disease and injury, occupational health, or toxicology.

Eight institutes reported having performed in 2000 at least one communicable disease outbreak investigation, by deploying a national team to help trial investigations of an outbreak.

Response to recent bioterrorist threats

First actions
All institutes but one organised specific meetings on BT immediately after, or even before 4 October; two organised their first BT meeting the week before, nine one week after, and six two weeks after. Among the first actions taken by institutes, 14 reinforced communicable disease surveillance systems, and all created or updated BT related guidelines. One third reported other actions, such as increasing laboratory capacity, organising collaboration with authorities, delivering information to the public, media, or professionals, or setting up a hospital based epidemiological correspondent network. The duty system was reinforced in 14 institutes: one third had epidemiologists on call 24 hours a day and seven days a week; two had extra laboratory technicians on call.

Importance of threats according to countries
European countries experienced the first threats of contaminated letters four to 13 days after 4 October. Thirteen countries were able to provide a summary figure of these threats. They managed from 50 to 2790 threats from 4 October to 3 November; the total number of threats was 7622. The number of threats per 100,000 inhabitants ranged from 0.2/100,000 to 31.4/100,000 (median 3.6/100,000). Three countries (Denmark, Portugal, and Luxembourg) had the highest cumulative incidences of mail threats (18.9, 20.3, and 31.4, respectively) while three (Austria, Italy, and Spain) reported lower incidences ranging from 0.2 to 1.1 (figure). The proportion of mail threats that required laboratory testing ranged from 22 to 100% (median 57%). The proportion of threats that required follow up (remotely or on site) by national institutes ranged from 0 to 90% (median 17%) (table 1). Four institutes conducted on site investigations of some of the threats.

The number of people put on antibiotic prophylaxis during the same period (reported by 12 countries) ranged from 0 to 1500 (median 128); total number for reporting countries was 2237. Two countries reported false alerts of contaminated water works.

Laboratory capacity
Of 16 countries, 12 reported a national laboratory capacity for all four biological agents most likely to be involved in a deliberate release (anthrax, botulism, plague, and smallpox); all countries had capacity for anthrax and botulism, 12 for smallpox, and 14 for plague. Ten countries also reported laboratory capacity for other agents including tularaemia (eight) and viral haemorrhagic fever (five).

All countries but one used Gram stains, cultures, and polymerase chain reaction (PCR) for diagnosis of B. anthracis from human samples. Scientific methods for environmental sampling and testing were not in the public domain and rarely reported; three countries reported having tested suspected letters for agents other than B. anthracis.

Impact of the events of 4 October on bioterrorism preparedness and response efforts in European countries

Preparedness
Seven countries reported having a BT P&R plan ready in the year before 4 October; six had appointed a national BT P&R team. In the month after 4 October, all reported implementing such a plan; 12 countries had appointed a national team. Partners in this team included ministries of health in 12 countries, local health departments in nine, reference laboratories in 11, armed forces in eight, civil defence agencies in 10, ministries of internal affairs in 10, ministries of justice in four, hospitals in 12, or primary care physicians in three.

Institute mandate
Eight institutes had officially been given a mandate by their governments for BT P&R in the year before 4 October; this number increased to 11 one month after this date. Two institutes coordinated their country’s BT activities. The number of formal BT meetings organised by these institutes ranged from 0 to 28 (median 1) in the year before 4 October. It dramatically increased and ranged from 1 to 80 (median 15) in the month after.

Resources
In the year before 4 October, one institute had a specific budget for BT P&R, and two reported having a BT P&R unit or core team. A total of two full time equivalent (FTE) scientific personnel were specifically devoted to BT related activities in two European institutes during the same time period; 29 FTEs from five institutes could have been included as a «surge» capacity. One month after 4 October, seven institutes had a specific budget for BT P&R, and 11 had constituted a BT P&R unit or core team. In October 2001, a total of 33 FTEs were specifically devoted to BT related activities in
nine institutes; 113 FTEs from 16 institutes could have been included as a surge capacity. Two fellows from the European Programme for Intervention Epidemiology Training (EPIET) were involved in BT related activities in the year before 4 October; six were involved one month after.

Epidemiological procedures

All European countries created or updated guidelines and recommendations related to BT prevention and control in the month after 4 October (table 2). When writing guidelines related to specific biological agents, 14 institutes used national case definitions, 11 European case definitions, 10 CDC case definitions, and seven World Health Organization (WHO) case definitions. Five institutes shared definitions they used with other European institutes.

In the year to 4 October, four institutes reported sharing these guidelines outside their own institution. This number increased to 17 after this date: four institutes published some of them in medical journals; 14 posted them on their web site; 13 provided advice to decision makers; and 13 organised press releases or conferences. No institute organised training sessions on BT P&R in the year before 4 October, but five organised a total of nine training sessions in the month after.

Laboratory procedures

Laboratory testing of suspected letters was reorganised shortly after 4 October when countries experienced numerous threats. The year before this date, six countries reported dedicating one national or a few regional laboratories to this purpose. The month after 4 October, 12 reported dedicating one national laboratory, six several regional laboratories, and two using any laboratory available in their country. Laboratory testing of persons potentially exposed to biological agents was reorganised also. In the year before 4 October, four countries reported dedicating one national laboratory for that purpose, four several regional laboratories, and three reported using any laboratory available. In the month after 4 October, eight reported dedicating one national laboratory, seven several regional laboratories, and five using any laboratory available in their country.

National pharmaceutical stockpiles

European countries increased their stockpiles of pharmaceuticals shortly after 4 October 2001: 11 countries reported stocking ciprofloxacin in October. The total number of 60 day courses available in the six countries that reported this information was 87 540, that is, one course for 816 inhabitants. Nine countries reported having a smallpox vaccine stockpile in October; the total number of doses available in six countries that reported this information was 13 400 000 – one dose for 11 inhabitants.

Communication between countries for bioterrorism preparedness and response

Of 18 institutes contacted, 17 contacted other public health institutions about recent BT events in October 2001. Fifteen contacted other European institutes, 12 CDC, seven the WHO headquarters in Geneva, four the European Commission Directorate-General for Health and Consumer Protection (DG-SANCO), and three the WHO Regional Office for Europe in Copenhagen.

The objectives of these contacts were for 17 institutes to share information on BT threats in the United States or in Europe, for 11 to get epidemiological expertise, and for 10 to get laboratory expertise. Seventeen institutes received the information they requested from these institutions.

In addition to contacting public health institutions, all European institutes used other means to get information on recent BT events: all accessed the internet and browsed the web, 17 read the ProMed mailing-list, 17 reviewed the medical literature, and 15 reviewed the press.

Plans for the future

Of 18 institutes contacted, 16 plan to improve their BT P&R capacity in the next year. At the time of the survey, five institutes already had a budget for this activity in 2002.

Three institutes planned to create a specific BT P&R unit, and seven to recruit additional personnel: one to 18 (median 5) FTE personnel will be recruited next year in each of those institutes; zero to 16 (median 1) will be specifically devoted to this activity. According to this survey, a total of 47 FTE personnel will be recruited in Europe next year, 26 of them being exclusively involved in BT related activities. Lastly, 13 institutes planned to organise training in BT P&R in the next year.

Discussion

In October 2001, BT P&R plans were set up or updated by individual European countries. They often were classified, however, and thus prevented, at least in the beginning, effective and true discussions between European institutes. This was a major problem and we believe that such activities should be made public. We thank all respondents for the information they shared, even if individual countries could not be identified in this report. This survey is not an inventory: it is a first attempt to document the response of European public health institutes to recent BT events in order to identify the gaps that need to be addressed. We encourage national institutes to complete this picture and submit to Eurosurveillance any additional information about their recent experience.

The deliberate release of B. anthracis spores through the postal service inspired copycats, and countries had to manage numerous potentially contaminated letters. All but four countries reported the total number of mail
threats they managed. It varied greatly by country and was not related to their size; such differences may be related to differences in case definitions or data collection procedures.

Most European countries were not prepared to face possible bioterrorist threats: less than half reported having a BT P&R plan ready in the year before 4 October, and European institutes were not systematically a part of it. When institutes were associated, resources and funding specifically devoted to this activity were scarce. Logically, BT related efforts were rare. In the US, CDC’s efforts in BT P&R began in 1998 (10). The US Department of Health and Human Services spent $158 million in 1999 for BT P&R and $230 million in 2000 (11). This budget increased in 2001 and will most likely do so again in 2002. Even if BT P&R cannot be summarised only on budget, this proves that the US administration had an early and strong commitment to public health as a response to bioterrorism. To date, most of these funds were used to improve the capacities of state and local health departments. CDC’s goals are to improve public health infrastructure not only to respond to a bioterrorist event but also to any infectious disease outbreak (10).

One can argue that communicable diseases resulting from bioterrorist acts only differ from «normal» ones in the nature of their source: deliberate release as opposed to natural occurrence. Europe’s public health institutes therefore have the expertise to respond to both. Adequate resources, however, are needed. We wanted to assess resources in personnel and tried to get the total number of epidemiologists working on communicable disease surveillance and control in European countries. However, we could not obtain reliable estimates, as the definition of an epidemiologist varies from one country to another. Another way to assess capacity of European public health institutes was to ask if national institutes had performed at least one outbreak investigation in 2000. Less than half reported such an activity; some institutes reported not being given a mandate to carry out outbreak investigation, or only providing remote support to local health departments. What we know for certain is that existing communicable disease surveillance and control personnel in European institutes were assigned new duties. The total number of FTE involved in BT related activities in European institutes dramatically increased in October 2001; EPIET fellows participated in this effort and would have been available for outbreak response (12).

The management of possible bioterrorist threats requires standardised procedures. As only a few countries had a BT P&R plan ready before 4 October, most of the necessary guidelines were prepared during the crisis. They first addressed priorities such as management of potential exposures to biological agents. They also addressed investigation and control of the four biological agents (anthrax, botulism, plague, and smallpox) most likely to be involved in a bioterrorist attack. Bioterrorist threats are, however, not limited to this short list and a covert release of biological agents may be difficult to recognise. Syndrome based investigation guidelines are needed, but only one third of institutes had these prepared. Regarding surveillance, most of the institutes reported having reinforced relevant communicable disease surveillance systems. Respondents did not, however, describe procedures: guidelines may have been written, but we do not know if and how surveillance systems were enhanced.

Laboratory testing also was a crucial element in the management of possible bioterrorist threats. Before 4 October, only a few countries had identified specific laboratories (national or regional) for mail testing, and only half did so for patient testing. A more centralised approach was progressively adopted after this date. The proportion of mail testing varied greatly by country. Highest proportions were observed among countries managing the lowest number of threats. In countries facing a greater number of threats, national laboratory capacities were probably exceeded, and specific, more rational testing strategies were implemented. Lastly, although all countries reported laboratory capacity for anthrax, four and two countries did not have laboratory capacity for smallpox and plague, respectively. Additional surveys will be needed to assess more precisely the capacity of European laboratories. For rare organisms that could be involved in a bioterrorist act – for example, anthrax, Francisella tularensis, or smallpox viruses – it may be better to establish good reference laboratories at the European Union level than to disperse scarce resources in multiple countries. European cooperation in BT will require sharing of laboratory resources.

Multiple partners participated in the management of possible bioterrorist threats. National public health institutes were only one element of the response, alongside local health departments, reference laboratories, ministries of health, healthcare organisations, primary care physicians, justice departments,
and police and armed forces. None were involved in BT P&R teams. Local health departments and primary care physicians especially were underrepresented. These personnel may be at the forefront of an outbreak, especially in the case of a covert release, and efforts should be made to involve and train them adequately. Lastly, national BT P&R teams had very few meetings the year before 4 October. Some respondents reported issues in information sharing, action coordination, or identification of responsibilities. Those issues could have been avoided if all personnel had met previously and knew each other.

All countries that did not have a BT P&R plan implemented one immediately after 4 October. However, one can imagine that such «emergency» plans are still preliminary and will need further development. Almost all institutes added BT activity to their usual duties without additional resources, and reallocated personnel were not available for regular communicable disease control activities. Responses from institutes therefore had limits. Most of the institutes want to improve their BT P&R capacity in 2002, and reinforcing existing communicable disease surveillance and control departments seems to be the favourite, integrated approach. Some countries, however, plan to create a specific BT P&R unit. At the time of our survey, only a few institutes already had a specific budget for BT related activities in 2002. Increased and sustained support from governments will be required if European institutes want to develop their BT P&R.

Support from the European Commission may help, especially to coordinate actions and avoid duplicated efforts. Input from the Commission in the recent crisis, however, was late and respondents to the survey emphasised the need for anticipation, coordination, and support at the European level. The need for close liaison and timely communication with international agencies and other national institutes was underlined also. As a matter of fact, only a few institutes exchanged information with DG-SANCO or the WHO Regional Office for Europe in October 2001. Consequently, all institutes had similar activities: they followed events in the US,

Table 1

<table>
<thead>
<tr>
<th>Country</th>
<th>Mail threats (per 100 000 inhabitants)</th>
<th>Laboratory tests N (%)</th>
<th>Follow up by national institute n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria*</td>
<td>60 (0.7)</td>
<td>60 (100)</td>
<td>5 (8)</td>
</tr>
<tr>
<td>Belgium</td>
<td>Unknown</td>
<td>761 -</td>
<td>Unknown -</td>
</tr>
<tr>
<td>Denmark*</td>
<td>1 000 (18.9)</td>
<td>220 (22)</td>
<td>Unknown -</td>
</tr>
<tr>
<td>Finland</td>
<td>235 (4.5)</td>
<td>67 (29)</td>
<td>40 (17)</td>
</tr>
<tr>
<td>France</td>
<td>2 790 (4.7)</td>
<td>1400 (50)</td>
<td>Not applicable†</td>
</tr>
<tr>
<td>Germany</td>
<td>Unknown</td>
<td>Unknown -</td>
<td>0 -</td>
</tr>
<tr>
<td>Greece</td>
<td>220 (2.1)</td>
<td>86 (39)</td>
<td>66 (30)</td>
</tr>
<tr>
<td>Ireland*</td>
<td>100 (2.7)</td>
<td>82 (82)</td>
<td>50 (50)</td>
</tr>
<tr>
<td>Italy</td>
<td>142 (0.2)</td>
<td>142 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>135 (31.4)</td>
<td>68 (50)</td>
<td>54 (40)</td>
</tr>
<tr>
<td>Portugal</td>
<td>2 000 (20.3)</td>
<td>700 (35)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Spain</td>
<td>450 (1.1)</td>
<td>400 (89)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Sweden*</td>
<td>350 (3.9)</td>
<td>200 (57)</td>
<td>10 (3)</td>
</tr>
<tr>
<td>UK, England & Wales</td>
<td>Classified</td>
<td>Classified -</td>
<td>200 -</td>
</tr>
<tr>
<td>UK, Northern Ireland</td>
<td>Classified</td>
<td>Classified -</td>
<td>3 -</td>
</tr>
<tr>
<td>UK, Scotland*</td>
<td>Classified</td>
<td>Classified -</td>
<td>20 -</td>
</tr>
<tr>
<td>Norway</td>
<td>90 (2.0)</td>
<td>65 (72)</td>
<td>50 (56)</td>
</tr>
<tr>
<td>Estonia</td>
<td>50 (3.6)</td>
<td>45 (90)</td>
<td>45 (90)</td>
</tr>
<tr>
<td>Total</td>
<td>7622 (3.5)</td>
<td>4296 (46)†</td>
<td>543 (8)†</td>
</tr>
</tbody>
</table>

* Évaluations / Estimates † Suivi réalisé principalement par les départements de santé locaux / Follow-up primarily done by local health departments ‡ Seulement pour les pays ayant déclaré le nombre total de menaces postales / Only includes those countries having reported the total number of threats

www.eurosurveillance.org 25
managed potentially contaminated postal materials, wrote guidelines, and provided advice to multiple partners. Only a few institutes shared the case definitions they used in guidelines; most of them were national definitions. The absence of common European BT related epidemiological procedures may be an issue in the case of an outbreak involving more than one country. Europe is currently debating the creation of a technical coordination unit (TCU) for communicable disease surveillance and outbreak response (13, 14); such a unit would provide a formal structure with a high level of scientific expertise in communicable disease control. In addition to an increased investment in EPIET and related national training programmes (12), it would greatly enhance the future response capacity of Europe to bioterrorist attacks.

Conclusion

Bioterrorist threats in Europe were only hoaxes fortunately, but should be considered as a «preparedness exercise» from which lessons have to be drawn. A recent report identified several critical control points in the European response to communicable disease outbreaks involving more than one country (15). Some of the conclusions of this report – inadequate preparedness planning and inadequate funding arrangements – are consistent with the findings of our survey.

First lesson: in October 2001, Europe was not ready to respond to bioterrorism. Nevertheless, European public health institutes quickly adapted their priorities and reallocated limited resources to manage possible bioterrorist threats. National institutes have the necessary expertise but may have lacked the resources needed to implement all the necessary procedures.

Second lesson: European public health institutes may benefit from specific funding for BT, but first they need an adequate and sustained support to maintain their overall capacity.

Lastly, anticipation, coordination, and support for communicable disease control, including BT P&R, is needed at the European level.

Third lesson: the recent bioterrorist events demonstrated again the need for increased investment in epidemiology training programmes and the establishment of a TCU for international surveillance and outbreak response in the EU.

List of respondents

The following countries, institutes, and individuals contributed to this survey:

- Austria, Federal Minister for Social Security And Generations (Reinhild Strauss)
- Belgium, Scientific Institute of Public Health (Frank Van Loock)
- Denmark, Statens Serum Institute (Niels Frimodt-Moller)
- Finland, National Public Health Institute (KTL) (Pekka Nuorti)
- France, Institut de Veille Sanitaire (Philippe Malfait and Jean-Claude Desenclos)
- Germany, Robert Koch Institute (Michael Kramer)
- Greece, Hellenic Centre for Infectious Disease Control (George Saroglou)
- Ireland, National Disease Surveillance Centre (Paul Mckeown)
- Italy, Istituto Superiore Di Sanita (Donato Greco and Stefania Salmaso)
- Luxembourg, Directorate of Health (Danielle Hansen-Koenig and Nicolas Rume), National Service of Infectious Diseases (Robert Hemmer), National Health Laboratory (Francois Schneider)
- General Directorate of Health & National Institute of Health (Francesco George)
- Spain, National Epidemiology Centre - Public Health Institute Carlos III (Salvador De Mateo)
- Sweden, National Epidemiologe Centre - Public Health Institute (Anders Tegnell)
- UK - England & Wales, Communicable Disease Surveillance Centre – CDSC (Dilys Morgan and Mark Reacher)
- UK - Northern Ireland, CDSC Northern Ireland (Brian Smyth)
- UK - Scotland, Scottish Centre for Infection & Environmental Health (Peter Christie)
- Estonia, Health Protection Inspectorate (Kuulo Kutsar)
- Norway, National Institute of Public Health (Hans Blystad)

Table 2

<table>
<thead>
<tr>
<th>Topic of guidelines</th>
<th>Year before 04/10/01</th>
<th>Month after 04/10/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert procedures</td>
<td>4 (22)</td>
<td>17 (94)</td>
</tr>
<tr>
<td>Management of exposures</td>
<td>4 (22)</td>
<td>17 (94)</td>
</tr>
<tr>
<td>Agent specific investigation guidelines</td>
<td>2 (11)</td>
<td>17 (94)</td>
</tr>
<tr>
<td>- Anthrax</td>
<td>1 (6)</td>
<td>17 (94)</td>
</tr>
<tr>
<td>- Smallpox</td>
<td>1 (6)</td>
<td>11 (61)</td>
</tr>
<tr>
<td>- Botulism</td>
<td>1 (6)</td>
<td>10 (56)</td>
</tr>
<tr>
<td>- Plague</td>
<td>2 (11)</td>
<td>10 (56)</td>
</tr>
<tr>
<td>- Other agent*</td>
<td>2 (11)</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Syndrome based investigation guidelines</td>
<td>0 (0)</td>
<td>6 (33)</td>
</tr>
<tr>
<td>Clinical management guidelines</td>
<td>1 (6)</td>
<td>9 (50)</td>
</tr>
<tr>
<td>Recommendations for the public / media</td>
<td>2 (11)</td>
<td>13 (72)</td>
</tr>
<tr>
<td>Autres recommandations / Other guidelines†</td>
<td>0 (0)</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

* Tularémie, fièvre virale hémorragique, entérotoxine B du staphylocoque, diphtérie, ricin, saxitoxine, fièvre Q / Tularaemia, viral haemorrhagic fever, staphylococcus enterotoxin B, diphtheria, ricin, saxitoxine, Q fever
† Procédures de tests pour les prélèvements cliniques / Laboratory testing of clinical samples
Acknowledgements

In addition to the members of the Eurosurveillance editorial board, the author thanks the following individuals for their input: Brigitte Helynck, Alain Moren, Christophe Paquet, and Mina Vilayleck.

References

David Byrne, Europe’s Commissioner for Health and Consumer Protection, reiterated the European Commission’s commitment to the creation of a European centre for disease control by 2005 at the 2002 meeting of the European Health Forum Gastein (EHFG, http://www.ehfg.org/) (1,2). The centre will bring together the expertise in member states and will act as a reference and coordination point both in routine and crises situations. The Commission also plans to establish a health portal for online information by 2004.

The EHFG, which was launched in 1997, holds an annual event at Gastein, Austria, and assembles experts, interest groups, politicians, administrators, as well as decision makers representing patients and consumers, business and industry, and science and academia to debate key health issues. The main objective of the EHFG is to facilitate the establishment of a framework for advising and developing European health policy while recognising the importance of national and regional authorities and decision making bodies.

The theme of this year’s meeting was common challenges for health and care. In the context of a widening European Union (EU), whose citizens are aware of the increasing influence that EU and global events have on health systems of individual states, the Commissioner pointed to the major health challenges of combating communicable diseases, ensuring the safety of sensitive products, such as foodstuffs or blood, and the functioning of health systems within the single market.

The Commission has a responsibility to protect EU citizens against health threats and adequate protection can no longer be achieved by health authorities in member states acting alone. Under the new public health framework programme, which begins in January 2003, investment has been committed to finding ways to respond effectively to health threats (2). It is hoped that the review of the EU treaty framework and structures, currently being undertaken by the European Convention, will consider issues such as the powers needed by the Community to address health problems that transcend borders, such as communicable diseases and environmental threats.

As many EU citizens become active partners in managing their own health, a health portal, which will direct patients to authoritative online information, will play an important role in the dissemination of information on health and care. Other priorities expressed by the Commissioner are improving cooperation between health systems across Europe, and bringing together health and other policies in order to address health issues with the full potential of the powers and instruments at the community’s disposal.

If these aims are to be achieved, it was argued, support from the member states is vital, as is the development of cooperation with specialised organisations such as the World Health Organization, which will be a principal partner in planning and developing future EHFG activities.

References:
Hong Kong played a pivotal role in the international spread of the Severe Acute Respiratory Syndrome (SARS): a doctor who spent the night of 21-22 February 2003 at Hotel ‘M’ was identified as the index case for four national and international clusters of SARS. In parallel to the international collaborative study led by WHO and United States, a retrospective study on the cohort of German persons staying at Hotel ‘M’ was conducted. The inclusion criteria covered a period from 21 February to 3 March 2003 to allow the detection of cases possibly due to environmental contamination. In the twenty-one German guests traced as having stayed at Hotel “M” during this period, one case of laboratory confirmed SARS was found. The case history suggests that close vicinity to the index patient may have played a role in transmission. In line with findings of environmental investigations in the hotel, environmental contamination should be considered as a possible source of infection.

The Severe Acute Respiratory Syndrome (SARS) epidemic, which caused over 8000 reported cases, caused worldwide concern between February and June 2003, and claimed over 700 lives. A novel coronavirus was identified as the causative agent (1-3). Hotel ‘M’ played a pivotal role in the international spread of the new disease: on 21-22 February 2003, a doctor from Guangdong Province, China, spent one night on the ninth floor of this particular hotel in the Kowloon district of Hong Kong. On the day of his arrival, the doctor had been suffering from a respiratory illness for at least five days. After spending the night in the hotel, he was transferred to a hospital the next morning with worsening symptoms. Despite treatment, he died on 4 March 2003. Retrospectively, this man was identified as the primary index case for four national and international clusters of SARS as well as cases in two countries without documented secondary transmission (4). According to information from the Hong Kong health authorities, health talks and screening of sick leave records did not reveal any cases among hotel staff.

The United States, the United Kingdom, Canada and Germany conducted a collaborative study, led by the World Health Organization (WHO) and the United States. The objectives were to identify risk factors for development of SARS at Hotel ‘M’ and to identify modes of transmission. Although it is still unknown which specific modes of transmission played a role in spreading the infection within the hotel, the exposure history of secondary cases indicates that sharing the same floor at Hotel ‘M’ may have been a risk factor for SARS infection. In this article we report the findings of the German cohort.

Methods

To enable contact tracing, consulates were provided with a list of names of their citizens who had stayed at Hotel ‘M’ between mid-February and the beginning of March. The lists were passed on to the respective national health authorities. In Germany, the list was sent to the Robert Koch-Institut (RKI).

The RKI conducted a retrospective cohort study to assess whether any Germans staying at Hotel ‘M’ between 21 February and 3 March 2003 had contracted SARS. In contrast to the international study, we used extended inclusion criteria for the German cohort: any adult guest who had stayed at Hotel ‘M’ between 21 February and 3 March 2003 was included, instead of focusing on the night of 21-22 February only. One reason for this was to decrease the likelihood of missing later cases that might have occurred due to lingering hazards like environmental contamination. A standardised questionnaire was administered by telephone collecting information on symptoms compatible with SARS that had occurred within fourteen days after staying at the hotel. Furthermore, other information on possible risk factors for transmission was collected, for
example, the frequency with which the hotel elevator was used, contact with ill people within the hotel and other variables potentially associated with infection. In addition, efforts were made to obtain blood specimens from all participants to test for the SARS-CoV IgG-antibodies using immunofluorescence and ELISA techniques. Serological tests were performed after a time interval of at least eight weeks following the stay at the hotel. These assays had been validated extensively beforehand based on nearly 200 SARS positive and more than 500 SARS negative sera. Cross reactions or unspecific reactions due to other coronaviruses were not observed.

Results
In total, 21 German guests stayed at Hotel ‘M’ between 21 February and 3 March 2003. All of them agreed to be interviewed. Among them, 10 had stayed overnight on 21-22 February in the hotel, the same night as the index patient. Overall, 15 (71.4%) serum specimens were tested for SARS coronavirus antibodies, including 6 (60%) specimens from the 10 people whose stay had coincided with the index patient’s stay.

Retrospectively, a female traveller from Germany was identified as having had SARS. She had spent the night of 21-22 February at Hotel ‘M’ in Hong Kong in a room on the same floor as the index patient but said she had had no contact with him. The following day, the woman travelled to Australia, her final destination. On 26 February, she experienced a febrile illness with sudden onset of symptoms including dry cough, runny nose, severe myalgia and general malaise. On 6 March, she was seen by a general practitioner who prescribed antibiotic treatment. By the time she returned to Germany on 12 March, the patient had recovered completely. Serologic tests on day 72 and 104 after onset of disease showed IgG antibodies to the SARS-CoV with a titre of 1:500 obtained by immunofluorescence and 1:800 and 1:400 by ELISA, respectively. Since her illness was confined to her stay in Australia, the case was reported to the WHO SARS surveillance system retrospectively in July by the Australian health authorities. Remarkably, the patient’s travelling companion, who had experienced similar exposure, remained healthy and had negative serology for SARS-CoV. We did not find any cases in Germans who stayed at the hotel after the departure of the Chinese index patient. One other German guest who stayed on the ninth floor of Hotel ‘M’ during the night of 27-28 February did not become ill and had negative serology for SARS-CoV. We did not find any cases in Germans who stayed at the hotel after the departure of the Chinese index patient. Two hotel guests who had stayed on the eighth floor (27 February - 2 March) and the eleventh floor (18 - 25 February) reported having had a non-febrile illness with cough. Both tested negative for SARS-CoV antibodies. The other 16 cohort members remained free of symptoms and sera investigated from 10 of these were negative for SARS coronavirus antibodies.

Discussion
We found one case of SARS in our cohort that was laboratory confirmed by highly positive antibody titres in serial tests. Quantitative risk estimation was not possible. The case history suggests that close vicinity to the index patient may have played a role in transmission. However, it is unclear why the companion of the German secondary case remained healthy despite having had similar exposure. Many questions remain concerning transmission modes and the role of host susceptibility. As indicated in the recently published WHO consensus document on the epidemiology of SARS (4), environmental samples taken from the carpet outside of the room three months after the index case had stayed there revealed SARS-CoV RNA. Environmental contamination should therefore be considered as a possible source of infection in the German traveller. It is not known how long the infectious virus persists in the surroundings of a SARS patient. In case of a resurgence of SARS, further research should be undertaken to evaluate the role of environmental contamination as well as biological factors that might determine the degree of host susceptibility to SARS. We expect that the publication of the findings of the international study will shed more light on risk factors and modes of transmission of SARS in the hotel setting.

References
On 28 August 2004 (week 35), two suspected clinical cases of West Nile virus (WNV) infection in horses were identified by veterinarians in Saintes-Maries de la Mer, in the Camargue region of southeastern France (Figure 1). ELISA tests were performed on blood specimens from these horses by the Agence Française de Sécurité Sanitaire des Aliments (the French food safety agency), and WNV IgM and IgG antibodies were detected on 10 September. An alert was sent to the national authorities on 13 September 2004.

By 30 September 2004 (week 40), 37 suspected cases in horses, including 4 fatalities or euthanasia, were reported. Fourteen of the 18 horses tested were positive for WNV (WNV IgM detection or positive RT-PCR) (Figure 2). The most common clinical symptoms were fever, prostration, anorexia, ataxia, paresis and irritability. The Centre National de Référence des Arbovirus (national reference centre for arboviruses) in Lyon confirmed the presence of specific neutralising antibodies in 3 cases (PRNT80 titre >160).

The suspected cases were distributed over an area extending about 35km west and north from the initial focus, Saintes-Maries de la Mer. Saintes-Maries de la Mer is situated in the Rhône delta where migrating and resident birds are numerous. The infected area covered around the same region where a previous WNV outbreak in horses occurred in 2000 (131 suspected cases/76 confirmed cases from late August until early November) [1]. No human cases were reported in 2000 and none in 2004 by week 39.

After the 2000 outbreak, an integrated programme of WNV surveillance involving partners from the ministries of agriculture, public health and the environment, as well as local agencies, was initiated. It covered 3 départements: Hérault, Gard and Bouches du Rhône [2]. Sentinel birds (chicken and ducks) were tested for WNV antibody detection on a regular basis. Suspected cases in horses and humans were tested for WNV infection. Dead wild birds were collected for WNV testing. Because of the limited WNV outbreak in Frejus (in the Var department, 200 km east of the Camargue) in 2003 which involved 7 human cases (3 encephalitis and 4 cases of febrile illness) and 4 equine cases, the 2004 sentinel bird surveillance programme was extended along the Mediterranean coast to cover 6 départements from the eastern Pyrénées to the Var, as well as the report of suspected cases in humans and horses [3].

A low level of WNV activity was reported in the Camargue region in sentinel birds: one seroconversion in 2001, one in 2002 and none in 2003. In late July 2004, a WNV seroconversion was reported in a sentinel chicken from Saintes-Maries de la Mer, and a second seroconversion was reported in mid-August at the same location. On 6 September 2004, two thirds of the sentinel birds from this flock were positive for
A sentinel duck was reported to be positive for WNV on 16 August (infection confirmed on 7 September 2004) in Saint-Just, Hérault. Following the alert on 13 September several measures were taken:

- Increased surveillance for detection of suspected cases in human and equine populations
- Entomological studies at areas where infected horses have been found

An absence of WNV viral genome was reported in a retrospective study on 789 blood donations collected from donors in the infected region from the beginning of August 2004 to mid-September.

References:
In addition to the economic consequences and threats associated with outbreaks, listeriosis remains of great public health concern, as it has one of the highest case fatality rates of all the foodborne infections (20%-30%), and has common source epidemic potential. Changes in the way food is produced, distributed and stored have created the potential for diffuse and widespread outbreaks involving many countries. In 2002, a survey was carried out to assess the need for and the feasibility of a European network on listeria infections in humans. Data on surveillance systems and laboratory methods were collected through two postal surveys sent to the national Centres for communicable disease surveillance and to the listeria reference laboratories. Surveillance systems for listeria infections were in operation in 16 out of the 17 countries surveyed, and 16 countries had a national reference laboratory (NRL). All countries based their case definition of listeriosis on the isolation of *Listeria monocytogenes*. Fourteen NRLs performed at least one typing method on human strains. At least 13 countries already carried out or expressed willingness to carry out characterisation of isolates by pulsed field gel electrophoresis (PFGE) of *L. monocytogenes* strains isolated from human cases following a standard protocol. The participants concluded that there was a clear added value to having a European surveillance network for listeriosis infections, particularly for outbreak detection and investigation, and that a surveillance network based on the existing national surveillance systems was feasible.

Introduction

Listeria monocytogenes causes invasive illness, mainly in certain well-defined high-risk groups, including immunocompromised people, pregnant women and neonates. Listeriosis can, however, occur in otherwise healthy individuals, particularly in an outbreak setting. *L. monocytogenes* primarily causes abortion, septicaemia or infections of the central nervous system, with a case fatality ratio of 20%-30% [1]. It has only recently been recognised that foodborne transmission of *L. monocytogenes* can also cause a self-limiting acute gastroenteritis in immunocompetent persons [2]. The public health importance of listeriosis is not always recognised, particularly since listeriosis is a relatively rare disease compared with other common foodborne illnesses such as salmonellosis. Most countries within the European Union have an annual incidence between 2-10 reported cases per million population per year. However, because of its high case fatality rate, listeriosis ranks among the most frequent causes of death due to foodborne illness: it ranks second, after salmonellosis, in the United States (US) and France; and fourth in England and Wales [3-5].

Epidemiological investigations during the past 20 years have shown that listeriosis is a foodborne disease [6]. Discovery of *L. monocytogenes*, mainly in raw and ready-to-eat meat, poultry, seafood, and dairy products, has prompted numerous product recalls which have led to large financial losses for the food industry and numerous health scares. Effective prevention and control measures exist, as documented in France and the US, where a threefold and a twofold reduction respectively in incidence over the past decade was attributed to increased regulatory activity, implementation of Hazard Analysis and Critical Control Points (HACCP) programmes throughout the food industry, and specific recommendations to high-risk groups [7,8]. However, several countries still have relatively high incidence, and many countries do not have a surveillance system that allows them to estimate incidence or evaluate incidence trends. Moreover, its common source epidemic potential presents a real threat and persists even in countries with a decreasing or low incidence. Changes in the way food is produced and distributed have further increased the potential for diffuse and widespread outbreaks involving many countries. Because these outbreaks can be dispersed
with a limited number of cases in each country, they are likely to go undetected if information from these countries is not pooled. Improved surveillance, coordinated at a European level, combining rapid subtyping methods, cluster identification, and collaborative epidemiological investigation, can identify and halt these potentially large, outbreaks.

Because of the potential benefits of collaborative European surveillance described above, this project was initiated with the aim of defining the feasibility and scope of a European network on listeria infections, and to develop common methodologies for surveillance of listeriosis in Europe.

Methods

The project was coordinated by the Institut de Veille Sanitaire (InVS) and the French National Reference Centre for Listeria at the Institut Pasteur, assisted by an expert panel of microbiologists and epidemiologists from nine countries. Data for the inventory were collected through two postal surveys and, when necessary, completed through telephone interviews. One questionnaire, sent to epidemiologists in charge of surveillance of communicable diseases at the national level, collected information on surveillance systems, other data sources, information flow, case definitions, data collected, frequency of reporting and analysis, outbreak detection mechanisms, reported cases and outbreaks. A second questionnaire, sent to the national reference centre (NRL), collected information about their tasks as reference laboratory, the origin of isolates, identification and typing methods and practices, antibiotic resistance surveillance, and quality assurance and control. A third questionnaire was sent out to assess the acceptability, capacity and possibility that the NRL could to routinely perform typing of *L. monocytogenes*, or at regular intervals, and with a specific common protocol. During a meeting with epidemiologists and microbiologists from each participating country, the results of the inventory were presented, different scenarios for European surveillance were discussed, and recommendations for a European listeriosis surveillance network were formulated.

Results

In total, 17 countries participated. This included 14 EU countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain, and the United Kingdom (England & Wales and Scotland only) and Norway, Iceland and Switzerland. We present the results of Scotland separately from England & Wales, but count England & Wales and Scotland as a single country within the United Kingdom (UK).

Surveillance systems

All countries except Portugal had at least one surveillance system for listeriosis, and 12 countries had more than one system. In several countries, notification of foodborne illness (e.g., Austria and Ireland) or foodborne illness outbreaks (e.g., Belgium, the Netherlands and France) was statutory, and in theory, listeria infections could be notified through these systems. In practice, however, listeriosis cases were not notified through these systems. In this inventory, therefore, we do not consider notification of foodborne illness and outbreaks to be the same thing as a surveillance system for listeriosis. Listeriosis was statutorily notifiable in 10 countries, four countries had universal voluntary reporting, 11 countries had listeria surveillance based on their NRL, two countries had sentinel surveillance, and five countries had syndrome based surveillance of infections of the central nervous system and blood stream infections that covered listeria infections among other infections.

In 15 countries, diagnostic laboratories were involved in reporting to at least one of the surveillance systems. In addition, physicians were involved in the reporting in 13 countries. In Italy, physicians were the only notifying partners.

Listeriosis surveillance data were available at the national level in 16 countries, either at the national surveillance centre (five countries), at the NRL (one country) or at both (10 countries). These data at the national level were available as single case reports in all countries. Data transmission to the national level was immediate or weekly in all countries with the exception of Italy, where it was done quarterly.

All countries based their case definition of listeriosis on the isolation of *L. monocytogenes*, with or without specific requirements regarding site of isolation and the presence of clinical symptoms. Two countries also considered the presence of serum antibodies as laboratory confirmation of a case, but in practice, only cases with an isolate were reported. None of the countries had a specific definition for acute listeria gastroenteritis. Theoretically, in countries with a case definition based on the isolation of *L. monocytogenes* from any site, these patients should be reported. In practice, none of the countries had acute listeria gastroenteritis cases reported, although outbreaks of acute listeria gastroenteritis had occasionally been identified and reported to the national level: in Italy in 1993 and 1997, in Denmark in 1996, and in Belgium in 2001.

In general, countries with listeriosis surveillance collected at least basic demographic data (age/date of birth and sex), contact details for the reporting institute, laboratory confirmation (date of isolation of *L. monocytogenes* or date first positive specimen received in diagnostic laboratory), and the type of investigated material. Additional information such as principal diagnosis, associated pregnancy, outcome, and travel and food history, were available in between five to 10 countries.
National Reference Laboratories
All countries except for Ireland had an NRL. The tasks of these 16 NRLs were: microbiological surveillance (16 countries); detection of outbreaks (14 countries); provision of microbiological expertise (13 countries); research on listeria (12 countries); training (nine countries); and provision of reference material such as strains, sera, DNA profiles, protein extracts, phages, or guidelines for laboratory diagnosis (eight countries). Strains isolated from patients were sent to the NRL: in seven countries this was done systematically, and in eight countries this was done according to the will of the laboratory, or in specific situations such as outbreak or suspected outbreak settings. In Sweden and Switzerland, the sending of isolates to the NRL was statutory. In Spain, about half of the 16 autonomous communities sent their isolates to the NRL.

The NRLs also received information along with strains. This information concerned the site of isolation of the bacteria (13 countries), clinical data (11 countries), epidemiological data (10 countries), and strain characteristics (eight countries). In most countries (11 out of 17), the NRLs for human listeria also received listeria strains isolated from food, and in three countries, the NRLs received information on food strains.

Identification
Fifteen NRLs carried out identification of listeria strains. Only four countries performed a Gram stain and a catalase test. Biochemical characterisation was performed using API-Listeria in eight countries, API-coryne in one, while four countries used home made sugars. Nine countries looked for haemolysis, six for motility. Two countries also used polymerase chain reaction (PCR) for diagnosis, and one country also used an automated system of bacterial identification.

Characterisation of strains
Fourteen NRLs performed at least one typing method on human strains, either on an ongoing basis or at regular intervals. 13 NRLs routinely performed serotyping, either on an ongoing basis or at regular intervals. Seven countries used home made antisera, six used commercially available sera, and two used both. Thirteen countries had developed the capacity to perform DNA macrorestriction and pulsed field gel electrophoresis (PFGE) on human strains of L. monocytogenes, and performed it either routinely, for specific investigations or for ad hoc studies. All used the CHEF (contour-clamped homogeneous electric field) system for PFGE, and most used two enzymes, Ascl and Apal. Twelve countries said they would be willing to set up routine PFGE with image analysis, at least weekly or immediately after receiving a strain, in order to participate in a common surveillance system of human strains. Several countries, including one country not willing to carry out PFGE routinely, said they would be willing to send strains to another European laboratory to be typed by PFGE. Thirteen countries were willing to use a common standardised protocol for PFGE and to send profiles or strains to contribute to a European database. European surveillance including results of harmonised characterisation of isolates by PFGE of L. monocytogenes strains isolated from human cases could therefore cover at least 13 countries.

All countries who were performing or intended to perform PFGE said they would be willing to send PFGE profiles to a common European laboratory under the following conditions: access to common information (six countries), confidentiality (four), access restricted to participants only (one), and provided that strains were not distributed and profiles used only for the purpose of surveillance (one).

Antimicrobial susceptibility testing
Ten out of 17 laboratories (including Ireland) reported performing antimicrobial susceptibility testing. Three countries used the E test method for testing, and seven countries used agar dilution breakpoints. Two countries also used the Clinical and Laboratory Standards Institute (formerly NCCLS) method and one country also used a disk diffusion method. The antimicrobial agents tested varied between countries. Laboratories most frequently tested the susceptibility of listeria for gentamicin and trimethoprim-sulfamethoxazole (seven countries); ampicillin, tetracycline and erythromycin (six countries); ciprofloxacin (five countries); or chloramphenicol, streptomycin and vancomycin (four countries).

Quality control and quality assurance, accreditation
The NRLs in 14 countries reported having internal quality control for their identification procedures (nine countries) and/or typing procedures (nine countries).

Seven countries participated in an external quality control. Six of the seven countries used NEQAS from the Public Health Laboratory Service (PHLS) in the UK for identification procedures, and three also used another external quality control.

Seven NRLs were engaged in a quality assurance system, and five intended to be so in the near future. Six NRLs said that they were ISO/UE 17025 accredited and two more were accredited on an other standard; PHLS in the UK (Clinical Pathology Accreditation Ltd) and the NRL in the Netherlands (accredited by CCKL-test). One NRL is ISO 9001 certified.

Outbreak detection
Real-time reporting and analysis, high sensitivity, results of typing of strains available in real time for surveillance, and the existence of outbreak detection criteria or thresholds are all surveillance system characteristics that contribute to efficient outbreak detection. Eight countries have developed outbreak detection mechanisms and thresholds. Real time reporting and analysis characterised the surveillance systems of 15 and 11 countries respectively. The estimated or
assumed sensitivity was reasonably high or high in at least 10 countries. For outbreak detection, 12 countries had results of strain typing available, routinely and on a real time or weekly basis: serotyping (12 countries), biotyping (four countries), ribotyping (three countries), PFGE analysis (six countries), and phagetyping (one country).

Reported listeria infections and outbreaks

The incidence of reported cases varied between 0.3 and 7.5 cases per million per year. The mean incidence of reported cases was 3.4 per million inhabitants (data from 16 countries, latest year available) [TABLE 1]. Five countries reported an incidence of more than four cases per million, and three of these five countries reported an incidence of more than six per million population. These figures mostly reflect the sensitivity of the surveillance systems, as well as the incidence of the disease. However, few countries have formal evaluations or studies allowing estimation of sensitivity, geographical coverage and representativeness of their surveillance systems. In general, the surveillance systems described above covered, in principal, the entire country, except for Spain, where approximately half of the autonomous communities transmitted their data direct to the national level.

Between 1991 and 2002, a total of 19 outbreaks of invasive listeriosis were reported in nine different countries, with a total of 526 outbreak related cases) [TABLE 2]. While the number of reported outbreaks increased gradually over time, from seven outbreaks detected in the period 1992-1996 to 11 in the period 1997-2001, the mean number of cases related to these outbreaks decreased from 57 to 11 over the same period. This suggests more efficient outbreak detection, investigation...
and control. In addition, four outbreaks of acute listeria gastroenteritis were reported: two outbreaks in Italy in 1993 (18 cases) and 1997 (1566 cases); an outbreak in Denmark in 1996 (3 cases); and an outbreak in Belgium in 2001 (2 cases of acute gastroenteritis and one case of invasive listeriosis).

The incriminated food at the origin of the invasive listeriosis outbreaks was processed meat products (six outbreaks), cheese (five outbreaks), processed fish products (three outbreaks), butter (one outbreak) and undetermined (three outbreaks). The incriminated products for at least six of these outbreaks were known to have been exported, creating the potential for the occurrence of outbreak related cases in other countries. Moreover, cases related to one outbreak in one country were diagnosed in a neighbouring country. The outbreaks of gastroenteritis were linked to the consumption of contaminated rice salad and corn salad respectively, while the Belgian outbreak of gastroenteritis and invasive listeriosis was linked to a contaminated ice cream cake. The origin of one outbreak of gastroenteritis remained undetermined.

Conclusions and recommendations

Based on the inventory, it appears that there is an appropriate basic infrastructure for a European surveillance network for listeria infections, and that the necessary harmonisation of methods is feasible considering the infrastructure already in place and the expressed willingness of countries to adapt or set up methodologies for European surveillance.

It was recommended by the representatives of the participating countries/the working group to set up a European network for the surveillance of listeria infections, with, as the main objectives, providing comparative data, monitoring trends of international importance, and rapidly detecting and investigating international outbreaks more efficiently. The network should also contribute to the strengthening of national surveillance in participating countries. In its initial phase the network should concentrate on surveillance of human cases of listeria infection and not yet actively seek to collect data on food isolates. Once the network is well established and surveillance of human cases is operational, the possibilities of including data from food and animal surveillance should be studied.

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Number of cases</th>
<th>Transmission</th>
<th>Incriminated Food</th>
<th>Potential, International Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>France</td>
<td>279</td>
<td>Foodborne</td>
<td>Pork tongue in jelly (11)</td>
<td>Exported product</td>
</tr>
<tr>
<td>1992</td>
<td>Spain</td>
<td>24</td>
<td>Foodborne</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>Norway</td>
<td>6</td>
<td>Foodborne</td>
<td>Sliced cold meat</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>France</td>
<td>38</td>
<td>Foodborne</td>
<td>Millefeuille (pork meat) (12)</td>
<td>Exported product</td>
</tr>
<tr>
<td>1993</td>
<td>Italy</td>
<td>18 gastroenteritis</td>
<td>Foodborne</td>
<td>Rice salad (2)</td>
<td></td>
</tr>
<tr>
<td>1994-95</td>
<td>Sweden</td>
<td>9</td>
<td>Foodborne</td>
<td>Smoked trout (13)</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>France</td>
<td>36</td>
<td>Foodborne</td>
<td>Cheese (raw cows' milk) (14)</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>Iceland</td>
<td>5</td>
<td>Unidentified</td>
<td>Unidentified</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Denmark</td>
<td>3 gastroenteritis</td>
<td>Unidentified</td>
<td>Unidentified</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>France</td>
<td>24</td>
<td>Foodborne</td>
<td>Cheese (raw cows' milk) (14)</td>
<td>Exported product</td>
</tr>
<tr>
<td>1997</td>
<td>Finland</td>
<td>5</td>
<td>Foodborne</td>
<td>Cold-smoked rainbow trout (10)</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Italy</td>
<td>154 gastroenteritis</td>
<td>Foodborne</td>
<td>Corn salad (13)</td>
<td></td>
</tr>
<tr>
<td>1998-99</td>
<td>Finland</td>
<td>25</td>
<td>Foodborne</td>
<td>Butter (18)</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>England and Wales</td>
<td>2</td>
<td>Foodborne</td>
<td>Cheese and cheese salads/ sandwiches (19)</td>
<td>Possible cases in Germany?</td>
</tr>
<tr>
<td>1999</td>
<td>France</td>
<td>3</td>
<td>Foodborne</td>
<td>Cheese (raw cows' milk) (14)</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>France</td>
<td>10</td>
<td>Foodborne</td>
<td>Killettes (processed pork meat) (10)</td>
<td>Exported product</td>
</tr>
<tr>
<td>1999-20</td>
<td>Finland</td>
<td>10</td>
<td>Foodborne</td>
<td>Vacuum-packed fish products (21)</td>
<td>Exported?</td>
</tr>
<tr>
<td>2000</td>
<td>France</td>
<td>32</td>
<td>Foodborne</td>
<td>Pork tongue in jelly (20)</td>
<td>Exported?</td>
</tr>
<tr>
<td>2000</td>
<td>Portugal</td>
<td>1</td>
<td>Foodborne</td>
<td>Cheese</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Spain</td>
<td>15</td>
<td>Foodborne</td>
<td>Unidentified</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Belgium</td>
<td>1 + 2 gastroenteritis</td>
<td>Foodborne</td>
<td>Ice cream cake</td>
<td>Invasive illness of Belgian case diagnosed in France</td>
</tr>
<tr>
<td>2002</td>
<td>France</td>
<td>11</td>
<td>Foodborne</td>
<td>Spreadable raw sausage (22)</td>
<td>Export to Germany, Belgium and Luxembourg</td>
</tr>
</tbody>
</table>

* Cases refer to invasive listeriosis unless otherwise specified.
Common case definitions should be agreed upon as well as a common minimum dataset, which could be further developed over time to include additional data (optional dataset). Case definitions, in line with those developed by the Community Network (under decision N° 2002/253/EC, amended by Commission Decision 2003/534EC), and a minimum and optimal dataset, for which the collection is, at present, feasible for the majority of participating countries, were proposed [9].

Because of the wide disparity in listeria outbreaks, a common European database should include results of real time characterisation of strains to reinforce the ability to detect international outbreaks. The participants concluded that, at present, characterisation by both serotype and PFGE would be the most appropriate methods and the best option to meet the objectives of outbreak detection and trend analysis. The necessary harmonisation of microbiological methods and of the type of epidemiological data collected appears feasible considering the infrastructure already in place and the expressed willingness of countries to adapt or set up methodologies in the perspective of European surveillance.

The network should encourage individual countries to strengthen national surveillance of listeria infections, and should contribute to their strengthening by providing a model and specific tools for surveillance and investigations. Each country should set up a national database which combines laboratory data and data from the notification systems. Participating countries should be encouraged to increase the sensitivity of the surveillance systems in order to reinforce the ability to detect national and international outbreaks. Countries can participate in a stepwise manner, contributing initially with the data they already have available, even if incomplete. With time, countries may wish to adapt their in-country data collection in order to cover all data fields in the database. For those countries where routine and ongoing typing of strains is difficult to carry out because of the low number of isolates, the possibility of having their strains typed in another country’s NRL, should be investigated.

In addition to the harmonisation of epidemiological and microbiological methods and the creation of a common database, it was recommended that the network should develop outbreak detection algorithms and a protocol for collaborative investigation of international clusters and outbreaks. The network will need to develop principles of collaboration that should deal with access to the database by participants and by outsiders, confidentiality of country specific data, confidential and public domain reports, data protection requirements, as well as transmission to other programmes and projects. It was recommended to adapt the principles of collaboration of Enter-net to listeria [10].

Finally, the participants recommended that a project proposal be developed by the coordinators of the actual feasibility study. In May 2003, an application was submitted to the European Commission under the 2003 call for proposals in the programme of community action in the field of public health (2003-2008). Although the proposal was accepted, co-funding was not proposed by the commission until August 2004. By this time, the situation of the different partners of the project had evolved, and senior staff who committed themselves to contribute to the project had taken up other commitments. However, European investment in such a project remains a priority for the years to come. In particular, it would be important to assess how such a project could be integrated into other ongoing EU surveillance projects such as Enter-net.

Acknowledgements

The listeria surveillance feasibility study was co-financed by the European Commission, DG Sanco Agreement number SI.324931 (2001CVG4-023).

References

4. Vaillant V, de Valk H, Baron E, et all, Foodborne Infections in France. Foodborne Pathogens and Disease (Accepted for publication in September 2005)

21. Lyytikäinen O, Siltonen A, Johansson T, Hatakka M. Listeriosis cases suspected to have been caused by vacuum-packed fish products in Finland. Eurosurveillance weekly, April 13, 2000.

In June 2005, shortly after outbreaks of *Clostridium difficile*-associated diarrhoea (CDAD) caused by PCR ribotype 027 (toxinotype III) were reported in Britain, several Dutch healthcare institutions reported outbreaks of CDAD in patients caused by the same organism [1,2].

Surveillance of CDAD

Surveillance of CDAD in the hospitals with an epidemic increase was started. All institutions that observed a rise in the incidence of CDAD, or cases with more serious symptoms or lack of response to treatment with metronidazole, were invited to send in samples to the reference laboratory in Leiden for typing to detect 027 and send monthly updates on the outbreak situation to the national Centre for Infectious Disease Control at the RIVM (http://www.rivm.nl/).

So far, type 027 has been found in 15 of 23 participating institutions. Hospitals without 027 appeared not to have an increased incidence of CDAD. Further transmission seems to have occurred in only 8 of the 15 institutions where 027 was found: 7 hospitals and 1 nursing home.

Before the outbreaks, different testing strategies were in place in the institutions. During outbreaks, hospitals tested all patients with diarrhoea of unknown cause, all patients developing diarrhoea after a minimum of three days or all patients from a specific department (eg, geriatrics).

The hospital laboratories used several different assay types: toxin A immunoassays, toxin A/B immunoassays or cell cytotoxicity assays. Almost all hospitals started to use a rapid toxin A/B immunoassay during the outbreak. Additionally, some hospitals have started culturing *C. difficile*.

Preliminary results

The course of the epidemic differed between institutions (Figure). In one region where three hospitals use a single regional laboratory, the incidence *C. difficile* rose in 2004 or earlier. Unfortunately, no samples from that period were kept for typing. In some other hospitals, a sharp increase was seen in 2005. Not all patients with 027 had severe infection, some had mild colitis and were detected because of increased CDAD incidence. The median age was 74 years, but a wide range was observed: 13% of patients were under 50 years of age, 17% 50-64 years, 37% 65-79 years, and 35% over 80 years.

A number of guidelines for diagnosis and outbreak control of 027 were issued by a national expert group (in Dutch available at http://www.infectieziekten.info. These guidelines were produced in July-August 2005 and have been used since in all institutions, but not all measures have been followed up to the full extent in each hospital. By the end of 2005, the incidence had decreased in several institutions. However, the outbreaks are difficult to control: most hospitals have continued to have new cases for a long time.
It appears that institutions where stricter measures were agreed on had a sharper decline in CDAD incidence. However, as numbers are small and in some hospitals guidelines were better complied with than in others, conclusions can only be drawn cautiously.

Conclusion

The transmission in 2005 to other hospitals not already affected appears to have been limited. However, to maintain vigilance into the development of CDAD (027) outbreaks in Dutch health care institutions, this surveillance will be continued for at least another half year. Updates of the results will be published on the Centre for Infectious Disease Control website (http://www.rivm.nl/gezondheid/infectieziekten/centrum_izb/).

References:

Acknowledgements:

We would like to acknowledge all medical microbiologists and infection control professionals for their contribution in the control and surveillance of CDAD.
After a continuous increase in the reported chlamydia incidence over the past 10 years in Sweden, the incidence decreased by 2% in 2006. A new genetic variant of *Chlamydia trachomatis* (nvCT) was discovered in Sweden in October 2006 that could not be detected by some of the commonly used diagnostic tests, which led to underreporting of chlamydia cases. This variant has also been called “swCT” by some authors. After the switch at the end of 2006 to other diagnostic tests that can detect nvCT, the reported incidence rose considerably (75 per 100,000 population) in the beginning of 2007. The objective of this study was to explore alternative explanations for this increase and to propose further action if needed.

A data quality check was done in order to exclude double reporting and delayed reporting. To compare the incidence of chlamydia and the proportion of the population that was tested, we divided the Swedish counties into two groups, according to the diagnostic test used. We estimated the chlamydia incidence trend for January and February in the years from 2000 to 2005 by regression model, and predict the chlamydia incidence for the same period in 2006 and 2007. The age and sex distribution of the cases in January and February did not differ between the years 2000 to 2007. The proportion of tested people increased on average by 5% every year. If we assume that the percentage of the population that was tested had been 20% higher in 2007 than in 2006, the incidence predicted by the model for January and February 2007 is exactly the same as the incidence that was actually observed.

The nvCT was found to be widely spread in Sweden and its proportion varied between counties from 10% to 65%, leading to false negative results [3,5]. Laboratories in 13 of the 21 counties in Sweden had used diagnostic kits in 2006 that did not detect nvCT (Roche Diagnostics and Abbott Laboratories), while laboratories in eight counties had used diagnostic kits by Becton Dickinson that could detect both wild-type CT and nvCT. In order to improve diagnosis of the nvCT, the use of other PCR testing kits (Becton Dickinson or Artus) and/or culture was recommended [6]. An overview by the Swedish Institute for Infectious Disease Control showed that, by March 2007, all laboratories (except one) had switched to one of the suggested diagnostic kits. This change made it possible to diagnose chlamydia infections caused by nvCT and to perform non-interrupted contact tracing, resulting in a renewed increase in reported cases.

In the beginning of 2007, the Swedish Institute for Infectious Disease Control noticed a sharp increase in reported chlamydia cases through the electronic
reporting system. The incidence of chlamydia in the two-month period of January and February 2007 was 38% higher than the incidence during the same period in 2006. This raised the question: Can this increase be explained only by better diagnosis of nvCT infections? The objective of this study was to explore alternative explanations for the increase and propose further action if needed. Based on available surveillance data several alternative hypotheses were developed. One of the alternative hypotheses is an increase in the testing activity in the beginning of 2007. Another alternative hypothesis is a continued increase in the prevalence of chlamydia infection. Before the hypotheses were tested, we considered the data quality with regards to double reporting or delayed reporting to the system.

Methods

Surveillance system
Genital chlamydia infection is a mandatorily notifiable disease in Sweden under the Communicable Disease Act from 1988 [7]. Partner notification and contact tracing are also routinely performed [7]. The report of a chlamydia case to the national surveillance system contains an individual laboratory notification from the diagnostic laboratory and an individual clinical notification from the health care professional. Notifications do not contain the name of the patient but are coded, based on the social security number (personnummer). In addition, all laboratories that perform testing for CT report on a voluntary basis the number of people tested and the number found positive for CT every six months. These data are available in electronic format since 2000.

Quality check for reported cases
Double reporting or delayed reporting of chlamydia cases was checked for every month in 2006 and for January and February in 2007. The time between clinical diagnosis and reporting was compared. Reporting of a clinical case more than one week after diagnosis was defined as a delay. In Sweden, all positive laboratory findings for CT with the same code within a three-month period are considered as new infections.

Grouping of counties according to diagnostic methods
We divided all 21 Swedish counties into two groups based on the diagnostic kits used by their laboratories in 2006: Group A/R used Cobas Amplicor (Roche Diagnostics), Cobas TagMan48 (Roche Diagnostics) or Abbott m2000 (Abbott Laboratories) and were unable to detect nvCT. Group BD used the ProbecTec ET kit by Becton Dickinson that is able to detect nvCT. According to this division, 13 counties were included in Group A/R and eight counties in Group BD (including county Västra Götaland, where three out of four laboratories had used Becton Dickinson diagnostic kit and one the Roche diagnostic kit).
Chlamydia cases and incidence

Reported cases in the period of January and February were described in terms of the total number, proportion of males and females, median age, and the reporting county. The incidence of chlamydia was calculated as all reported chlamydia cases per 100,000 population during January and February in the years 2000 to 2007. The national incidence and the incidence per group (A/R and BD) were calculated as geometric means of the incidence of the respective counties.

Testing for C. trachomatis

In order to quantify to what degree the different counties invested in finding new chlamydia cases, we calculated the proportion of the population between 15 and 49 years of age that was tested for chlamydia. This particular age group is tested most frequently and with the highest incidence (ca. 90% of all reported cases). Since it was not possible to obtain the specific data on tests performed in January and February, the annual number of tests was used instead.

Trend estimation

A negative binomial regression model was used to study the time trend of chlamydia cases in January and February in 2000 to 2005. The year 2006 was excluded due to underreporting of nvCT. To model the incidence of chlamydia in January and February, the following variables were included in the model:

a) county group A/R or BD (according to diagnostic kits used),
b) proportion of the population in age group 15 to 49 years tested in each county,
c) year.

We also added an interaction effect of method and time, as differences between the two diagnostic kits could have been exacerbated by the spread of the nvCT over time. The initial model with i=1, ..., 21 (county) and j=1, ..., 6 (year) was:

\[
\log(\text{cases}_{ij} / \text{pop}_{ij}) = \beta_0 + \beta_1 \text{year}_j + \beta_2 \text{proportion tested}_{ij} + \beta_3 \text{group}_i + \beta_4 \text{group}_i \times \text{year}_j.
\]

All calculations were based on data from individual counties. Based on the model, a prediction of cases was done for January and February 2006 and 2007. Since the proportion of tested individuals is not yet available for 2007, two scenarios were used. The proportion of persons tested in 2007 was assumed to be:

1) 5% more than in 2006 in each county, which represents the average annual increase.

2) 20% more than in 2006 in each county (extreme scenario).

The differences between the observed and predicted incidence were summarized as mean values.

Results

Quality check

The quality check for reported chlamydia cases revealed that every month, 1-2% of cases were reported with a delay. This was consistent throughout the year.
2006 and also in January and February 2007. No double reporting of chlamydia cases was discovered.

Description of cases

During January and February 2007, a total of 6,903 chlamydia cases were reported to the national surveillance system. Compared to the same period in 2006, this was an increase of 38%. The distribution of the cases by sex and median age was similar to that observed in the previous years (Table 1). The median age was 21.4 years for females and 24.1 years for males.

Chlamydia incidence

Between 2000 and 2005, the trend of reported chlamydia incidence in the period of January and February was increasing in all counties (Figure 2). In 2006, however, the reported chlamydia incidence decreased both in the counties of group A/R and in those of group BD, and then increased again in 2007.

Chlamydia cases were reported in all 21 counties (Table 2). Some variation in reported incidence was observed in each county year by year (Table 2). The 2006 decrease in incidence was apparent in 13 counties and in the national incidence, while the increase in reported incidence observed in 2007, affected all counties.

Testing for C. trachomatis

Figure 3 shows the proportion of the population aged between 15 and 49 years that were tested in both groups of counties. From 2000 to 2006 there was, on average, 2% more testing in Group A/R than in Group BD. In both groups of counties there was an upward trend in the proportion of the population tested for chlamydia.

Model estimation

We found that neither the effect for ‘group’ nor that for the interaction ‘group*year’ were significant in the model, meaning there were no differences in the trend between groups of counties. However, the general trend (‘year’, p-value < 0.001) and the proportion of the population tested (p-value < 0.001) were highly significant. Therefore the final model included only the significant factors, with i=1, ...21 (county) and j=1,...6 (year):

\[
\log(\text{cases}_{ij} / \text{pop}_{ij}) = \beta_0 + \beta_1\text{year}_j + \beta_2\text{proportion tested}_{ij}.
\]

The model estimated an increase of 8.4% (95% confidence interval 5.8%-11.0%) in incidence per year, given a constant proportion of tested individuals. An assumed increase of 5% in testing in the same year would result in an increase in incidence of 24%. Figure 4 shows the estimated versus the reported incidence for 2000-2005 in all counties in Sweden according to this model.

We predicted the national incidence in 2006 to be 63 per 100,000 population, using a proportion of tested individuals reported in that year. The model overestimated the reported incidence in almost all counties, as well as at national level (observed incidence 55 per 100,000 population). The mean error, however, was smaller among BD counties with –3.6 compared to –10.1 in A/R counties. The incidence for 2007 was estimated using two scenarios. When it was assumed that 5% more people were tested in each county in 2007 than in 2006, the model estimated a national incidence of 70 per 100,000 population in January and February. When it was assumed that 20% more people were tested in 2007, the predicted incidence was 75 per 100,000 population. The latter gives a prediction close to what was actually observed this year (mean error per county: 2.5).

Discussion and conclusions

The emergence of the new genetic variant of C. trachomatis (nvCT) in 2006 led to a temporary decrease in the number of diagnosed cases. In early 2007, a renewed increase in chlamydia incidence was observed. This was expected after the change to diagnostic kits that were able to detect nvCT. The cases did not differ from previous years in terms of age and sex distribution or geographical distribution. We also excluded the possibility of delayed and double reporting as a reason for the increase. However, our comparison of counties using different diagnostic kits showed that the sharp increase in 2007 could not be solely explained by switching the diagnostic method, since rising numbers of CT were also noted in those counties that had already in 2006 used kits that can detect nvCT. This suggests that other factors could have played a role, such as a higher number of persons being tested and/or a higher CT prevalence in the population.
In almost all counties, our statistical model predicted a higher incidence for 2006 than that actually observed. This supports an effect of underreporting due to undetected cases of nvCT already in January and February 2006. When we assumed that 20% more people were tested in 2007 than in 2006, the predicted incidence for January-February 2007 was the same as the observed incidence. The situation with the newly emerged CT variant was widely covered by mass media in Sweden by the end of 2006, contributing to better knowledge on chlamydia diagnostic problems and possible false negative results. This could have led to increased testing for CT in the beginning of 2007, induced both by health professionals and patients themselves.

An additional explanation for the higher incidence could be a continuous increase in the prevalence of chlamydia in the population, as has been described earlier in Sweden [8]. This explanation was also supported by our model.

Several limitations could influence our results. Firstly, our model did not take into consideration size of population, age distribution, testing policy, or the degree of

Table 1

Characteristics of chlamydia cases in Sweden, January-February period of 2000-2007 (n=36,339)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases:</td>
<td>2,682</td>
<td>3,542</td>
<td>4,023</td>
<td>3,900</td>
<td>4,860</td>
<td>5,100</td>
<td>5,011</td>
<td>6,903</td>
</tr>
<tr>
<td>Female (%)</td>
<td>56.7</td>
<td>55.6</td>
<td>56.6</td>
<td>56.0</td>
<td>56.2</td>
<td>56.2</td>
<td>57.3</td>
<td>57.1</td>
</tr>
<tr>
<td>Male (%)</td>
<td>43.3</td>
<td>44.4</td>
<td>43.4</td>
<td>43.1</td>
<td>43.8</td>
<td>43.8</td>
<td>42.5</td>
<td>42.9</td>
</tr>
<tr>
<td>Median age (years):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>22.3</td>
<td>22.1</td>
<td>22.2</td>
<td>21.9</td>
<td>21.7</td>
<td>21.9</td>
<td>21.7</td>
<td>21.4</td>
</tr>
<tr>
<td>Male</td>
<td>25.0</td>
<td>24.0</td>
<td>26.0</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
<td>24.8</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Table 2

Reported chlamydia incidence per 100,000 population in Sweden by county, January-February period of 2005-2007

<table>
<thead>
<tr>
<th>County</th>
<th>Group A/R</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalarna</td>
<td>50.7</td>
<td>44.2</td>
<td>170.8</td>
<td></td>
</tr>
<tr>
<td>Gotland</td>
<td>52.2</td>
<td>71.6</td>
<td>72.3</td>
<td></td>
</tr>
<tr>
<td>Gävleborg</td>
<td>69.6</td>
<td>52.7</td>
<td>66.0</td>
<td></td>
</tr>
<tr>
<td>Halland</td>
<td>59.4</td>
<td>46.7</td>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>Kalmar</td>
<td>56.3</td>
<td>45.8</td>
<td>91.1</td>
<td></td>
</tr>
<tr>
<td>Kronoberg</td>
<td>51.6</td>
<td>36.2</td>
<td>78.6</td>
<td></td>
</tr>
<tr>
<td>Skåne</td>
<td>60.0</td>
<td>52.0</td>
<td>76.1</td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td>58.4</td>
<td>59.5</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>Södermanland</td>
<td>66.8</td>
<td>62.0</td>
<td>72.0</td>
<td></td>
</tr>
<tr>
<td>Värmland</td>
<td>63.7</td>
<td>61.8</td>
<td>65.5</td>
<td></td>
</tr>
<tr>
<td>Västartland</td>
<td>46.4</td>
<td>52.9</td>
<td>68.9</td>
<td></td>
</tr>
<tr>
<td>Östergötland</td>
<td>51.8</td>
<td>48.0</td>
<td>58.7</td>
<td></td>
</tr>
<tr>
<td>Östergötlund</td>
<td>60.5</td>
<td>62.7</td>
<td>66.0</td>
<td></td>
</tr>
</tbody>
</table>

Group B/R: counties that used Becton Dickinson kit. Group A/R: counties that used Abbott or Roche kits.

<table>
<thead>
<tr>
<th>County</th>
<th>Group B/R</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blekinge</td>
<td>51.1</td>
<td>52.8</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td>Norrbotten</td>
<td>76.7</td>
<td>50.4</td>
<td>58.4</td>
<td></td>
</tr>
<tr>
<td>Uppsala</td>
<td>61.0</td>
<td>58.5</td>
<td>80.6</td>
<td></td>
</tr>
<tr>
<td>Västerbotten</td>
<td>44.6</td>
<td>45.8</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>Västmanland</td>
<td>62.4</td>
<td>72.0</td>
<td>92.6</td>
<td></td>
</tr>
<tr>
<td>Västra Götaland</td>
<td>43.0</td>
<td>48.4</td>
<td>66.3</td>
<td></td>
</tr>
<tr>
<td>Jämtland</td>
<td>74.8</td>
<td>85.8</td>
<td>88.2</td>
<td></td>
</tr>
<tr>
<td>Jönköping</td>
<td>55.1</td>
<td>51.6</td>
<td>71.9</td>
<td></td>
</tr>
</tbody>
</table>

Geometric mean of Incidence (Sweden): 54.8

Group B/R: counties that used Becton Dickinson kit. Group A/R: counties that used Abbott or Roche kits.
partner our results. In addition, we assumed that the number of tests performed during the entire year was proportional to the number of tests performed in the period of January and February. Neither did we investigate other possible explanations such as a change in sexual behaviour that could contribute to increased spreading of CT.

The sharp increase in January and February 2007 is misleading if compared to the same period in 2006 without taking into consideration the underestimated rates in 2006. Due to the fact that the diagnostic methods failed to detect nvCT in 2006, cases remained undiagnosed and as a result the contacts of these cases were not traced. This led to an accumulation of chlamydia cases and further spread. We can expect to see this effect in those 13 counties in Sweden that had used diagnostic kits unable to detect nvCT. However, more active testing due to the reasons described above or an increase in the prevalence of CT are likely to have contributed to the increased incidence in January and February 2007.

Published reports from other European countries have so far shown limited evidence of spread of the nvCT outside of Sweden [9,10]. Sporadic cases were reported from neighbouring countries such as Denmark and Norway [11,12]. However, sexual contacts during international travels could lead to spread of this genetic variant to other countries as well. Detection of the nvCT through the surveillance system can take time, as was the case in Sweden where the decrease of chlamydia notifications in some counties was masked by the overall national rates. Therefore epidemiological and laboratory vigilance are important not only at national but also at local level. Continuous evaluation of diagnostic tests is necessary. Sexual health promotion needs to be intensified in order to effectively control the spread of sexually transmitted diseases in general. Sweden has intensified prevention campaigns with information in mass media, Internet and cinemas, condom distribution to teenagers, etc. in the summer of 2007 [13].

References

www.eurosurveillance.org
Extended-spectrum beta-lactamases (ESBLs) have been increasingly reported in Europe since their first description in 1983. During the 1990s, they were described mainly as members of the TEM- and SHV-beta-lactamase families in *Klebsiella pneumoniae* causing nosocomial outbreaks. Nowadays, they are mostly found in *Escherichia coli* that cause community-acquired infections and with increasing frequency contain CTX-M enzymes. Dissemination of specific clones or clonal groups and epidemic plasmids in community and nosocomial settings has been the main reason for the increase in most of the widespread ESBLs belonging to the TEM (TEM-24, TEM-4, TEM-52), SHV (SHV-5, SHV-12) and CTX-M (CTX-M-9, CTX-M-3, CTX-M-14 or CTX-M-15) families in Europe. Co-selection with other resistances, especially to fluoroquinolones, aminoglycosides and sulfonamides, seems to have contributed to the problem. The emergence of epidemic clones harbouring several beta-lactamases simultaneously (ESBLs, metallo-beta-lactamases or cephemycins) and of new mechanisms of resistance to fluoroquinolones and aminoglycosides warrants future surveillance studies.

Introduction

Enterobacteriaceae have become one of the most important causes of nosocomial and community acquired infections. Beta-lactams (mainly extended-spectrum cephalosporins and carbapenems) and fluoroquinolones constitute the main therapeutic choices to treat infections caused by these microorganisms. However, resistance to these compounds has been reported more and more frequently in Europe in the past years [1-5].

Acquired resistance to beta-lactams is mainly mediated by extended-spectrum beta-lactamases (ESBLs) that confer bacterial resistance to all beta-lactams except carbapenems and cephemycins, which are inhibited by other beta-lactamase inhibitors such as clavulanic acid. A shift in the distribution of different ESBLs has recently occurred in Europe, with a dramatic increase of CTX-M enzymes over TEM and SHV variants. Other non-TEM, non-SHV enzymes, such as PER, GES, IBC or certain OXA types, have also been found in some European countries [1]. Although ESBLs still constitute the first cause of resistance to beta-lactams among Enterobacteriaceae, other “new beta-lactamases” conferring resistance to carbapenems, such as metallo-beta-lactamases (MBL) and KPC carbapenemases, or to cephemycins, such as CMY enzymes, have more recently emerged and are often associated with ESBLs (see section Epidemiology of ESBL in Europe).

Overall data on resistance to third generation cephalosporins, mainly due to ESBL, in Europe have been provided by the European Antibiotic Resistance Surveillance System (EARSS; http://www.rivm.nl/earss/) and other international surveillance systems (Table 1). In addition to a large number of detailed molecular analyses on particular ESBL types, multicentre studies performed in hospitals, farms, or slaughterhouses, using different surveillance systems in each country, have contributed to a better understanding of the epidemiology of these enzymes at local, national and international level. The current increase in ESBL-producing bacteria in inpatients as well as outpatients at the time of hospital admission points towards a continent-wide rise, mainly in *Escherichia coli*, with great variations in the occurrence and distribution of different ESBLs among countries (see section Epidemiology of ESBL in Europe). A community-origin explaining this rise has been highlighted in many surveys, but the prevalence of ESBLs in this setting is difficult to ascertain accurately, as faecal colonisation surveys among humans without direct or indirect hospital exposure are scarce (see section Faecal colonisation surveillance studies).
Antibiotic overuse in humans and animals, hospital cross-infection, the food chain, trade and human migration seem to have contributed to the recent dissemination of ESBLs outside hospitals, although the role of these factors is variable and linked to particular epidemiological situations (see sections Epidemiology of ESBL in Europe and ESBLs in non-humans hosts). Recent studies have demonstrated the clonal expansion of certain enterobacterial clones that are able to acquire multiple ESBL plasmids (see section Clonal expansion of ESBL-producing Enterobacteriaceae). These successful clones seem to have favoured the expansion of ESBLs on our continent, as exemplified by the highly virulent *E. coli* O25:H4-ST131, a strain that is thought to be responsible for the pandemic dissemination of the CTX-M-15 enzyme. The origin of widespread *E. coli* clonal complexes is still unknown, although it is likely that the resistance they exhibit against trimethoprim-sulfamethoxazole or fluoroquinolones is due to a strong selection pressure prior to ESBL acquisition (see section Clonal expansion of ESBL-producing Enterobacteriaceae). Plasmid dissemination also plays a critical role in the widespread ESBL in Europe (see section The impact of plasmid transfer on ESBL-producing Enterobacteriaceae). The increasing description of isolates simultaneously containing ESBLs, carbapenemases, CMY or new mechanisms of resistance to fluoroquinolones and aminoglycosides is of concern (see section Multi-resistance profiles in ESBL producing isolates). In this review, we summarise the more recent findings on ESBL epidemiology in Europe in order to understand the recent increase in hospitals and in the community, and to implement appropriate intervention strategies to avoid their pandemic dissemination as has happened with certain Gram-positive organisms such as methicillin-resistant *Staphylococcus aureus* or vancomycin-resistant *Enterococcus faecium*.

Epidemiology of ESBL in Europe

General surveillance studies

European and intercontinental surveillance studies have collected data on ESBL-producing Enterobacteriaceae in Europe, all of which consistently show a variable proportion among different geographic locations, enterobacterial species and isolates from different sources (Table 1, Figure 1). Some of them allow comparison with non-European geographic areas, such as the TEST (Tigecycline Evaluation and Surveillance Trial) or SMART (Study for Monitoring Antimicrobial Resistance Trends) [4], which showed that ESBL were far less frequent in Europe than in Latin America and Asia/Pacific regions but more common than in North America (Figure 2). However, these studies have not addressed potential differences between hospital and community isolates.
A recent multicentre European study performed in 2005 in settings with a high antibiotic selection pressure such as intensive care units (ICU) gave results similar to those collected by EARSS [7]. That study had been designed to monitor the association between specific antibiotic consumption and antimicrobial resistance, but no clear correlation was found between the two. This was probably due to differences in the prevalence of patients who were colonised with resistant pathogens at admission, and to the different efforts put in place in different ICUs to avoid cross-transmission of these bacteria.

To date, there have not been any specific European multicentre studies addressing the prevalence of ESBL among community isolates, although there have been different efforts at national and local levels. A study performed in Turkey showed a prevalence of 21% ESBL producers among *E. coli* causing community-acquired urinary tract infection (UTI) during 2004 and 2005 [8]. This percentage was higher than the 5.2% observed in a Spanish multicentre study covering 15 microbiology laboratories in 2006 [9]. Moreover, the rate of community-acquired bacteraemias caused by ESBL-producing *E. coli* was 6.5% in Spain, whereas it ranged from 12.9% to 26.8% for *K. pneumoniae* in studies performed in Spain and the United Kingdom (UK) [10-12].

Faecal colonisation surveillance studies

There are no multicentre studies to address faecal colonisation rates with ESBL-producing isolates in Europe, although this is a common practice in the hospital setting for implementing epidemiological measures to curtail or control their spread. Nevertheless, the rate of inpatients, outpatients and healthy volunteers colonised by ESBL producers has been addressed in a few national studies and provided interesting observations. A Spanish analysis demonstrated that the frequency of faecal carriers had increased from under 1% to 5% among outpatients and from under 1% to 12% among hospitalised patients between 1991 and 2003, with a prevalence of 4% in healthy volunteers during 2004 [13]. It is of interest to note that the ESBL characterised among isolates obtained from faecal carriers was similar to the one obtained in the clinical setting in Spain at the time these studies were performed. This could prove useful for monitoring ESBL trends [14,15]. Nevertheless, these proportions are in contrast with what was found in a study performed among 322 healthy volunteers in the Paris area that did not detect any carriers of ESBLs. However, the same study frequently observed colonisation with prevalent clones that are associated with particular ESBLs but did not actually contain these enzymes [16].

Two other Spanish studies showed that the faecal carriage rate of ESBL-producing *E. coli* in community patients who had UTIs caused by this pathogen was around 70%, which is much higher than that of individuals with infections not associated with ESBLs [17,18]. Interestingly, faecal carriage in the household contacts of infected patients with ESBL-producing *E. coli* ranged from 16.7% to 27.4% in these two studies. This led to the suggestion that faecal colonisation with ESBL-producing bacteria is a risk factor for acquisition of UTI caused by these pathogens and a potential source for transmission among households.

Geographic differences and ESBL types circulating in European hospitals

The last EARSS report from 2006, covering over 800 laboratories from 31 countries, showed a continuous increase since 2000 in invasive *E. coli* and *K. pneumoniae* isolates resistant to third generation cephalosporins, with prevalences higher than 10% for half of the enrolled countries (Figure 1). In addition, it shows important geographical differences, ranging from a percentage of under 1% (Estonia) to 41% (Romania) for *E. coli* and from 0% (Iceland) to 91% (Romania) for *K. pneumoniae*. Although these proportions are generally associated with the production of ESBL, they might be somewhat overestimated due to the inclusion of isolates with a greater susceptibility to beta-lactams when EUCAST breakpoints are used, or due to isolates overproducing AmpCs which represent about 1-2% of isolates resistant to third generation cephalosporins.

All published studies have confirmed that in most northern European countries, the prevalence of ESBL isolates is still low compared to southern and eastern European countries. Unfortunately, not all publications indicate precise frequency rates, since most of them were designed to establish the molecular epidemiology of circulating ESBLs, but not to ascertain the prevalence of these isolates.

Northern European countries

In Denmark (www.danmap.org), Norway (www.antibiotikareistens.no) and Sweden (www.strama.se), yearly national surveillance and published studies show continuous rising trends of ESBLs. In the Copenhagen area of Denmark, the occurrence of ESBL producers was below 1% in isolates received at a national reference

Figure 2

Frequency of ESBL-producing *Escherichia coli* and *Klebsiella pneumoniae* isolates reported in the TEST surveillance study (2004-2006) in different geographic areas [27]
laboratory, with dominance of CTX-M and SHV enzymes [19]. In Norway, a prospective survey of clinical E. coli isolates with reduced susceptibility to oxyiminocephalosporins demonstrated the dominance of CTX-M-15 (46%) and CTX-M-9-like (30%) enzymes among ESBL-positive E. coli and of SHV-5 (47.4%) and SHV-2 (21.0%) among ESBL-positive K. pneumoniae isolates [20]. This ESBL distribution is similar to that encountered in Sweden during the period from 2001 to 2006, when 92% of consecutive non-duplicate ESBL-positive E. coli isolates expressed a CTX-M-type enzyme, CTX-M-1 being the predominant group [21]. Similar results were found in multicenter studies performed between 2002 and 2004 in Finland [22]. More recently, clonal outbreaks caused by CTX-M-15 K. pneumoniae have been reported in Scandinavia [23].

Southern countries

The prevalence of ESBL producers in Spain and Portugal has increased over time, with a predominance of CTX-M-producing E. coli causing community acquired UTIs [14,24-26]. In Spain, a shift in the proportion of ESBL-producing Klebsiella isolates recovered from outpatients (7% to 31%) and ICU patients (41% to 25%) was observed between the periods 1989 to 2000 and 2001 to 2004 [27]. Although a high diversity of ESBLs are reported in most Spanish studies, high local prevalence of CTX-M-9, CTX-M-14, CTX-M-10 and TEM-4 enzymes is observed among inpatients, outpatients and healthy individuals [13,15,17]. In Portugal, nationwide surveys are not available. Studies of individual hospitals reflect a common spread of CTX-M-14, TEM-52, and GES [24,26]. TEM-24, CTX-M-15, CTX-M-32 and SHV-12 are frequently detected in both Spain and Portugal [15,24].

In Italy, the prevalence of ESBL producers among clinical isolates has also increased over the past ten years [28]. The most prevalent ESBL-positive species are E. coli among hospitalised patients and Proteus mirabilis among outpatients. A predominance of TEM enzymes (45.4%), SHV-12, and the emergence of non-TEM, non-SHV enzymes (CTX-M-type in E. coli and K. pneumoniae, and PER-type in P. mirabilis) has been described. More recent studies performed in single institutions showed the frequent recovery of CTX-M-15-producing E. coli and other variants from this group such as CTX-M-1 and CTX-M-32 [29-31].

In France, the prevalence of ESBL production in Enterobacteriaceae reported in different multicentre studies is under 1%, with a progressive increase in the occurrence of CTX-M enzymes linked to E. coli expansion [32]. The frequency of certain ESBL producers in 2005 was far lower than reported in previous years including P. mirabilis (3.7% versus 1.3%), Enterobacter aerogenes (53.5% versus 21.4%) and K. pneumoniae (9.4% versus 3.71%), but had increased for E. coli (0.2% versus 2%). In addition, ESBLs have frequently been observed in the community setting, linked to nosocomial acquisition [33]. CTX-M-variants were predominant and belonged primarily to the CTX-M-1 (85%) and CTX-M-9 (11.3%). A variety of TEM enzymes has been identified both in hospitals and in the community, although TEM-3 and TEM-24 remain the more common types, they have persistently been recovered since the late 1990s and have often been associated with clonal outbreaks [32,33].

United Kingdom

A recent dramatic increase in ESBL-producing organisms is being observed both in hospitals and in the community, mainly caused by the CTX-M-15 enzyme [2]. This enzyme, first reported in the UK in 2003, initially co-existed with CTX-M-9, CTX-M-14, SHV-variants (mainly SHV-12), and to a lesser extent with TEM derivatives both in the hospital and in the community. It has now become the most prevalent enzyme in both settings [2,34].

Eastern countries

The occurrence and distribution of ESBLs in this area differs from that in other countries. The prevalence of ESBLs is over 10% in Hungary, Poland, Romania, Russia and Turkey. K. pneumoniae is the most frequent ESBL-producing species in Hungary and Russia, and an increase in the percentage of ESBL producers among K. pneumoniae isolates has been reported from Poland, Turkey, Bulgaria, and Romania [35-40]. CTX-M-3, SHV-2 and SHV-5 are usually widely spread in eastern European countries.

<table>
<thead>
<tr>
<th>Surveillance Study</th>
<th>Date (Year)</th>
<th>Countries (No.)</th>
<th>Centers (No.)</th>
<th>Sample origins</th>
<th>Overall frequency (%)</th>
<th>E. coli</th>
<th>K. pneumonia</th>
<th>P. aeruginosa</th>
<th>P. mirabilis</th>
<th>Enterobacter spp.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENTSSY</td>
<td>1997-98</td>
<td>25</td>
<td>25</td>
<td>Blood, urine, respiratory tract, wounds, sterile fluids</td>
<td>4.9</td>
<td>1.3</td>
<td>1.8</td>
<td>12.6</td>
<td>5.3</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>SMART</td>
<td>2004</td>
<td>9</td>
<td>31</td>
<td>Intraperitoneal</td>
<td>6.4</td>
<td>8.8</td>
<td>n.a.</td>
<td>n.a.</td>
<td>11.6</td>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>2004-06</td>
<td>29</td>
<td>62</td>
<td>Blood, urine, respiratory tract, wounds, sterile fluids</td>
<td>7.6</td>
<td>13.3</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>[5]</td>
<td></td>
</tr>
<tr>
<td>MYSTIC</td>
<td>2005</td>
<td>12</td>
<td>40</td>
<td>Blood culture, urine, stool, sterile fluids, wounds</td>
<td>5.0</td>
<td>8.2</td>
<td>9.8</td>
<td>1.4</td>
<td>n.a.</td>
<td>[6]</td>
<td></td>
</tr>
<tr>
<td>EMBRIS</td>
<td>2006</td>
<td>31</td>
<td>ca. 800</td>
<td>Blood</td>
<td><1-4.1</td>
<td>0-91</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

In Poland, the proportion of ESBL producers in hospitals (11.1%) varied for different species from 2.5% for *E. coli*, 40.4% for *K. pneumoniae* and 70.8% for *Serratia marcescens*, the latter two having a higher prevalence due to outbreak situations. ESBL types were dominated by CTX-Ms (82%, CTX-M-3) and SHV types (17%, SHV-2, SHV-5, and SHV-12), while TEM-like enzymes (<1%, TEM-19 and TEM-48) were found only sporadically. In contrast to other countries, CTX-M-15 was rarely recovered in Poland [35]. The current scenario in Poland differs from that in the late 1990s, when there was a dominance of TEM ESBLs and spread of CTX-M-3 producers all over the country [41,42].

In Bulgaria, hospital outbreaks caused by CTX-M-3, CTX-M-15 and SHV-12 are described, often with an involvement of *S. marcescens* in addition to *K. pneumoniae* [40]. In Hungary, a recent eruptive and extensive spread of highly ciprofloxacin-resistant CTX-M-15 *K. pneumoniae* epidemic clones has been detected [36]. Nosocomial outbreaks involving SHV-2a-producing *K. pneumoniae* are also frequent [38]. In Turkey, CTX-M-15 is widely distributed [8,39], and epidemic strains of *K. pneumoniae* isolates producing the carbapenemase OXA-48 and the ESBLs SHV-12 or CTX-M-15 have emerged [43].

Predominant ESBLs circulating in Europe

The emergence and wide spread of the CTX-M-15 enzyme in most European countries, including those with previous low rates of ESBLs, is one of the most relevant findings associated with the current epidemiology of ESBL in Europe [8,14,23,36,44,45]. This enzyme is increasingly being associated with isolates from the community setting, including healthcare centres, as documented in studies from France, Spain, Turkey and the UK, [2,8,14,32,46], see also section Clonal expansion of ESBL-producing Enterobacteriaceae).

Other CTX-M variants are amplified locally, such as CTX-M-9 and -10 in Spain [35,25], CTX-M-14 in Portugal and Spain [15,24,47], CTX-M-3 in eastern countries [35,40] and CTX-M-5 in Belarus and Russia [37]. The SHV-12 enzyme is one of the most prevalent enzymes associated with nosocomial *K. pneumoniae* isolates in Italian, Polish and Spanish hospitals and is also increasingly reported in *E. coli* isolates from community patients [13,31,48]. SHV-5, widely disseminated in Europe, is especially abundant in Bosnia and Herzegovina, Croatia, Greece, Hungary and Poland [35,38,48,49,50].

In addition, particular TEM types deserve special attention as they were traditionally associated with the ICU setting, TEM-3 and TEM-4, are associated with epidemic clones of *K. pneumoniae* in France and Spain, while TEM-24 is associated with epidemic *E. aerogenes* strains in Belgium, France, Portugal and Spain [24,32,33,51]. Nowadays, these enzymes have also been characterised in *E. coli* and *P. mirabilis* recovered in the community [24,33,51]. Finally, TEM-52, first identified in *Salmonella* spp. isolates from animal origin, is currently found among different Enterobacteriaceae species involved in human infections [24,33].

Co-production of different ESBLs is increasingly reported in European countries. Clinical isolates expressing SHV (SHV-5 or SHV-12) or TEM-24 and also other ESBL (CTX-M-9 or CTX-M-14) or carbapenemases (KPC, OXA, or VIM) have been described, sometimes associated with clonal outbreaks [43,49,52-54].
ESBLs in non-humans hosts

ESBL-producing E.coli and non-typhoidal Salmonella species have been isolated from farm animals, wild animals, food, pets and from environmental samples in different European countries [55-59]. The variability in the date of emergence and in the proportion of ESBL producers among animals seems to be due to differences between European countries in cephalosporin usage, and detection method, and to the importation of resistant strains through travellers or trade [59-62].

Different national surveys performed in Italy [62], France [64], the UK [http://www.defra.gov.uk/], Denmark [60], Norway [65] and Spain [57,66] demonstrated that the resistance to broad-spectrum cephalosporins is still low among zoonotic pathogens. However, a recent study performed in Denmark showed that veterinary beta-lactams (amoxicillin, cefotiofur, ceftquinome) select for indigenous ESBL-producing E. coli in the intestinal flora of pigs and favour the emergence of strains that acquire ESBL genes by horizontal transfer. This selective effect persists for a period longer than the withdrawal time required for these antimicrobials [67]. Although the transmission of ESBL-producing bacteria through the food chain or direct contact between humans and animals has seldom been proven [66-68], animals should be considered as an important reservoir of ESBL-strains and highly transmissible plasmids.

ESBLs isolated from animals include different variants belonging to the CTX-M (-1,-2,-3,-8,-9,-13,-14,-15,-24,-28,-32), SHV (-2,-5,-12), and TEM (-52,-106,-116) families. CTX-M-1, TEM-52 and SHV-12 are the ones most commonly found to date. Their dissemination among non-human hosts seems to have been facilitated mainly by mobile conjugative elements [55; Table 2]. The epidemiology of the most prevalent variants in European countries exemplifies different transmission routes and is therefore briefly revised in this section.

The CTX-M-1-like-enzymes (CTX-M-1, -15 and -32) are widely distributed among animals from western European countries and mainly associated with epidemic plasmid spread among clonally unrelated E. coli [57,58,62,64,67]. CTX-M-1 is widespread among healthy and sick farm animals (poultry, swine) and pets in Belgium, Denmark, France, Italy, the Netherlands, Portugal and Spain [56-58,62,64,67,71]. It was also the most frequent ESBL in a Belgium survey, representing 27.4% of ESBL producers, some of which were also producing CMY-2 [62]. CTX-M-32 has been detected among healthy and sick animals in Greece, Portugal and Spain [57,58,72]. CTX-M-15, frequently recovered among clinical isolates, has been sporadically identified from pets and farm animals in different countries in the European Union (EU), although it is associated with different strains and plasmids than the ones that are responsible for the wide distribution of this ESBL in hospitals [73].

The CTX-M-9-like enzymes (CTX-M-9 and CTX-M-14) have been linked directly or indirectly with animals in different countries. CTX-M-9 producers have been detected among healthy and sick animals in Spain since 1997 [57,66]. In France, it was found in unrelated poultry isolates of Salmonella enterica serotype Virchow collected by the Agence Française de Sécurité Sanitaire des Aliments network in 2003 in a single hatchery located in the southwest of France that supplied different farms with chicks [69]. CTX-M-9 producers have also been linked to food-borne disease outbreaks or colonisation of food handlers in Spain, travellers returning to the UK from Spain and quails imported by Denmark from France [55,67,74]. CTX-M-14-producing E. coli or Salmonella on the other hand were identified from different slaughter animals in Belgium, Denmark, France, Spain and the UK. It was also linked to travellers returning to the UK from Thailand and to imported chickens in the UK [59,62,67,75].

Epidemic strains of S. enterica serotype Virchow producing CTX-M-2 have been isolated from poultry and poultry products in Belgium, France, and the Netherlands since 2000 [61,62,68]. The recent recovery in the UK of E. coli producing CTX-M-2 from imported raw chicken meat from Brazil suggests a transmission route from areas where this enzyme is endemic [59].

TEM-52-producing E. coli and Salmonella isolates have been detected in sick and healthy farm animals, pets, and beef meat food in, Belgium, Denmark, France, Greece, the Netherlands, Spain and the UK [61,70,72]. In Portugal, TEM-52 was widely disseminated among different enterobacterial species recovered from humans, pets, wild animals and livestock [56,58]. In Belgium and France, TEM-52 producers have frequently been isolated from Salmonella isolates of different serovars recovered from poultry and humans [70]. It is noteworthy that multidrug-resistant isolates of the serovars Agona (widely distributed in Belgian poultry) and Typhimurium phagotype DT104 (disseminated globally) have been detected which carry both SGI1 and a plasmid-borne ESBL [70]. Not only has clonal transmission involving Salmonella Blockey and Hadar been demonstrated within the Netherlands [61], but the joint spread of two epidemic plasmids between countries has been shown in two different studies [70,76]. Importation of animals or meat was the potential source of blaTEM-52 in some areas in the EU [61,77].

SHV-12 producers in animals were detected in Italy during 2005 and 2006, and they were genetically related clones of Salmonella Livingstone, scattered on different farms in the northeast of the country, the main region for poultry production [http://www.istat. it; 63]. In Spain, the Netherlands and the UK, SHV-12-positive Salmonella and/or E. coli isolates have been identified from faecal samples from poultry and pigs [35,57,61,66]. Surprisingly, SHV-12 from animal origin has rarely been described in other European countries.
Clonal expansion of ESBL-producing Enterobacteriaceae

One of the major factors involved in the current prevalence of ESBL-producing Enterobacteriaceae is clonal spread. The most representative example linked to ESBL-producing Enterobacteriaceae is the recent and fast global dissemination of the highly virulent ciprofloxacin-resistant clone B2-E. coli O25:H4-ST131 that causes UTI and is associated with the CTX-M-15 pandemic. This clone has been detected in the majority of European countries, e.g., France, Greece, Italy, Norway, Portugal, Spain, Switzerland, Turkey, and the UK [8,22,44,45,78]. Interestingly, B2-E. coli ST131 is able to acquire multiple resistance mechanisms, and this strain was identified repeatedly, harbouring different CTX-Ms, AmpC or SHV-12 recovered in recent British (2004-2005) and Spanish (2004) multicentre hospital surveys [44, Oteo et al., personal communication]. It was also frequently identified among quinolone-resistant non-ESBL UTI-causing E. coli strains in clinical isolates from 10 different countries included in the last ARESH study (2004-2005) as well as in healthy volunteers in the Paris area (2007) [16,46,79]. Other widely distributed quinolone-resistant E. coli clones in the EU are responsible for the spread of specific ESBLs, such as A-E. coli ST50 or B1-E. coli-ST359, ST155*, which are mainly identified among CTX-M-14 producers in the central area of Spain [16,47]. These findings suggest that the acquisition of ESBL plasmids by widespread continental fluoroquinolone-resistant E. coli clones may have contributed to the dissemination, amplification, and persistence of ESBL on our continent.

Nationwide dissemination of particular multidrug-producing K. pneumoniae clones has been observed in several countries. In Greece, an endemic SHV-5-producing strain that emerged in the 1990s has recently acquired plasmid-borne VIM-1. This clone is currently spread among Greek hospitals and has also been identified in France [49,80]. Clonal outbreaks caused by K. pneumoniae producing SHV-5 and VIM-1 have also been detected in Italy, although a possible link with the Greek clone has not been investigated [54]. A predominance of SHV-type (SHV-5 and SHV-2a)-producing K. pneumoniae susceptible to ciprofloxacin is responsible for major clonal outbreaks in Hungarian neonatal ICUs, but endemic or inter-hospital dissemination of these local epidemic clones has not been addressed [38]. Dissemination of ST31, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-producing K. pneumoniae clones has recently been reported from the ICUs of 35 hospitals in 13 counties across Hungary, representing 97% of all CTX-M producers in this country [36,38]. The ST15 K. pneumoniae clone has also been identified in ESBL-producing isolates from France, Poland and Portugal, although the real dissemination impact of this clone in these countries is unknown [51]. Long-term persistence (12 years) of ESBL-producing K. pneumoniae has been documented in single institutions in France (TEM-24), Greece (SHV-5), Hungary (SHV-2a), Portugal (GES-1) and Spain (TEM-4, SHV-12) [27,38,81,82]. Only a few sporadic cases of international exchange of epidemic K. pneumoniae clones are reported in the literature [80].

Representative examples of clonal expansion in other enterobacterial species include a multidrug-resistant E. aerogenes strain widely disseminated in EU hospitals since the 1990s, which is responsible for the spread of TEM-24 in Belgium, France, Portugal and Spain [24,51,83]. This clone can simultaneously carry blaTEM-24 and plasmids encoding different ESBLs (blaSHV-12, blaSHV-5, blaTEM-20) and MBLs (blaIMP-1, blaVIM-2) [84]. An aminoglycoside-resistant Enterobacter cloacae clone containing a conjugative plasmid carrying the qnrA1, blaCTX-M-9, and aadB genes has been detected in 11 of 15 Dutch hospitals and has caused outbreaks in at least four of them [85]. ESBL-producing P. mirabilis (TEM-24), Shigella sonnei, S. marcescens and Klebsiella oxytoca have caused clonal outbreaks in different EU countries, although it remains to be elucidated whether they are of more than local significance [24,51,62].

The increasingly frequent description of endemic bacterial strains that are able to acquire genes coding for ESBLs, carbapenemases (VIM, OXA), and AmpC highlights the need to identify and successfully follow up the clones occurring in Europe [43,44,49,53,80,83].

The impact of plasmid transfer on ESBL-producing Enterobacteriaceae

Currently, the high prevalence of all blaESBL genes in different European regions is caused by horizontal transfer of plasmids among clonally unrelated clones and also among local or international epidemic clones. Plasmid transmission has played a significant role in the persistence of CTX-M-3 in Poland from the late 1990s until today [35,41], the persistence of TEM-4, CTX-M-10, CTX-M-9 and CTX-M-14 in Spanish hospitals since the first description of each enzyme [27,86], and the spread of SHV-5 in hospitals in Greece, Hungary and Poland [38]. Spread of plasmids between countries has been reported for CTX-M-2 (Belgium and France), CTX-M-15 (10 countries), CTX-M-32 (Mediterranean area), TEM-24 and TEM-52 (Belgium, France, Portugal and Spain) [51,68,70,76,78,87,88]. Plasmid-mediated horizontal transfer of blaCTX-M-2 and blaCTX-M-9 genes has been demonstrated between poultry and human S. enterica and E. coli strains isolated in very different geographical regions [67,68,89]. The predominant plasmids circulating in Europe in both hospitals and the community are listed in Table 2.

The emergence of epidemic strains that simultaneously carry several plasmids encoding distinct ESBLs, AmpC and MBLs is of concern and deserves further follow-up (see above, section Clonal expansion of ESBL-producing Enterobacteriaceae).
Multidrug-resistance profiles in ESBL-producing isolates

ESBL producers are commonly resistant to different antibiotic families including – besides beta-lactams – fluoroquinolones, aminoglycosides and trimetoprim-sulfametoxazole, which contribute to the selection and persistence of multidrug-resistant ESBL strains and plasmids in both clinical and community settings [1,91]. The proportion of ESBL-producing isolates resistant to fluoroquinolones has increased over time, initially in *K. pneumoniae* and later also in *E. coli* [1,89,90]. This increase has apparently occurred in parallel to the increase in plasmid-mediated resistance mechanisms including Qnr proteins (*qnrA*, *qnrB* or *qnrS*), acetylases that can affect the action of certain fluoroquinolones (*aac(6’)-lb-cr*) or systems pumping fluoroquinolones out of the bacteria (*qepA*) [92,93].

Very recent studies indicate that the *aac(6’)-lb-cr* gene seems to be confined to *E. coli* ST131 and thus has mainly been linked to CTX-M-15 isolates in different surveys, whereas *qnr* genes are mostly associated with enzymes from the CTX-M-9 or CTX-M-1 groups, which reflects the fact that genes coding for resistance to beta-lactams and quinolones are located on the same plasmid and thus passed on together among different enterobacterial species [79,92]. A high level of fluoroquinolone resistance is often due to additional loss of outer membrane proteins or efflux pump overexpression in clones that already contain gyrA and *parC* chromosomal mutations and plasmid-mediated mechanisms [79]. Genes that encode resistance to aminoglycosides (different modifying enzymes and *ArmA* methylase), trimetoprim or sulfonamides and are located on a wide range of genetic elements such as class 1, 2 and 3 integrons or transposable elements have been associated with different multidrug-resistant ESBL plasmids from human and animal origin [93-96; Curiao et al., unpublished results].

Finally, the recent recovery of plasmids coding for ESBLs that express a low level of resistance to beta-lactams [65] or contain multiple silenced antibiotic resistance genes [97] is of particular concern, as they may serve as reservoirs of antibiotic resistance determinants in bacteria that we are unaware of and that cannot be detected by phenotype.

Concluding Remarks

Increased prevalence of Enterobacteriaceae resistant to extended spectrum beta-lactamases has been reported all over Europe, albeit with a great variability in the occurrence and distribution of ESBL enzymes among different geographic areas. Nordic European countries still show the lowest rates of ESBL prevalence in clinical isolates and have not reported any isolates in animals, while southern and eastern countries present high and increasing frequencies of ESBL-producing strains in both nosocomial and community settings. However, some general epidemiological features such as:

1. the wide representation of CTX-M enzymes, particularly among *E. coli* isolates that cause community-acquired infections,
2. the wide spread of particular successful clones and multidrug-resistant plasmids,
3. and the increasing number of Enterobacteriaceae with ESBLs that also contain MBLs or AmpCs and other new mechanisms of resistance to fluoroquinolones or aminoglycosides indicate that the recent increase of ESBL producers in Europe constitutes a complex multifactorial problem of high public health significance that deserves a deep analysis and the implementation of specific interventions at different levels.

Firstly, the use of broad spectrum cephalosporins and fluoroquinolones in humans and animals should be urgently limited to cases in which other therapeutic alternatives according to evidence-based guidelines are not possible. Limiting antimicrobial use may curtail the selection and persistence of predominant ESBL clones and the probable dissemination of conjugative plasmids among strains, thus decreasing not only the number of potential ESBL donors but also the accumulation of antibiotic resistance genes on common genetic elements.

Secondly, and in accordance with the former recommendation, methods should be improved to efficiently detect and track those bacterial clones and plasmids that constitute the major vehicles for the spread of ESBL-mediated resistance. Ideally, such methods of detection should be accessible to medium-level diagnostic microbiology laboratories, to assure the possibility of performing interventions in real time.

Thirdly, the importation of ESBL-producing bacterial strains through food animals and pets has the potential to cause the wide dissemination of antibiotic resistance among countries and their spread to humans. It highlights the need for national and supra-national public health efforts to implement surveillance, epidemiologic, environmental health, and policy-making components.

Fourth, the implementation of ecological surveillance of ESBL-producing organisms, including environmental (particularly water environments, as sewage) and faecal colonisation surveillance studies in community-based individuals and animals is urgently needed to address the “colonisation pressure” outside hospitals, to detect circulation of highly epidemic clones and to monitor ESBL trends. These ecological studies could be useful as biosensors of modifications in the ESBL landscape.

Fifth, an improvement is needed in the methods for detecting multidrug-resistant ESBL producers that express a low level of resistance to beta-lactams or might contain silenced antibiotic resistance genes.
not detectable by standard phenotype. Also strongly suggested is a standardisation of beta-lactam breakpoints recommended by the different agencies and committees. Finally, the scientific and public health community should be aware that the potential interventions directed to control the world-wide spread of ESBL-producing organisms have a limited time-window for effective action. Once a number of thresholds were crossed (critical absolute number of ESBL-genes in the microbial world, critical associations of these genes with wide-spread genetic platforms, critical dissemination of ESBLs among different bacterial species and clones), the control will be simply impossible by applying the standard measures. We should act now, and be prepared for the uncertain future, by promoting innovative ways of controlling ESBL-producing organisms.

Acknowledgements:

We are deeply grateful to our collaborators in the ESBL field – Ángela Novais, Aránzazu Valverde, Tania Curiao, Marta Tato and Elisabete Machado – for their permanent input and enthusiasm. We are also in depth to Ângela Novais for help in the preparation of the manuscript, Luísa Peixe for critical review of this paper. Research on ESBLs in our laboratory is supported by grants from the European Commission LSHTM-CT-2003-503335 (COBRA) and LSHTM-CT-2009-018705 (DRESP), from the Ministry of Science and Technology of Spain (SAF 03-09285), and from the Fondo de Investigaciones Sanitarias, Ministry of Health from Spain (PI 07/1444).

Author’s correction:

On request of the authors, B1-E. coli-ST359 was changed to read B1-E. coli-ST359, ST155. This correction was made on 22 November 2008.

References

42. Valverde A, Cantón R, Novais A, Galan JC, Baquero F, Coque TM. Local spread of CTX-M-14 in Madrid (Spain) is linked to plasmids of the IncI-complex disseminated among different Escherichia coli genetic backgrounds. 2008 submitted.

An outbreak of infections with a new influenza A(H1N1) virus that was first detected in the United States and Mexico is currently ongoing worldwide. This report describes the initial epidemiological actions and outbreak investigation of the first 98 laboratory-confirmed cases of infection with this new virus in Spain.

Background
On 25 April 2009, the World Health Organization (WHO) declared the outbreak of swine-origin influenza A(H1N1) virus infections, first reported by the United States (US) [1] and Mexico [2], as a 'Public Health Event of International Concern' (PHEIC) under the International Health Regulations (2005) [3]. The pandemic alert level was raised from level 3 to level 4 on 27 April, and to level 5 on 29 April, after verification of sustained community-level outbreaks in at least two countries from the same WHO region.

On 26 April, epidemiological and laboratory investigations on three persons returning from Mexico were initiated in Spain. On 27 April, Spain reported the first laboratory-confirmed case of the new influenza A(H1N1) virus infection in Europe, in a traveller returning from Mexico. Since then, the number of confirmed cases in Spain has risen continuously and reached a total of 98 as of 11 May 2009.

Enhanced surveillance
On 24 April, in response to alarming reports from the US of swine-origin influenza A(H1N1) virus infection in several patients [1,4] and media news of a possibly related outbreak of severe respiratory illness in Mexico, the Coordinating Centre for Health Alerts and Emergencies (Centro de Coordinación de Alertas y Emergencias Sanitarias, CCAES) at the Spanish Ministry of Health and Social Policy, issued a national epidemiologic alert. The alert asked public health authorities at national and regional level to enhance surveillance and to report urgently any case of fever and severe respiratory illness among people with history of travel to Mexico or history of previous contact with a confirmed case of influenza virus A(H1N1) infection (Table 1).

On 25 April, following WHO's declaration of a PHEIC, the National Pandemic Influenza Preparedness and Response Plan was activated. A case definition as well as protocols for case and contact management and for infection control were developed and distributed to the National Health Service through regional health authorities and other involved institutions (Table 2).

No increase in seasonal influenza activity has been reported so far. Routine seasonal influenza surveillance will continue beyond week 20. Data analysis of mortality for all causes since 1 May has not shown an increase or change of patterns in mortality.

Since 24 April, the outbreak of new influenza A(H1N1) has been monitored by the Ministry of Health and Social Policy (Centro de Coordinación de Alertas y Emergencias Sanitarias, CCAES) jointly with the National Centre for Epidemiology (Instituto de Salud Carlos III) and in coordination with all the Regional Surveillance and Alert Teams from the Autonomous Communities in Spain. This new influenza A(H1N1) investigation and control group also discusses and recommends prevention and control measures.

Confirmed cases of new influenza virus A(H1N1)
As of 11 May, 98 laboratory-confirmed cases of infection with the new influenza virus A(H1N1) have been reported in Spain out of 640 possible cases investigated. The geographical distribution of reported cases by region is shown in Figure 1.

Seventy-six confirmed cases (78%) acquired the infection abroad; all these cases had a history of travel to Mexico. Of the 45 cases for whom this information was available, 16 (36%) were symptomatic during
the inbound flight from Mexico. Dates of return from affected areas were available for 70 confirmed cases and ranged from 20 to 29 April (Figure 2).

Information on disease onset was available for 93 cases. The first of the 93 cases reported onset of

Table 1
Timeline of key events in detection and response to the new influenza A(H1N1) virus outbreak, Spain, 24 April-11 May 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 April</td>
<td>Alert issued to enhance surveillance at the public health services and national health system</td>
</tr>
<tr>
<td>24 April</td>
<td>Information for the public and recommendations for travellers going to and returning from Mexico published on the website of the Spanish Ministry of Health and Social Policy</td>
</tr>
<tr>
<td>25 April</td>
<td>National pandemic influenza preparedness and response plan activated.</td>
</tr>
<tr>
<td>25 April</td>
<td>Case definition, case and contact management, and infection control protocols distributed</td>
</tr>
<tr>
<td>26 April</td>
<td>Notification of the first three cases under investigation</td>
</tr>
<tr>
<td>27 April</td>
<td>First laboratory-confirmed case of new influenza A(H1N1) virus infection reported.</td>
</tr>
<tr>
<td>27 April</td>
<td>Ministry of Health recommends avoiding non-essential travel to Mexico</td>
</tr>
<tr>
<td>27 April</td>
<td>World Health Organization raises pandemic alert to phase 4</td>
</tr>
<tr>
<td>29 April</td>
<td>World Health Organization raises pandemic alert to phase 5</td>
</tr>
<tr>
<td>29 April</td>
<td>First secondary case of new influenza A(H1N1) virus reported</td>
</tr>
<tr>
<td>1 May</td>
<td>Regional influenza laboratories to start initial testing; National reference laboratory to confirm</td>
</tr>
<tr>
<td>7 May</td>
<td>New case definition approved, including the United States as an affected area, reducing incubation period (seven days) and establishing fever cut off at 38°C</td>
</tr>
<tr>
<td>11 May</td>
<td>First laboratory-confirmed tertiary case</td>
</tr>
<tr>
<td>11 May</td>
<td>Status: 98 laboratory confirmed cases of new Influenza virus A(H1N1) infection</td>
</tr>
</tbody>
</table>

Table 2
Case definition and case classification, new influenza A(H1N1) infection, Spain, 25 April-7 May 2009

<table>
<thead>
<tr>
<th>Incubation period 10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical criteria</td>
</tr>
<tr>
<td>Any person with ONE of the following:</td>
</tr>
<tr>
<td>• Fever ≥ 37.5 °C* AND signs or symptoms of acute respiratory infection</td>
</tr>
<tr>
<td>• Pneumonia</td>
</tr>
<tr>
<td>• Death from an unexplained acute respiratory illness</td>
</tr>
<tr>
<td>Epidemiological criteria</td>
</tr>
<tr>
<td>At least ONE of the following in the 10 days* prior to disease onset:</td>
</tr>
<tr>
<td>• Travel to an area where there are confirmed cases of new influenza A(H1N1) virus infection</td>
</tr>
<tr>
<td>• Closing contact to a confirmed case of new influenza A(H1N1) virus infection</td>
</tr>
<tr>
<td>• Recent history of contact with an animal with confirmed or suspected swine influenza A(H1N1) virus infection (This criterion was substituted on 27 April for: “A person employed at a laboratory and manipulating potentially contaminated samples”).</td>
</tr>
<tr>
<td>Laboratory criteria</td>
</tr>
<tr>
<td>At least ONE of the following tests:</td>
</tr>
<tr>
<td>• RT-PCR</td>
</tr>
<tr>
<td>• Four-fold rise in new influenza A(H1N1) virus-specific neutralizing antibodies (implies the need for paired sera, at least from acute phase illness and then at convalescent stage 10-14 days later)</td>
</tr>
<tr>
<td>• Viral culture</td>
</tr>
<tr>
<td>Case classification</td>
</tr>
<tr>
<td>A. Case under investigation Any person meeting clinical AND epidemiological criteria</td>
</tr>
<tr>
<td>B. Probable case Any person meeting clinical AND epidemiological criteria AND with a positive influenza A infection of an unsubtypable type</td>
</tr>
<tr>
<td>C. Confirmed case Any person with laboratory confirmation*</td>
</tr>
</tbody>
</table>

* Differences to proposed case from the European Centre for Disease Prevention and Control.
illness (any symptom) on 19 April, and the most recent case reported onset on 4 May (Figure 3).

More than 2,000 contacts have been traced and followed. Of these, 39% were household members of cases and 45% friends of cases. Twenty-one confirmed secondary cases and one tertiary case have been reported. Secondary cases were family or close contacts of cases with history of travel to Mexico. Five secondary cases were infected by primary cases that did not meet clinical criteria. The tertiary case was a family contact of a secondary case. Analysis of secondary transmission is ongoing.

Four secondary cases had received prophylaxis with oseltamivir before being diagnosed as cases.

From the analysis of disease onset for primary and secondary cases, the median of the serial interval was estimated to be 3.5 days, ranging from one to six days. The estimation for the maximum incubation period ranged from one to seven days, with a median of three days.

Demographic and clinical features

Cases ranged in age from 14 to 55 years, with an average of 24 years (standard deviation (SD) 6.3) and a median of 22; 50 (51%) cases were male.

The most frequently reported symptoms were fever (96%) and cough (95%). Four cases did not have fever. Among 41 cases for whom this information was available, 17 (41%) reported diarrhoea (Table 3).

No deaths have been reported. Disease presentation has been described as a mild influenza-like illness with full recovery in all cases. Some cases were hospitalised at the beginning of the outbreak for respiratory isolation following the national pandemic preparedness plan, this procedure having no association with illness severity.

No differences in disease presentation have been described for secondary cases. No pregnancies among confirmed cases have been reported.

Laboratory confirmation

Nose and throat swabs from cases who met clinical and epidemiological criteria were taken and referred to the national influenza reference laboratory (WHO National Influenza Centre) at the Instituto de Salud Carlos III for confirmation. Two independent assays have been used for diagnosis; a reverse transcription (RT)-nested PCR designed for typing the nucleoprotein gene and another one for subtyping the haemagglutinin gene. An alternative RT-PCR was done in case the first two PCR gave contradictory results. Amplified products were sequenced and a phylogenetic analysis was done to identify the new A(H1N1) virus. The strain identified in all cases was confirmed as genetically similar to viruses previously isolated from cases in California (A/California/04/2009).

Detailed information on co-infection with other respiratory viruses is pending. Virological studies on antiviral sensitivity and on molecular-level indicators of severity are ongoing.

Discussion

Spain was the first country in Europe to report a laboratory-confirmed case of new influenza A(H1N1) virus infection. Several factors may have contributed: intense air traffic and contacts with Mexico [5] but also a timely alert with high media coverage that raised early awareness among public health and healthcare professionals, as well as among the public.

An extremely efficient surveillance system and a sensitive case definition that was distributed early in the event made it possible to detect cases at the very beginning of the outbreak and to trace more than 2,000 close contacts. Secondary cases have been identified among close contacts of the first reported cases. However, they are still only a minor percentage of all reported cases and further spread of this new influenza virus into the community has not been documented. The last imported case had disease onset on 2 May, but the change in the case definition on 7 May including the US as an affected area may lead to notification of new imported cases.

The preliminary findings from the analysis of the first 98 laboratory-confirmed cases of the new influenza A(H1N1) virus infection in Spain indicate that symptoms in these cases appear to be similar to those of seasonal influenza. Cases observed are mainly distributed among young adults, reflecting the age structure of returning travellers from Mexico. This group has no risk factors for influenza complications and is difficult at this stage to assess the potential severity of this virus. For the time being, the impact of this outbreak on the healthcare services has been negligible.

Table 3

Clinical features of confirmed cases for new influenza virus A(H1N1) infection, Spain, as of 11 May 2009

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cases with symptom / cases for whom information is available</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever (≥37.5 °C)</td>
<td>87 / 91</td>
<td>96%</td>
</tr>
<tr>
<td>Cough</td>
<td>83 / 87</td>
<td>95%</td>
</tr>
<tr>
<td>Headache</td>
<td>27 / 44</td>
<td>61%</td>
</tr>
<tr>
<td>Coryza</td>
<td>24 / 41</td>
<td>59%</td>
</tr>
<tr>
<td>Sore throat</td>
<td>29 / 48</td>
<td>60%</td>
</tr>
<tr>
<td>Myalgia</td>
<td>29 / 49</td>
<td>59%</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>18 / 70</td>
<td>26%</td>
</tr>
<tr>
<td>Malaise</td>
<td>23 / 38</td>
<td>61%</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>17 / 41</td>
<td>41%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4 / 32</td>
<td>13%</td>
</tr>
</tbody>
</table>

Information on seasonal influenza 2008-9 vaccine status is available for 52 cases (53%); of these, only five cases had history of vaccination.
Conclusion

The evolution of this outbreak of influenza A(H1N1) in Spain is difficult to predict. Though notification of new confirmed cases has decreased and the disease seems mild, we will continue monitoring changes in the epidemiology and/or clinical severity of new influenza A(H1N1) virus infections in Spain in order to implement appropriate prevention and control measures.

References

The objective of this study was to describe transmission chains of measles observed in Poland during 2008-2009. A decade ago, the incidence of measles in Poland declined and approached one case per million inhabitants one of the World Health Organization's criteria for measles elimination. Following a period of very few reported measles cases (2003 to 2005), an increase in incidence was observed in 2006. Since then, the incidence has constantly exceeded one case per million inhabitants. Of 214 measles cases reported in 2008 and 2009 in Poland, 164 (77%) were linked to 19 distinct outbreaks, with 79% of cases belonging to the Roma ethnic group. Outbreaks in the non-Roma Polish population had different dynamics compared to those in the Roma population. On average, measles outbreaks in Roma communities involved 10 individuals, seven of whom were unvaccinated, while outbreaks in the non-Roma Polish population involved five individuals, half of whom were incompletely vaccinated. The majority of outbreaks in Roma communities were related to importation of virus from the United Kingdom. In six outbreaks, the epidemiologic investigation was confirmed by identification of genotype D4 closely related to measles viruses detected in the United Kingdom and Germany. Our data indicate that Poland is approaching measles elimination, but measles virus circulation is still sustained in a vulnerable population. More efforts are needed to integrate the Roma ethnic group into the Polish healthcare system and innovative measures to reach vulnerable groups should be explored.

Background

In 1998 Poland implemented a measles elimination programme, coordinated by the World Health Organization (WHO) Regional Office for Europe. It requires monitoring consecutive stages of the elimination by tracking secondary outbreak cases, genotyping of detected measles viruses (MV) and serological testing of all suspected cases of measles [6].

Measles has been a notifiable disease in Poland since 1919. National case-based notification was initiated in 1996 and WHO case definitions [2] have been adopted. Since 2005, the case classification of the European Union [3] has been used. The first dose of the monovalent measles vaccine for children aged 13-15 months was introduced in Poland in 1975, and the second dose for seven year old children was implemented in 1991. In 2005 the monovalent measles vaccine was replaced by the combined measles-mumps-rubella (MMR) vaccine, administered at the age of 13-15 months and 10 years.

Poland belongs to the European countries with moderate incidence of measles [4,5]. Following the introduction of routine immunisation, the incidence of measles has decreased. From 2003 to 2005 the number of locally acquired cases in Poland was below the elimination threshold of one case per million inhabitants. Since 2006 the measles incidence has increased and remained continuously above this elimination indicator (Figure 1) [6]. In 2006, measles cases were mostly related to importation of MV-D4, whereas MV-D6 was detected in 2007. In 2008-2009 a substantial increase in the frequency of outbreak-related cases was observed, often related to importation.

The vaccine coverage in Poland with MMR vaccine remains well above the target of 95% for the first dose of measles vaccine (MCV1), another WHO marker for measles elimination [7]. Coverage with the first dose of MMR vaccine in three-year-olds in 2008 was 98.4%, and for two doses of MMR in eleven-year-olds it was 97.2%. Information on measles vaccine coverage in ethnic groups such as the Roma ethnic minority is not available in Poland.
The objective of this study was to describe the patterns of chains of transmission investigated in Poland between 1999 and 2009, with special focus on 2008-2009, in relation to the measles elimination goal.

Methods
In the present study, measles cases reported within the Polish enhanced measles surveillance between 1999 and 2009 were investigated. Physicians were required to report all suspected measles cases to the local health departments and to obtain samples for confirmatory IgM testing. The information collected during case investigation included demographic characteristics, vaccination status, and clinical and laboratory data. Although not routinely collected in the national surveillance system, the ethnic background

Figure 1
Secular trends of measles incidence in Poland, 1966-2009

Figure 2
Number of reported measles cases, including those which could be linked to transmission chain, Poland, 1999-2009 (n=784)
of reported measles cases was recorded. Contact tracing is routinely undertaken, especially for unvaccinated and exposed individuals. Serological testing and detection of measles virus RNA are performed in the National Reference Laboratory at the National Institute of Public Health. Measles virus-containing samples are sent to the WHO Regional Reference Laboratory for Measles and Rubella (Robert Koch Institute, Berlin) for genotyping.

For the present study, we defined an imported outbreak as resulting from importation of measles virus by a person arriving from abroad who was exposed and developed symptoms outside Poland, and subsequently was the source of documented local transmission to other cases linked to the outbreak. If available, genotyping results were used for confirmation of importation-related transmission chains.

Measles case reports from 1999 to 2009 are described. Measles cases with an established link to the infection transmission chain (outbreak cases) in 2008-2009 are described in more detail to determine the role of disease importation and outbreak patterns.

Results
Over time, an increasing proportion of measles cases could be linked to identified chains of transmission in Poland (Figure 2), from 6% in 1999 to 80% in 2009. Of 569 cases of measles reported between 1999 and 2007, 133 (23%) were linked to outbreaks. In 2008 and 2009, this proportion was higher, with 77% reported measles cases linked to outbreaks.

During 2008 and 2009, 19 measles outbreaks with 164 cases were reported in Poland. Seven outbreaks were due to importation of the disease from the United Kingdom (UK), and 12 involved only indigenous transmission. Outbreaks in that period were reported from nine of the 16 provinces of Poland. One of the 164 outbreak cases, excluded from further analysis, occurred in a Ukrainian citizen who arrived in Poland in February 2009. He contracted measles while staying in a hospital where an outbreak occurred.

Fifty-three percent of cases in 2008 and 2009 were female and 90.2% of the patients were residents of urban areas. Cases were seen in all age groups, although adults aged over 19 years were predominantly affected (45 cases, 27.4%). One hundred and thirty patients (79.3%) were admitted to hospital. The proportion of hospitalised cases was highest in children aged five to nine years (90.9%). Seventy-nine percent of all outbreak-related cases during 2008 and 2009 occurred among the Roma ethnic group.

Important differences were observed between the outbreaks among the Roma community and those occurring in non-Roma Polish population (Table).

Table
Characteristics of cases linked to chain of transmission, Poland, 2008-2009 (n=163)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Roma</th>
<th>Non-Roma Polish population</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Number of outbreaks</td>
<td>13</td>
<td>68.4</td>
<td>6</td>
</tr>
<tr>
<td>Number of cases</td>
<td>126</td>
<td>77.3</td>
<td>37</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>64</td>
<td>50.8</td>
<td>23</td>
</tr>
<tr>
<td>Male</td>
<td>62</td>
<td>49.2</td>
<td>14</td>
</tr>
<tr>
<td>Confirmation of cases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory-confirmed</td>
<td>72</td>
<td>57.1</td>
<td>35</td>
</tr>
<tr>
<td>Epidemiologically linked</td>
<td>54</td>
<td>42.9</td>
<td>2</td>
</tr>
<tr>
<td>Vaccination status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinated according to age</td>
<td>18</td>
<td>14.3</td>
<td>12</td>
</tr>
<tr>
<td>Incompletely vaccinated</td>
<td>91</td>
<td>72.2</td>
<td>18</td>
</tr>
<tr>
<td>Unknown vaccination status</td>
<td>17</td>
<td>13.5</td>
<td>7</td>
</tr>
<tr>
<td>Importation status (number of outbreaks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import-related</td>
<td>7</td>
<td>53.8</td>
<td>(68 cases)</td>
</tr>
<tr>
<td>Local</td>
<td>6</td>
<td>46.2</td>
<td>(58 cases)</td>
</tr>
<tr>
<td>Generations of transmission identified (number of outbreaks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>9</td>
<td>69.2</td>
<td>4</td>
</tr>
<tr>
<td>3 or more</td>
<td>4</td>
<td>30.8</td>
<td>2</td>
</tr>
<tr>
<td>D4 genotype identified</td>
<td>4</td>
<td>30.8</td>
<td>(19 cases)</td>
</tr>
</tbody>
</table>
Outbreaks among Roma were considerably larger with an average of 10 cases, who were mostly unvaccinated (72% of outbreak cases), while outbreaks in the non-Roma Polish population involved an average of five cases, with 48% of outbreak cases incompletely vaccinated. The majority of outbreaks in Roma communities were related to importation of virus from the UK. In six outbreaks, measles virus genotyping identified a genotype D4 strain that was most closely related to viruses from the UK and Germany. Figure 3 presents the exact genetic relationship between viruses isolated from outbreak cases in 2008 and 2009 to closely related strains isolated in other countries. Laboratory testing was performed more often for cases from the non-Roma Polish population.

Figure 3
Phylogenetic analysis of measles viruses of genotype D4 detected from 2006 to 2009 in Poland and other European countries.

The phylogenetic tree is based on a 456 nt sequence encoding the carboxyterminus of the nucleoprotein. It includes all measles strains identified in Poland in 2006-2009 and world strains most closely related to them.

Method: Neighbor Joining; Best Tree; tie breaking = Systematic.
Distance: Tamura-Nei; Gamma correction = Off; Gaps distributed proportionally.
Source: Robert Koch Institute, Berlin, Germany.

Figure 4
Number of reported measles cases by week of illness onset, Poland, 2009.
population (96%) than for cases from the Roma community (57%). Based on the dates recorded for onset of disease, the same proportion of outbreaks recorded up to four generations of transmission among the Roma and non-Roma Polish population.

In some cases, separate outbreaks could be linked by detailed epidemiological and molecular investigation. From August to October 2008 two outbreaks occurred in Mielec and Wroclaw, which are approximately 400 km apart. A total of 32 cases were recorded from those two outbreaks in Roma communities, and both could be linked to the strain Enfield/GBR/14.07 (Accession No. EF600554) of measles virus genotype D4. The index cases were among families with young children returning from London, UK. In the same period numerous importations from England, confirmed by the detection of the Enfield strain, were notified in several other European countries (Figure 3), i.e. the Netherlands (Den Haag.NLD/03.08, GenBank Accession No. EU585844), Spain (Cadiz.SPA/05.08/1, GenBank Accession No. EU982301) and Germany (Berlin.DEU/19.08).

From June to October 2009, 54 cases were linked to three outbreaks in Roma communities living in different towns (Figure 4). The first outbreak with seven measles cases was reported in the city of Lodz. Subsequently, 47 measles cases were reported in the city of Pulawy and Opole Lubelskie in Lubelskie province. The outbreaks in Lodz and Pulawy were linked by epidemiological investigation and measles virus genotyping, since the measles virus detected in Lodz and Pulawy was identical to the strain Hamburg/DEU/03.09(D4) observed in northwest Germany in the first quarter of 2009. The outbreak in Opole Lubelskie was linked to the Pulawy outbreak by an epidemiological link, and no samples were collected for genotyping.

Discussion
Measles outbreaks have recently been described in many European countries. Large outbreaks were reported in 2008 and 2009 in France [8], Switzerland [9], and Bulgaria [10].

WHO defined measles elimination as a situation in a large geographical area in which endemic transmission of measles virus cannot occur and imported measles cases do not initiate sustained transmission [11]. Despite public health efforts and maintaining high levels of vaccination coverage, outbreaks due to measles virus importation continue to occur in Poland. Similarly as in other European countries, herd immunity has not been achieved despite a national measles vaccination coverage above 95%. This failure is possibly related to the existence of specific vulnerable populations, who are often not reached by the public health services regarding vaccination. Common causes of limited access to public health services may involve particular attitudes or beliefs of these populations [12-14].

There could be several reasons for the increased proportion of cases for which a chain of infection could be traced in 2008 and 2009, compared with the previous period. On the one hand, local public health officers may have been investigating the epidemiological links more efficiently during the recent years. When approaching the measles elimination phase, it becomes more important to monitor infection chains and, if necessary, to intervene. On the other hand, well defined outbreaks were identified in 2008 and 2009 with several cases occurring in the same households. This rather indicates an appearance of pockets of unvaccinated persons, who are sustaining measles transmission, possibly in relation to anti-immunisation beliefs, or poor access to healthcare.

Similar to other European countries, Poland has not succeeded in controlling measles enough to reach one case per million inhabitants, one of the WHO criteria for measles elimination. In recent years, most outbreaks in Poland were detected in ethnic minorities and were often related to measles importation from the United Kingdom or Germany. Currently, the emphasis of measles elimination activities should be directed to immunising all sections of the population that are not adequately protected. Considering that ethnic minorities are often marginalised and discriminated against, we need to better understand the health problems, attitudes and beliefs of these communities. An assessment performed during a large outbreak in August 2009, revealed limited access to healthcare and low life expectancy of a settled Roma community [15]. Both in Roma and in the non-Roma Polish population, a considerable proportion of unvaccinated cases in the under 19-year-olds indicates the need to address at least some high-risk groups in Poland. The best approach would be to focus on healthcare workers and persons working in crowded environments like schools, universities or airports.

Genetic characterisation of detected measles viruses has been done in Poland continuously since 2006 [16]. Molecular and epidemiological investigation of the recent outbreaks revealed five independent transmission chains with a duration of under three months. Genetic data demonstrated a close relationship of four of the five distinct subvariants of genotype D4 identified in Poland to viruses of western Europe (GenBank Accession No. EF600554, EU585844, EU982301, GQ370461) from where they were imported, and to a virus from India (GenBank Accession No. EU812270) considered to be the source of the recent European D4 viruses [Regional Reference Laboratory WHO EURO, Robert Koch Institute, personal communication]. The present analyses document that Poland has made progress on its way to reach the elimination goal for measles virus in the WHO European region. Considering increasing airline travel, and anti-vaccination beliefs, continuous efforts are necessary to maintain a high vaccination status of the Polish population, and implement innovative measures to reach vulnerable groups.
References

Since early May 2011, an increased incidence of haemolytic uraemic syndrome (HUS) and bloody diarrhoea related to infections with Shiga toxin-producing \textit{Escherichia coli} (STEC) has been observed in Germany, with most cases in the north of the country. Cases reported from other European countries had travelled to this area. First results of a case–control study conducted in Hamburg suggest an association between the occurrence of disease and the consumption of raw tomatoes, cucumber and leaf salad.

An unusually high number of cases of haemolytic uraemic syndrome (HUS) has been observed in Germany since early May 2011. This report presents the preliminary results of the investigation as of 26 May 2011.

Haemolytic uraemic syndrome (HUS) is a serious and sometimes deadly complication that can occur in bacterial intestinal infections with Shiga toxin (syn. verotoxin)-producing \textit{Escherichia coli} (STEC/VTEC). The complete clinical picture of HUS is characterised by acute renal failure, haemolytic anaemia and thrombocytopenia. Typically it is preceded by diarrhoea, often bloody. Each year, on average 1,000 symptomatic STEC-infections and approximately 60 cases of HUS are notified in Germany, affecting mostly young children under five years of age [1]. In 2010 there were two fatal HUS cases [1].

STEC are of zoonotic origin and can be transmitted directly or indirectly from animals to humans. Ruminants are considered to be the reservoir, especially cattle, sheep and goats. Transmission occurs via the faecal-oral route through contact to animals (or their faeces), by consumption of contaminated food or water, but also by direct contact from person to person (smear infection). The incubation period of STEC is between two and 10 days, the latency period between the beginning of gastrointestinal symptoms and enteropathic HUS is approximately one week.

Outbreak description

The Table lists the number of cases of HUS or suspected HUS notified to local health departments and communicated by the federal states to the Robert Koch Institute (RKI). Suspected HUS are included as the syndrome is a process and suspected HUS typically develops over the course of a few days into the full clinical picture.

Disease onset (regarding diarrhoea) in the 214 patients detected so far was between 2 and 24 May 2011. A total of 119 (56%) of the cases were communicated from four northern federal states (Hamburg, Schleswig-Holstein, Lower Saxony and Bremen). The highest cumulative incidence has been recorded in the two northern city states of Hamburg and Bremen. An additional 31 cases occurred in Hesse. They were connected to a catering company supplying the cafeterias of a company and a residential institution. It is likely that these cases constitute a satellite outbreak.

Besides the geographic clustering, the age and sex distribution of the cases is conspicuous: Of the 214 cases, 186 (87%) are 18 years of age or older (mostly young to middle-aged adults) and 146 (68%) are female. In the notification data for HUS cases from 2006 to 2010, the proportion of adults lay between 1.5% and 10% annually, and the sexes were affected equally.

Cases linked to this outbreak were also communicated from other European countries: On 25 May 2011, Sweden reported through the European Warning and Response System (EWRS) nine cases of HUS, four of whom had...
travelled in a party of 30 to northern Germany from 8 to 10 May. Denmark reported four cases of STEC infection, two of them with HUS. All cases had a recent travel history to northern Germany. Another two HUS cases with travel history to northern Germany in the relevant period were communicated, one each by the Netherlands and by the United Kingdom.

So far two German HUS cases have died of the disease (both female, one in her 80s, one in her 20s).

Laboratory investigations

Investigations at the National Reference Centre for Salmonella and other bacterial enteric pathogens at the RKI (Wernigerode) of isolates from two patients from Hesse and Bremerhaven suggests that the outbreak strain is an *E. coli* strain of serotype O104 with the following characteristics: Shiga toxin 2 (*vtx2a*, EQA nomenclature 2011, WHO Centre *E. coli* SSI Copenhagen)-producing, intimin (*eae*)-negative and enterohaemolysin (*hly*)-negative. The strain shows a high resistance to third generation cephalosporins (through extended spectrum beta-lactamases, ESBL,CTX-M-type), and a broad antimicrobial resistance to, among others, trimethoprim/sulphonamide and tetracycline.

Investigation into the source of infection

The large number of persons suddenly affected, the geographical and demographic distribution as well as first interviews of patients suggested STEC-contaminated food as the vehicle of infection. Foods like raw milk and raw meat, which were identified as vehicles in former STEC outbreaks, appear not to be related to the current event. Preliminary results of a case–control study conducted by the RKI and the Hamburg health authorities demonstrate a significant association between disease and the consumption of raw tomatoes, cucumbers and leafy salads. This study collected food histories for the week before symptom onset for 25 patients hospitalised with HUS (n=20) or bloody diarrhoea with laboratory-confirmed STEC infection (n=5), who all had onset of disease between 9 and 25 May 2011. In addition, 96 controls matched by age, sex and residence were asked about their food consumption during the week before the interview. The food items they were asked about were those frequently mentioned in previous in-depth interviews of HUS cases. Consumption of each of the named food items was reported by around 90% of the cases in comparison to around 60% of the controls, yielding odds ratios between around 4 and 7, all statistically significant. Nevertheless it is possible that another or an additional food item is the source of infection. The results cannot necessarily be transferred to the whole of Germany because the study was limited to Hamburg.

Regarding the source of the suspicious food items the study showed a heterogeneous picture. It can be excluded that the source is a single shop or restaurant. Based on these findings, food trace-back investigations are currently ongoing.

Evaluation of the situation

The current events represent one of the largest described outbreaks of HUS/STEC worldwide and the largest in Germany, with a very atypical age and sex distribution of the cases. Incident cases of HUS or suspected HUS are continuing to be reported at least in Northern Germany, where the emergency room consultations for bloody diarrhoea remain elevated. Thus it has to be assumed that the source of infection is still

Table

<table>
<thead>
<tr>
<th>Federal State</th>
<th>Number of HUS cases and suspected-HUS cases</th>
<th>Cumulative incidence (per 100,000 population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>59</td>
<td>3.33</td>
</tr>
<tr>
<td>Bremen</td>
<td>11</td>
<td>1.66</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>21</td>
<td>0.74</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>10</td>
<td>0.61</td>
</tr>
<tr>
<td>Hesse</td>
<td>31</td>
<td>0.51</td>
</tr>
<tr>
<td>Saarland</td>
<td>5</td>
<td>0.49</td>
</tr>
<tr>
<td>Lower Saxony</td>
<td>28</td>
<td>0.35</td>
</tr>
<tr>
<td>North Rhine-Westphalia</td>
<td>31</td>
<td>0.17</td>
</tr>
<tr>
<td>Berlin</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>8</td>
<td>0.07</td>
</tr>
<tr>
<td>Bavaria</td>
<td>5</td>
<td>0.04</td>
</tr>
<tr>
<td>Thuringia</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Rhineland-Palatinate</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Saxony</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Saxony-Anhalt</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>214</td>
<td>0.26</td>
</tr>
</tbody>
</table>

HUS: haemolytic uraemic syndrome.

Data as of 26 May 2011, 8am, communicated to the Robert Koch Institute by the federal states.
active. Many patients with bloody diarrhoea need to be admitted to hospital, and HUS patients often need intensive care with dialysis and/or plasmapheresis, which puts a severe strain on hospital resources in some areas. The epidemiological studies that were conducted in cooperation with regional and local health departments rapidly delivered important clues as to certain food items that could be linked to the outbreak. Further epidemiological studies, laboratory investigations and trace back of food items is needed to confirm these results and to narrow down the source of infection.

Recommendations for consumers and patients

Considering the ongoing outbreak that included many cases with a severe course of disease, the RKI and the Federal Institute for Risk Assessment (BfR) recommend to abstain from consuming raw tomatoes, cucumbers and leafy salads, especially in northern Germany, until further notice. Regular food hygiene rules remain in effect [5].

For persons with diarrhoea the importance of strict hand hygiene is emphasised. Patients with bloody diarrhoea should seek medical aid immediately. Physicians are reminded to initiate STEC stool diagnostics for these patients and to closely monitor them for the development of HUS. Patients suspected of developing HUS should be referred to appropriate stationary care.

Diagnostic laboratories are requested to send STEC isolates to the National Reference Centre for Salmonella and other bacterial enteric pathogens. The Protection Against Infection Act of 2001 renders both the laboratory confirmation of an STEC infection and the clinical diagnosis of HUS or suspected HUS notifiable to the local health department.

Acknowledgments

We gratefully acknowledge the contribution of all local and state health departments, the Federal Institute for Risk Assessment (BfR) and all patients and healthy citizens of Hamburg who agreed to being interviewed. We would also like to thank all hospitals in Hamburg who supported the work of the field teams.

The members of the HUS investigation team were:

Karen Atzpodien, Susanne Behnke, Merle Böhmer, Udo Buchholz, Manuel Dehnert, Julia Hermes, Kerstin Krügermann, Marion Marx, Ingeborg Mücke, Mathias Nachtebel, Janina Nefler, Stine Nielsen, Ines Noll, Kerstin Prähm, Ute Preuß, Cornelius Renschmidt, Thorsten Rieck, Bettina Rosner, Susanne Schink, Daniel Schmidt, Franziska Schwarz, Britta Schweickert, Petra Stöcker, Thorsten Süß, Bernhard Ultsch, Maria Wadl

Gerhard Fell (Institute for Hygiene and Environmental, Hamburg, Germany)

Johannes Dreessen (State Health Department of Lower Saxony, Hannover, Germany)

Ulf Panzer, Sigrid Harendza (Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany)

Jun Oh (Department of Pediatric Nephrology, Medical Center Hamburg-Eppendorf, Hamburg, Germany)

Stefan Sudmann (Department for emergency medicine, Marienkrankenhaus, Hamburg, Germany)

Ute Juers (Asklepios Klinik Barmbek, Hamburg, Germany)

References

Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013

We describe a novel spike pseudoparticle neutralisation assay (ppNT) for seroepidemiological studies on Middle East respiratory syndrome coronavirus (MERS-CoV) and apply this assay together with conventional microneutralisation (MN) tests to investigate 1,343 human and 625 animal sera. The sera were collected in Egypt as a region adjacent to areas where MERS has been described, and in Hong Kong, China as a control region. Sera from dromedary camels had a high prevalence of antibody reactive to MERS-CoV by MERS NT (93.6%) and MERS ppNT (98.2%) assay. The antibody titres ranged up to 1,280 and higher in MN assays and 10,240 and higher in ppNT assays. No other investigated species had any antibody reactivity to MERS-CoV. While seropositivity does not exclude the possibility of infection with a closely related virus, our data highlight the need to attempt detection of MERS-CoV or related coronaviruses in dromedary camels. The data show excellent correlation between the conventional MN assay and the novel ppNT assay. The newly developed ppNT assay does not require Biosafety Level 3 containment and is thus a relatively high-throughput assay, well suited for large-scale seroepidemiology studies which are needed to better understand the ecology and epidemiology of MERS-CoV.

Introduction
A novel lineage C beta-coronavirus was isolated from a patient with fatal viral pneumonia in Saudi Arabia in 2012 and termed Middle East respiratory syndrome coronavirus (MERS-CoV) [1]. As of 3 September 2013, 108 human cases have been confirmed, 50 of which were fatal [2]. Locally acquired cases have been reported from Jordan, Qatar, Saudi Arabia and the United Arab Emirates, and imported index cases, sometimes with secondary local transmission, have been reported in France, Germany, Italy, Tunisia and the United Kingdom [2-4]. Clusters of cases suggestive of limited human-to-human transmission have been reported; the largest cluster of cases to date occurred at a healthcare facility in Al-Hasa, Saudi Arabia [5]. The epidemiology of the disease so far is suggestive of multiple zoonotic transmissions from an animal reservoir leading to human infection, sometimes with secondary transmission events in humans.

Phylogenetically closely related, although not identical, viruses have been found in insectivorous bats in Africa and Europe [6,7]. More recently, a very short fragment (181 bp) of the RNA-dependent RNA polymerase gene that was genetically identical to MERS-CoV has been detected in a Taphozous perforatus bat captured in the vicinity of the residence of a human case with MERS [8]. These findings remain to be confirmed with more definitive sequence data. Even if MERS-CoV is found in bats, the possibility of an intermediate peri-domestic host remains important to explore.

Since antibody responses following coronavirus infection remain detectable for many years [9], seroepidemiology of potential animal species for MERS-CoV-specific antibody is a logical approach to identify candidate species for further investigation. A recent report suggests that MERS-CoV antibody was detected in dromedary camels in the Arabian peninsula [10]. While a number of serological tests, including ELISA assays, immunofluorescence assays and immunonasassays using recombinant viral proteins have been used for detecting serological responses in infected humans [11,12], virus neutralisation is the most specific serological
test and currently considered the gold-standard. However, virus neutralisation requires the handling of live virus and requires Biosafety Level 3 containment. We have therefore developed a pseudoparticle neutralisation (ppNT) assay where the spike protein of MERS-CoV is expressed by a replication-incompetent human immunodeficiency (HIV) virus that contains a luciferase reporter gene. Similar pseudotype viruses have been used successfully in serological tests for severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza viruses such as the highly pathogenic avian influenza A(H5N1) virus [13]. Pseudotyped MERS-CoV has been used to study the mechanisms of virus entry, and it has been shown that cell transduction by such particles is blocked by neutralising antibodies specific for MERS-CoV [14].

The geographical distribution of MERS-CoV in its animal reservoir is not defined. Being a Middle Eastern country with an ecology and domestic livestock practices fairly similar to some countries where human MERS infections have occurred, we reasoned that Egypt would be a relevant geographical location for seroepidemiological studies. We have used both the ppNT assay and conventional microneutralisation (MN) tests to carry out seroepidemiological surveillance in humans and livestock in Egypt. Human and animal sera collected in Hong Kong were used as controls.

Methods

Sera from dromedary camels (n=110), water buffaloes (n=8) and cows (n=25) were collected from two abattoirs, one located in Cairo and the second located in the Qalyubia governorate in the Nile Delta region. The dromedary camels were mostly imported from Sudan for slaughter and were five to seven years-old. Upon import, they were held on Egyptian farms for four to five months before transport to the abattoirs in open trucks. Sera from sheep (n=5) and goats (n=13) were collected from backyard animals from a village in the Nile Delta. All sera were collected in June 2013.

Human sera (n=815) were collected in 2012–13 as part of an ongoing community-based seroepidemiological study on influenza virus among healthy subjects in Cairo and the Nile Delta region. The age range of the subjects was between two and 79 years-old (median: 29 years). Fifty-eight per cent of the study subjects was between two and 79 years-old (median: 29 years). Human sera were collected in December 2010 from the Mai Po wetlands nature reserve in Hong Kong.

As positive controls, we used a convalescent serum from a human patient with MERS, kindly provided by Dr C Drosten (Institute of Virology, University of Bonn Medical Centre, Bonn, Germany), and sera from two experimentally infected macaques and a non-infected control macaque kindly provided by Bart Haagmans (Erasmus University Medical Center, Rotterdam, the Netherlands).

An acute and convalescent serum from a patient with SARS was used as a further negative control. The MN antibody titre was ≤10 to SARS-CoV in the acute serum, and 160 in the convalescent serum.

The study was approved by the institutional review boards of the University of Hong Kong and St Jude Children’s Research Hospital and the Ethics Committee of the National Research Centre, Egypt.

Viruses and virus titration

MERS-CoV (strain EMC) virus was obtained from Dr R Fouchier (Erasmus University Medical Center, Rotterdam, the Netherlands). SARS-CoV (strain HKU-39849) was taken from the virus repository at Hong Kong University. Virus stock for MERS-CoV was prepared in Vero cell culture (ATCC CCL-81) in minimal essential medium containing 2% fetal bovine serum, 100 units/mL penicillin and 100 μg/mL streptomycin. Virus aliquots were stored at -80 °C. Virus was titrated in serial half-log_{10} dilutions (from 0.5 log to 7 log) to obtain 50% tissue culture infectious dose (TCID_{50}) on 96-well tissue culture plates of Vero cells. The plates were observed in a phase contrast microscope for cytopathic effect (CPE) daily for three days. The endpoint of viral dilution leading to CPE in 50% of inoculated wells was estimated by using the Reed Muench method and designated as one TCID_{50}. SARS-CoV was grown and titrated in the same manner with the exception that Vero E6 cells (ATCC CRL-1586) were used.

Microneutralisation tests

Serial two-fold dilutions of heat-inactivated sera (56 °C for 30 minutes) were made, starting with a dilution of 1:10. The serum dilutions were mixed with equal volumes of 100 TCID_{50} of MERS-CoV or SARS-CoV as indicated. After 1 h of incubation at 37 °C, 35 μL of the virus–serum mixture was added in quadruplicate to Vero or Vero-E6 cell monolayers for MERS-CoV and SARS-CoV, respectively, in 96-well microtiter plates. After 1 h of adsorption, an additional 150 μL of culture medium were added to each well and the plates incubated for three more days at 37 °C in 5% CO_{2} in a humidified incubator. A virus back-titration was performed without immune serum to assess input virus dose. CPE was read at three days post infection. The highest serum dilution that completely protected the cells from CPE in half of the wells was taken as the neutralising antibody titre and was estimated using the Reed-Muench method. Positive and negative control sera were included to validate the assay.

Human sera (n=815) were collected in 2012–13 as part of an ongoing community-based seroepidemiological study on influenza virus among healthy subjects in Cairo and the Nile Delta region. The age range of the subjects was between two and 79 years-old (median: 29 years). Fifty-eight per cent of the study subjects was between two and 79 years-old (median: 29 years). Human sera were collected in June 2013.

Sera collected in Hong Kong served as un-exposed controls. These included archived age-stratified human sera (n=528) collected in Hong Kong in 2011 and 2012, with more than 50 sera from each decade of age (range: ≤20 to 80 years-old). Swine sera (n=260) were collected from an abattoir in Hong Kong in 2011 and 2012. Sera (n=204) from wild northern pintails (Anas acuta) and Eurasian widgeons (Anas penelope) were collected in December 2010 from the Mai Po wetlands nature reserve in Hong Kong.
MERS-CoV spike pseudoparticle neutralisation assay

A codon-optimised spike gene was designed according to published MERS-CoV genome sequence (GenBank accession number: JX869059.1), synthesised by GeneCust (Luxembourg) and subcloned into pcDNA3.1+ vector to generate pcDNA-S. To produce HIV/MERS spike pseudoparticles, 10 µg pNL Luc E R and 10 µg pcDNA-S were co-transfected into 4x10⁶ 293T cells [13]. Supernatants of transfected cells were harvested 48 h later and quantified for HIV p24 viral protein using a p24 ELISA Kit (Cell Biolabs, San Diego, United States).

For the ppNT assay, HIV/MERS pseudoparticles containing 5 ng p24 were used to infect Vero E6 cells (ATCC CRL-1586) in a single well (96-well plate format; 1x10⁴ cells/well). Infected cells were lysed in 20 µl lysis buffer and 100 µl of luciferase substrate at two days postinfection (Promega Corporation, Madison, United States). Luciferase activity was measured in a Microbeta luminometer (PerkinElmer, Waltham, United States).

For the ppNT, HIV/MERS pseudoparticles (5 ng of p24) were pre-incubated with serially diluted sera for 30 min at 4 °C and then added to cells in triplicate. Residual virus replication was assayed at two days post infection, as described above. The highest serum dilution giving a 90% reduction of luciferase activity was regarded as the ppNT antibody titre.

Results

Overall, 976 human and animal sera from Egypt and 992 human and animal sera from Hong Kong were tested by MN at a screening dilution of 1:10 and 1:20 (Table 1). None of the age-stratified human sera (n=528), swine sera (n=260) or wild bird sera (n=204) collected in Hong Kong had any neutralising activity for MERS-CoV in the MN tests. Similarly, none of the sera from humans (n=815), water buffaloes (n=8), cows (n=25), sheep (n=5) and goats (n=13) collected in Egypt were positive in the screening MN tests. In contrast, 103 of 110 sera collected in Egypt from dromedary camels neutralised MERS-CoV at the screening dilution of 1:20 or higher.

Entry of MERS pseudoparticles was shown to be inhibited by increasing concentrations of 0–20 mM NH₄Cl (data not shown), demonstrating pH dependent entry of the MERS pseudoparticles as previously reported [14]. The MERS ppNT assay was evaluated using two sera from experimentally infected macaques, one negative control serum from an uninfected macaque, a human convalescent serum from a MERS patient and five negative human control sera from Hong Kong (Figure 1).

The MERS ppNT assay was then used to screen 115 human sera from Hong Kong and 100 randomly selected human sera from Egypt which were all serologically negative for MERS-CoV. Sixteen dromedary camel sera that were positive in the MN screening assay were all found to have a high neutralising activity in the ppNT assay. In addition, five of six sera that were negative in the MN assay had a weak, but detectable, activity in the ppNT test (Table 1, Table 2, Figure 2). The camel sera that were found to be positive at a screening dilution of 1:20 in the MN test had antibody titres in the MERS NT screen ranging from 40 to 1,280 and higher, and MERS ppNT titres ranging from 640 to 10,240 and higher. One of the five MERS MN-negative sera was negative in the MERS ppNT assay, while the other four had low MERS ppNT titres ranging from 40 to 160.

Table 1

<table>
<thead>
<tr>
<th>Sera Source of sera</th>
<th>MERS-CoV micro-neutralisation titre ≥1:20</th>
<th>MERS-CoV spike pseudotype antibody titre ≥1:20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total tested</td>
<td>% Positive (n)</td>
</tr>
<tr>
<td>Human¹ Egypt</td>
<td>815</td>
<td>0 (0/815)</td>
</tr>
<tr>
<td>Goat²</td>
<td>13</td>
<td>0 (0/13)</td>
</tr>
<tr>
<td>Sheep³</td>
<td>5</td>
<td>0 (0/5)</td>
</tr>
<tr>
<td>Water buffalo⁴</td>
<td>8</td>
<td>0 (0/8)</td>
</tr>
<tr>
<td>Cow⁵</td>
<td>25</td>
<td>0 (0/25)</td>
</tr>
<tr>
<td>Camel⁶</td>
<td>110</td>
<td>93.6 (103/110)</td>
</tr>
<tr>
<td>Human Hong Kong</td>
<td>528</td>
<td>0 (0/528)</td>
</tr>
<tr>
<td>Swine</td>
<td>260</td>
<td>0 (0/260)</td>
</tr>
<tr>
<td>Wild bird</td>
<td>204</td>
<td>0 (0/204)</td>
</tr>
</tbody>
</table>

MERS-CoV: Middle East respiratory syndrome coronavirus; ND: not done.

² Collected in June 2013.
³ Collected in June 2013.
⁴ Details of sera collected in Hong Kong as given in Methods.
The correlation of the MERS MN and MERS ppNT titres are shown in Figure 3 (Pearson’s correlation coefficient: $R=0.88$). The MERS ppNT test appears to be more sensitive than the MERS MN test, and thus some of the apparently MN-negative camel sera give low titre-positive results in the MERS ppNT assay. However, none of the human sera from Egypt (n=100) or Hong Kong (n=115) had any detectable antibody in the MERS ppNT test. None of the camel sera with high antibody titres to MERS-CoV had any cross-neutralising activity to SARS-CoV (Table 2).

Discussion

Of 1,968 human and animal sera tested by MERS-CoV MN and 325 human and animal sera tested by MERS-CoV ppNT assays, only sera from dromedary camels had any neutralising antibody activity to the MERS-CoV. Of the 110 camel sera, 93.6% were seropositive by MERS-CoV MN test and 98.2% were seropositive by MERS-CoV ppNT test. The antibody titres were very high in MN as well as ppNT, suggesting that the virus infecting these camels was MERS-CoV virus itself or a very closely related virus.

It is known that dromedary camels host bovine coronaviruses (BCoV) which are lineage A beta-coronaviruses. However, cross-neutralisation between MERS-CoV (lineage C beta-coronavirus) and BCoV was excluded by Reusken and colleagues in their study of sera from dromedary camels [10]. Furthermore, BCoV is antigenically closely related to the human coronavirus OC43. Human beta-coronavirus lineage A viruses OC43 and
HKU1, and alpha-coronaviruses (229E and NL63) are ubiquitous respiratory viruses infecting humans and the panel of human sera of different ages tested can be expected to have varying levels of antibody to these viruses. The lack of any MERS-neutralising activity in the human sera we studied also indicates that the MN and ppNT assays are specific for MERS-CoV. The lack of cross-reactivity with convalescent serum from patients with SARS provides additional evidence of the lack of cross-reactivity in the MERS-CoV serology assays. Furthermore, it is notable that the camel sera with high antibody titres to MERS-CoV did not cross-react with SARS-CoV, a beta-coronavirus of lineage B. Taken together these data indicate that a MERS-CoV or a highly related virus is endemic in dromedary camels imported for slaughter in Egypt. These findings provide independent confirmation of the results recently reported by Reusken et al. who found very high antibody titres to MERS-CoV in dromedary camels [10].

The dromedary camels sampled in our study were those brought to abattoirs for slaughter in Cairo and in the Qalyubia governorate in the Nile Delta region. These animals were sourced from other East African countries such as Sudan and held in Egypt for some time prior to slaughter. Thus it is unclear where the animals originally acquired the infection. Considering the similar data from dromedary camels in Oman and the Canary Islands [10], it is likely that this coronavirus is widespread in North and East Africa and the Arabian peninsula.

There is substantial movement of people between Egypt and Saudi Arabia and other states on the Arabian peninsula, and thus it is possible that people may get infected, either as part of their travel to endemic areas or through zoonotic transmission within the country. There is also much movement of livestock across these Middle Eastern countries. The lack of antibody to MERS-CoV in sera of people resident in Egypt indicates

Figure 2

MERS-CoV spike protein pseudoparticle neutralisation on selected sera from dromedary camels, Egypt, June, 2013 (n=21)

<table>
<thead>
<tr>
<th>Figure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS: counts per second; MERS-CoV: Middle East respiratory syndrome coronavirus; MN: microneutralisation; ppNT: pseudoparticle neutralisation.</td>
</tr>
<tr>
<td>Sixteen sera found to be positive and five sera found to be negative in the MERS-CoV MN screening assay were titrated in the MERS-CoV ppNT assay. The sera used are shown in Table 2. The horizontal dotted line represents the 90% reduction in luciferase activity which represents the cut-off for positivity in the assay. Each batch of assays had the cut-off determined with reference to a serum-free negative control and the data represented here are a compilation of two experiments. Thus the cut-off line is a representative indication based on an average of cut-offs used in separate experiments.</td>
</tr>
</tbody>
</table>
that this infection is not common in Egypt, either as an infection acquired through travel or as an occasional zoonotic infection.

The MERS-CoV ppNT assay described here is a safe and specific assay for large scale seroepidemiological studies in a range of animal species, and such studies are urgently needed in regions where MERS-CoV cases have been detected as well as other regions. The HIV backbone used for pseudoparticle production is not replication-competent and the MERS-CoV pseudoparticles can therefore be produced and used in Biosafety Level 2 containment; in contrast, MN assays involve handling of the live MERS-CoV and require Biosafety Level 3 containment which is not always available in affected regions. Unlike immunoassays, there is no requirement for finding and optimising an enzyme-labelled anti-Ig conjugate for each species to be investigated. Furthermore, the MERS-CoV ppNT assay appears around 10 times more sensitive than the conventional MN assay (Figure 3, Table 2). The MN assay is a neutralisation assay based on TCID₅₀ rather than a plaque reduction assay, which perhaps makes it less sensitive than a plaque neutralisation assay. In any event, experience with influenza virus serology using pseudoparticle assays has shown that they are more sensitive than conventional MN assays for detecting neutralising antibodies. Thus MERS-CoV ppNT can be used as a screening assay, and positive sera can be retested for confirmation in a MERS MN tests.

Serological data does not provide proof that the virus infecting dromedary camels is the MERS CoV, and infection by a closely related coronavirus or a chimeric virus with a MERS-CoV-like spike protein cannot be ruled out until the dromedary camel virus is detected and genetically sequenced. However, it provides a strong impetus to attempt to seek the virus in specimens from these animals and to identify the MERS-related virus that appears to be infecting them. These serological studies also need to be extended to other domestic animals species to define the circulation of MERS-CoV or related viruses in animals in close contact with humans. Such studies should also include humans exposed to dromedary camels. It is important to note that waning antibody levels may result in false-negative serology results, and this is particularly relevant in mild or asymptomatic episodes of infection where the peak antibody titre may be lower and drop more quickly.

Table 2

<table>
<thead>
<tr>
<th>Camel sera</th>
<th>Antibody titres</th>
<th>MERS-CoV MN test</th>
<th>SARS-CoV MN test</th>
<th>MERS-CoV ppNT test</th>
</tr>
</thead>
<tbody>
<tr>
<td>C101</td>
<td><10 Negative</td>
<td><10 Negative</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C127</td>
<td><10 Negative</td>
<td><10 Negative</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>C132</td>
<td><10 Negative</td>
<td><10 Negative</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C144</td>
<td><10 Negative</td>
<td><10 Negative</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>C585</td>
<td><10 Negative</td>
<td><10 Negative</td>
<td><20 Negative</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>320</td>
<td><10 Negative</td>
<td>2,560</td>
<td></td>
</tr>
<tr>
<td>C107</td>
<td>160</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C108</td>
<td>160</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C109</td>
<td>640</td>
<td><10 Negative</td>
<td>10,240</td>
<td></td>
</tr>
<tr>
<td>C110</td>
<td>1,280</td>
<td><10 Negative</td>
<td>10,240</td>
<td></td>
</tr>
<tr>
<td>C111</td>
<td>320</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C112</td>
<td>320</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C113</td>
<td>320</td>
<td><10 Negative</td>
<td>2,560</td>
<td></td>
</tr>
<tr>
<td>C115</td>
<td>160</td>
<td><10 Negative</td>
<td>1,280</td>
<td></td>
</tr>
<tr>
<td>C116</td>
<td>320</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C117</td>
<td>640</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C118</td>
<td>640</td>
<td><10 Negative</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>C119</td>
<td>80</td>
<td><10 Negative</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>C120</td>
<td>40</td>
<td><10 Negative</td>
<td>1,280</td>
<td></td>
</tr>
<tr>
<td>C121</td>
<td>160</td>
<td><10 Negative</td>
<td>2,560</td>
<td></td>
</tr>
<tr>
<td>C147</td>
<td>1,280</td>
<td><10 Negative</td>
<td>10,240</td>
<td></td>
</tr>
</tbody>
</table>

MERS-CoV: Middle East respiratory syndrome coronavirus; MN: microneutralisation; ppNT: pseudoparticle neutralisation. The data used as those shown in Table 2. In the event of overlapping dots, their MN titre (X axis) was increased or decreased by 0.05% to slightly offset the overlap for ease of observation. The limit of detection in the MN and ppNT assays were titres of 10 and 20 respectively; and thus these values on the Y and X axis correspond to <10 and ≥20, respectively.
If the detection of MERS-CoV in insectivorous bats is confirmed [8] and if indeed the coronavirus we and others demonstrated to be common in dromedary camels is confirmed to be MERS-CoV, we will have a scenario of a virus reservoir in bats with a peridomestic animal such as the camel as intermediate host, which may in fact be the immediate source of human infection. It is notable that a number of index cases with MERS-CoV had a history of exposure to camels, although this is by no means universally the case. Given that the MERS-like coronavirus in camels appears to be ubiquitous, it remains to be explained why MERS in humans appears relatively rare. Coronaviruses are well known to mutate to markedly change virulence or host range. Examples are the emergence of the less pathogenic porcine respiratory coronavirus from virulent transmissible gastroenteritis virus of pigs, or virulent feline infectious peritonitis viruses emerging from low pathogenic feline coronaviruses [15]. Furthermore, the SARS-like virus detected in civets and other small mammals in live animal markets in southern China in 2002–03 initially appeared to infect humans, who appear to have seroconverted, but with minimal disease and onward transmission [16], while a few amino acid changes in the SARS-CoV spike protein allowed that virus to acquire efficient transmissibility and virulence in humans [17]. Thus, previous experience with animal and human coronaviruses highlights the public health urgency of investigations of MERS-CoV and MERS-CoV-like viruses in domestic and wild animals.

Acknowledgements
We thank Dr CYH Leung for providing wild bird sera from Hong Kong. This study was supported in part by research contract from the National Institute of Allergy and Infectious Diseases (NIAID) contract HHSN266200700005C and a grant from the European Community Seventh Framework Programme (FP7/2007-2013) under project European management Platform for Emerging and Re-emerging Disease entities (Grant agreement No. 223498) (EMPERIE).

Conflict of interest
None declared.

Authors’ contributions
Pei-gang Wang developed the MERS-CoV pseudotype assay and carried out the tests. Ranawaka AMP Perera developed the MERS-CoV microneutralisation test and carried out the tests in BS13 containment. Leo LLM Poon and Yi Guan provided advice on laboratory methods. Lewis YL Siu and Ming-yuan Li carried out the MERS-CoV pseudotype assays. Mokhtar R. Gomaa, Rabeh El-Shesheny, Ahmed Kandeil, Ola Bagato, Mahmoud M. Shehata, Ahmed S. Kayed and Yassmin Moatasim collected human and animal sera in Egypt. Richard J. Webby and Mohamed A. Ali provided advice on field study design. Joseph SM Peiris and Ghazi Alkhazali designed and coordinated the study and wrote the manuscript. All authors reviewed and commented on the manuscript.

References
Novel influenza viruses of the H7N9 subtype have infected 33 and killed nine people in China as of 10 April 2013. Their haemagglutinin (HA) and neuraminidase genes probably originated from Eurasian avian influenza viruses; the remaining genes are closely related to avian H9N2 influenza viruses. Several characteristic amino acid changes in HA and the PB2 RNA polymerase subunit probably facilitate binding to human-type receptors and efficient replication in mammals, respectively, highlighting the pandemic potential of the novel viruses.

Humans are rarely infected with avian influenza viruses, with the exception of highly pathogenic avian influenza A(H5N1) viruses, which have caused 634 infections and 371 deaths as of 12 March 2013 [1]. A few isolated cases of human infection with viruses of the H7N2, H7N3, and H7N5 subtypes have been reported, but none were fatal [2-11]. In 2003, in the Netherlands, 89 people were infected with an influenza virus of the H7N7 subtype that caused conjunctivitis and one fatality [5,7].

On 19 February 2013, an 87 year-old man in Shanghai developed a respiratory infection and died on 4 March, and on 27 February 2013, a 27 year-old pork seller in a Shanghai market became ill and died on 10 March. A 35 year-old woman in Chuzhou City in Anhui province (west of Shanghai), who had contact with poultry, became ill on 15 March 2013, and remains hospitalised in critical condition. There is no known epidemiological relationship among these three cases. A 38 year-old man in Hangzhou (Zhejiang province, south of Shanghai) became ill on 7 March 2013 and died on 27 March. All four cases presented with respiratory infections that progressed to severe pneumonia and breathing difficulties.

On 31 March 2013, the Chinese Centre for Disease Control and Prevention announced the isolation in embryonated eggs of avian influenza viruses of the H7N9 subtype (designated A/Shanghai/1/2013, A/Shanghai/2/2013, and A/Anhui/1/2013) from the first three cases. The sequences of the coding regions of all eight viral genes were deposited in the influenza sequence database of the Global Initiative on Sharing All Influenza Data (GISAID) on 31 March (Table 1). On 5 April 2013, the Hangzhou Center for Disease Control and Prevention deposited the haemagglutinin (HA), neuraminidase (NA), and matrix (M) gene sequences of A/Hangzhou/1/2013 virus (Table 1), which was isolated in cell culture from samples obtained from the 38 year-old man.

All four human influenza A(H7N9) viruses are similar at the nucleotide and amino acid levels, suggesting a common ancestor. The HA gene of the novel viruses belongs to the Eurasian lineage of avian influenza viruses and shares ca. 95% identity with the HA genes of low pathogenic avian influenza A(H7N3) viruses isolated in 2011 in Zhejiang province (south of Shanghai) (Figure 1, Table 2). The NA gene of the novel viruses is ca. 96% identical to the low pathogenic avian influenza A(H11N9) viruses isolated in 2010 in the Czech Republic (Figure 1, Table 2).
<table>
<thead>
<tr>
<th>Segment ID</th>
<th>Segment</th>
<th>Isolate name</th>
<th>Collection date</th>
<th>Originating Laboratory</th>
<th>Submitting Laboratory</th>
<th>Submitter/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI439488</td>
<td>PB2</td>
<td>A/Shanghai/1/2013</td>
<td>2013</td>
<td>-</td>
<td>WHO Chinese National Influenza Center</td>
<td>Lei Yang</td>
</tr>
<tr>
<td>EPI439489</td>
<td>PB1</td>
<td>A/Shanghai/2/2013</td>
<td>2013</td>
<td>-</td>
<td>Hangzhou Center for Disease Control and Prevention</td>
<td>Li,J; Pan,JC; Pu,XY; Yu,XF; Kou,Y; Zhou,YY</td>
</tr>
<tr>
<td>EPI439490</td>
<td>PA</td>
<td>A/Hangzhou/1/2013</td>
<td>2013-03-24</td>
<td>Hangzhou Center for Disease Control and Prevention</td>
<td>Harbin Veterinary Research Institute</td>
<td>Huihui Kong</td>
</tr>
<tr>
<td>EPI439491</td>
<td>NP</td>
<td>A/Chicken/Shanghai/51053/2013</td>
<td>2013-04-03</td>
<td>Harbin Veterinary Research Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI439492</td>
<td>NA</td>
<td>A/Pigeon/Shanghai/51069/2013</td>
<td>2013-04-02</td>
<td>Harbin Veterinary Research Institute</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We gratefully acknowledge the authors and laboratories for originating and submitting these sequences to the EpiFlu database of the Global Initiative on Sharing All Influenza Data (GISAID); these sequences were the basis for the research presented here.

All submitters of data may be contacted directly via the GISAID website www.gisaid.org
Novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green; viruses with the highest similarities to the novel viruses are shown in blue. The HA clade names, North America, South America, and Eurasia, are based on epidemiological studies of H7 viruses [27,28].

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

Novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green; viruses with the highest similarities to the novel viruses are shown in blue. The HA clade names, North America, South America, and Eurasia, are based on epidemiological studies of H7 viruses [27,28].

<table>
<thead>
<tr>
<th>HA: haemagglutinin; NA: neuraminidase.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%). Novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green; viruses with the highest similarities to the novel viruses are shown in blue. The HA clade names, North America, South America, and Eurasia, are based on epidemiological studies of H7 viruses [27,28].</td>
</tr>
</tbody>
</table>
Phylogenetic analysis of the haemagglutinin (A) and neuraminidase (B) genes of the novel influenza A(H7N9) viruses, China, February–April 2013 (n=7)

B NA gene

![Phylogenetic tree](image)

HA: haemagglutinin; **NA**: neuraminidase.

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura's 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

Novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green; viruses with the highest similarities to the novel viruses are shown in blue. The HA clade names, North America, South America, and Eurasia, are based on epidemiological studies of H7 viruses [27,28].
The sequences of the remaining viral genes are closely related (>97% identity) to avian influenza A(H9N2) viruses, which recently circulated in poultry in Shanghai, Zhejiang, Jiangsu, and neighbouring provinces of Shanghai (Table 2, Figure 2). These findings strongly suggest that the novel influenza A(H7N9) viruses are reassortants that acquired their H7 HA and N9 NA genes from avian influenza viruses, and their remaining genes from recent influenza A(H9N2) poultry viruses (Figure 1, Figure 3, Table 2).

At the nucleotide level, A/Shanghai/2/2013, A/Anhui/1/2013, and A/Hangzhou/1/2013 share more than 99% identity and differ by no more than three nucleotides per gene, even though they were isolated in different cities several hundred kilometres apart. On 7 April 2013, the Harbin Veterinary Research Institute deposited the full genome sequences of isolates from a pigeon (A/pigeon/Shanghai/S1069/2013), a chicken (A/chicken/Shanghai/S1053/2013), and an environmental sample (A/environment/Shanghai/S1088/2013) that were collected on 2 and 3 April from a Shanghai market (Table 1). All eight genes of these three isolates are similar to those of A/Shanghai/2/2013 and A/Anhui/1/2013 at the nucleotide level, except for the PB1 gene of A/pigeon/Shanghai/S1069/2013, which belongs to a different lineage than the PB1 of the other H7N9 isolates (Figures 1 and 3).

Interestingly, A/Shanghai/1/2013 and A/Shanghai/2/2013 differ by 52 nucleotides (for example, there are 13 nucleotide and nine amino acid differences in their HA sequences) even though these two cases were identified in the same city and at around the same time. These findings suggest that A/Shanghai/2/2013, A/Anhui/1/2013, A/Hangzhou/1/2013, as well as the viruses from the chicken and the environment, share a closely related source of infection, whereas A/Shanghai/1/2013 and A/pigeon/Shanghai/S1069/2013 are likely to have originated from other sources.

Highly pathogenic avian influenza viruses are characterised by a series of basic amino acids at the HA cleavage site that enable systemic virus spread. The HA cleavage sequence of the novel influenza A(H7N9) viruses possesses a single basic amino acid (EIPKR*GL; *indicates the cleavage site), suggesting that these viruses are of low pathogenicity in avian species.

The amino acid sequence of the receptor-binding site (RBS) of HA determines preference for human- or avian-type receptors. At this site, A/Shanghai/2/2013 encodes an A138S* mutation (H3 numbering; Figure 4, Table 3), whereas A/Shanghai/2/2013, A/Anhui/1/2013, the two avian isolates, and the virus from the environmental sample encode G186V and Q226L mutations; any of these three mutations could increase the binding of avian H5 and H7 viruses to human-type receptors [12-14]. The finding of mammalian-adapting mutations in the RBS of these novel viruses is cause for concern. The A/Hangzhou/1/2013 isolate encodes isoleucine at position 226, which is found in seasonal influenza A(H3N2) viruses.

In addition, all seven influenza A(H7N9) viruses possess a T627K substitution (H3 numbering; Table 3) in HA, which is found in recently circulating H7 viruses; this mutation leads to the loss of an N-glycosylation site at position 158 (H3 numbering; position 149 in H7 numbering), which results in increased virus binding to human-type receptors [15].

Lysine at position 627 of the polymerase PB2 protein is essential for the efficient replication of avian influenza viruses in mammals [16] and has been detected in highly pathogenic avian influenza A(H5N1) viruses and in the influenza A(H7N7) virus isolated from the fatal case in the Netherlands in 2003 [17]. PB2-627K is rare among avian H9N2 PB2 proteins (i.e. it has been found in only five of 827 isolates). In keeping with this finding, the avian and environmental influenza A(H7N9)
Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.
Figure 2
Phylogenetic analysis of the six remaining genes of the novel influenza A(H7N9) viruses, China, February–April 2013 (n=7)

PB1: RNA polymerase basic subunit 1.

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.
PA: RNA polymerase acidic subunit.

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura's 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.
Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura's 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.
Figure 2
Phylogenetic analysis of the six remaining genes of the novel influenza A(H7N9) viruses, China, February–April 2013 (n=7)

M gene

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.

M: matrix gene.
Figure 2
Phylogenetic analysis of the six remaining genes of the novel influenza A(H7N9) viruses, China, February–April 2013 (n=7)

NS: non-structural gene.

Multiple alignments were constructed by using the CLUSTAL W algorithm. Genetic distances were calculated by using the Kimura’s 2-parameter method [26], and phylogenetic trees were constructed by using the neighbour-joining method with bootstrap analyses of 1,000 replicates in CLUSTAL W. Numbers next to nodes indicate bootstrap value percentages (>50%).

The novel human H7N9 viruses are shown in red; novel H7N9 viruses from birds and the environment are shown in green. Influenza viruses whose HA and NA genes are most closely related to the novel human H7N9 viruses are shown in blue.
Viruses analysed here encode PB2-627E. By contrast, all four human H7N9 viruses analysed here encode PB2-627K (Table 3).

Antiviral compounds are the first line of defense against novel influenza viruses until vaccines become available. All seven novel influenza A(H7N9) viruses sequenced to date encode the S31N substitution in the viral ion channel M2 (encoded by the M segment) (Table 3), which confers resistance to ion channel inhibitors [18,19]. Based on the sequences of their NA proteins, all H7N9 viruses analysed here, with the exception of A/Shanghai/1/2013, should be sensitive to neuraminidase inhibitors (Table 3). However, the R294K mutation in the NA protein of A/Shanghai/1/2013 is known to confer resistance to NA inhibitors in N2 and N9 subtype viruses [20], and is therefore of great concern.

All H7N9 viruses encode a deletion at positions 69–73 of the NA stalk region (Table 3), which is reported to occur upon virus adaptation to terrestrial birds. This finding suggests that the novel H7N9 viruses (or their ancestor) may have circulated in terrestrial birds before infecting humans. Moreover, this deletion is associated with increased virulence in mammals [21].

The influenza A virus PB1-F2 protein (encoded by the PB1 segment) is also associated with virulence. The available sequences indicate that the H7N9 PB1 genes of all of the human viruses encode a full-length PB1-F2 of 90 amino acids, but lack the N66S mutation that is
associated with the increased pathogenicity of the 1918 pandemic virus and the highly pathogenic avian influenza A(H5N1) viruses [22]. Interestingly, the pigeon isolate encodes a truncated PB1-F2 of only 25 amino acids; the significance of this truncation is unknown.

The NS1 protein (encoded by the NS segment) is an interferon antagonist with several functions in the viral life cycle. All available H7N9 NS1 sequences lack the C-terminal PDZ domain-binding motif; the lack of the PDZ domain-binding motif may attenuate these viruses in mammals [23].

The NS1 protein (encoded by the NS segment) is an interferon antagonist with several functions in the viral life cycle. All available H7N9 NS1 sequences lack the C-terminal PDZ domain-binding motif; the lack of the PDZ domain-binding motif may attenuate these viruses in mammals [23].

Other amino acids in the NS1 and matrix (M1; encoded by the M segment) proteins of the novel viruses are also associated with increased virulence (Table 3) [24,25]. However, these amino acids are found in many avian influenza viruses, and therefore, their significance for the biological properties of the novel influenza A(H7N9) viruses is currently unclear.

In conclusion, we here present a biological evaluation of the sequences of the avian influenza A(H7N9) viruses that caused fatal human infections in China. These viruses possess several characteristic features of mammalian influenza viruses, which are likely to contribute to their ability to infect humans and raise concerns regarding their pandemic potential.

Authors’ correction:

The mutation A138S was erroneously written as S138A in the original publication. This mistake was corrected on 13 April 2013.
Table 3
Selected characteristic amino acids of the three novel influenza A(H7N9) viruses, China, February–April 2013 (n=7)

<table>
<thead>
<tr>
<th>Viral protein</th>
<th>Amino acid position</th>
<th>Shanghai/1/2013</th>
<th>Shanghai/2/2013</th>
<th>Anhui/1/2013</th>
<th>Hangzhou/1/2013</th>
<th>Chicken/Shanghai/S1053/2013</th>
<th>Environment/Shanghai/S1088/2013</th>
<th>Pigeon/Shanghai/S2060/2013</th>
<th>Human influenza viruses</th>
<th>Avian influenza viruses</th>
<th>Comments</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB2</td>
<td>627</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>Nd</td>
<td>K</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>K</td>
<td>E</td>
<td>E627K: Mammalian host adaptation</td>
</tr>
<tr>
<td>HA</td>
<td>128/138<sup>a</sup></td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A<sup>b</sup></td>
<td>S138A: Increased virus binding to human-type receptors</td>
</tr>
<tr>
<td></td>
<td>151/160<sup>c</sup></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>K</td>
<td>A<sup>b</sup></td>
<td>T160A: Loss of N-glycosylation and increased virus binding to human-type receptors</td>
</tr>
<tr>
<td></td>
<td>177/186<sup>c</sup></td>
<td>G</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>G</td>
<td>G<sup>e</sup></td>
<td>G186V: Increased virus binding to human-type receptors</td>
</tr>
<tr>
<td></td>
<td>217/226<sup>c</sup></td>
<td>Q</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>I</td>
<td>Q<sup>e</sup></td>
<td>Q226L: Increased virus binding to human-type receptors</td>
</tr>
<tr>
<td>NA</td>
<td>69–73<sup>c</sup></td>
<td>Deletion</td>
<td>Deletion</td>
<td>Deletion</td>
<td>Deletion</td>
<td>Deletion</td>
<td>No deletion</td>
<td>No deletion</td>
<td>Deletion of amino acids 69–73: Increased virulence in mice</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>289/294/292<sup>d</sup></td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R<sup>294K</sup>: Reduced susceptibility to oseltamivir and zanamivir</td>
<td>20</td>
</tr>
<tr>
<td>M1</td>
<td>30</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D/(S)</td>
<td>D<sup>e</sup></td>
<td>N30D: Increased virulence in mice (most influenza A viruses encode 30D)</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T215A: Increased virulence in mice (most avian influenza A viruses encode 215A)</td>
<td>24</td>
</tr>
<tr>
<td>M2</td>
<td>31</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S/N</td>
<td>S/(N)</td>
<td>S31N: Reduced susceptibility to amantadine and rimantadine</td>
<td>18,19</td>
</tr>
<tr>
<td>NS1</td>
<td>42</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Nd</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S/A</td>
<td>P42S: Increased virulence in mice (most avian influenza A viruses encode 42S)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>218–230</td>
<td>Deletion</td>
<td>Deletion</td>
<td>Deletion</td>
<td>Nd</td>
<td>Deletion</td>
<td>Deletion</td>
<td>No deletion</td>
<td>No deletion/Deletion</td>
<td>No deletion</td>
<td>Lack of PDZ domain binding motif: Decreased virulence in mice</td>
<td>23</td>
</tr>
</tbody>
</table>

Substitutions of particular concern are shown in bold.

Nd: not determined.

^a H7/H3 numbering.
^b H7 virus.
^c N9 numbering.
^d H7N9/avian N9/N2 numbering.
^e Influenza A(H1N1)pdm09 viruses from the 2009 influenza pandemic have the deletion.

Concurrent outbreaks of dengue, chikungunya and Zika virus infections – an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014

A Roth (adamr@spc.int)1, A Mercier1, C Lepers1, D Hoy1, S Duituturaga1, E Benyon1, L Guillaumot1, Y Souarès1
1. Secretariat of the Pacific Community, New Caledonia
2. Institut Pasteur de Nouvelle-Caledonie, Noumea, New Caledonia

Since January 2012, the Pacific Region has experienced 28 new documented outbreaks and circulation of dengue, chikungunya and Zika virus. These mosquito-borne disease epidemics seem to become more frequent and diverse, and it is likely that this is only the early stages of a wave that will continue for several years. Improved surveillance and response measures are needed to mitigate the already heavy burden on island health systems and limit further spread to other parts of the world.

Since January 2012, the Pacific is experiencing a high burden of mosquito-borne disease due to concurrent epidemics of dengue, chikungunya and Zika virus infections. So far over 120,000 people have been reported to be affected, a figure that is likely to substantially underestimate the real numbers due to underreporting. For as long as there has been data available from the Region (i.e. 40 years), this epidemic wave of mosquito-borne viruses with 28 new mosquito-borne viral outbreaks (n=25) and circulation (n=3) documented since January 2012 (18 Dengue virus (DENV) serotype 1–4, 7 chikungunya virus and 3 Zika virus infection outbreaks, respectively) is unprecedented (Table) [1-3]. We have present an overview of the surveillance and epidemiology of these mosquito-borne disease epidemics in the Pacific Region, to help facilitate response measures that are needed to mitigate the already heavy burden on island health systems and to limit further spread to other parts of the world.

Surveillance of mosquito-borne viruses in the Pacific Region
The Pacific Public Health Surveillance Network (PPHSN) is a voluntary network of countries, territories and organisations created in 1996. It is dedicated to the promotion of public health surveillance and response to health emergencies in the Pacific Region. It covers 22 Pacific Island countries and territories (hereafter referred to as the Pacific Region) with a population of 10.6 million inhabitants [4]. The network services include the timely exchange of information on outbreak-prone disease through PacNet, an email list with around 680 health professionals, and diagnostic support through a network of laboratories for identification and verification of pathogens.

In 2010, the Pacific Syndromic Surveillance System was introduced in the PPHSN. It monitors four syndromes and aims at improved early warning to complement routine notifiable disease notification systems that generally are not timely and seldom used for regional surveillance purposes in the Pacific Region. The Syndromic Surveillance system is under development and currently includes sentinel reporting from primary healthcare or hospital sites in all countries [5]. Manifest dengue, chikungunya and Zika virus infections have a similar initial clinical presentation and may be reported as any of the first three of the following four monitored syndromes: (i) acute fever and rash, (ii) prolonged fever, (iii) influenza-like illness and (iv) diarrhoea. Due to similar initial clinical features to the three mosquito-borne diseases, concurrent measles epidemics and leptospirosis pose diagnostic challenges in the Region.

There is a need for timely, reliable and detailed data on mosquito-borne virus outbreaks and circulation of the viruses in the Pacific Region. To obtain a comprehensive overview of the present epidemiological picture, several sources of information are used. Further to PacNet, syndromic and laboratory-based surveillance, event-based surveillance (mainly media and personal communications with health professionals) and surveillance by-proxy (reports of exported cases to neighbouring countries) [6] are also important. To facilitate better risk assessments and efficiency of data dissemination, this data is visualized in a recently launched interactive map available from: www.spc.int/phd/epidemics. The map, updated weekly, provides the region for the first time with a dynamic real-time picture of the current epidemic situation.
Characteristics of new dengue, chikungunya and Zika virus infection outbreaks and circulation^{a,b}, Pacific Region, January 2012–17 September 2014^c (n=28)

<table>
<thead>
<tr>
<th>Country</th>
<th>Month of onset</th>
<th>Latest information</th>
<th>Implicated mosquito borne virus</th>
<th>Summary</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuvalu</td>
<td>Mar-14</td>
<td>10/07/2014</td>
<td>DENV-2</td>
<td>408 suspected cases with 195 cases positive in rapid tests (NS1/IgM).</td>
<td>[32]</td>
</tr>
<tr>
<td>Nauru</td>
<td>Mar-14</td>
<td>7/08/2014</td>
<td>DENV-3</td>
<td>251 suspected cases with 91 confirmed using IgM ELISA and/or rapid test. Samples sent for confirmatory serotyping.</td>
<td>[32, 33]</td>
</tr>
<tr>
<td>Tonga</td>
<td>Feb-14</td>
<td>21/08/2014</td>
<td>DENV-3</td>
<td>Outbreak ongoing; 2 cases of dengue imported into New Zealand since 12 July 2014.</td>
<td>[32–34]</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Feb-14</td>
<td>17/09/2014</td>
<td>DENV-3</td>
<td>In 2014, 338 cases of dengue recorded of which 55% were DENV-3. Virus circulation ongoing, with latest reported dengue case on 12 September 2014.</td>
<td>[35]</td>
</tr>
<tr>
<td>Fiji</td>
<td>15/01/2014<sup>d</sup></td>
<td>23/06/2014</td>
<td>DENV-2</td>
<td>Circulation of virus, no outbreak declared; 6 confirmed cases of DENV-2 imported into Queensland Australia from January to June 2014.</td>
<td>[33]</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>Dec-13</td>
<td>20/04/2014</td>
<td>DENV-3</td>
<td>1,561 dengue cases reported; 5 imported cases in Queensland Australia since January 2014 and 10 imported cases in New Caledonia from January to March 2014; 4 cases of DENV with serotype unknown imported into New Zealand since April 2014, of which 1 in July 2014.</td>
<td>[32–35]</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Nov-13</td>
<td>24/01/2014</td>
<td>DENV-3</td>
<td>As of 16 Jan 2014, 198 suspected dengue cases of which 85 were laboratory-confirmed. Outbreak over, only sporadic cases of fever.</td>
<td>[32], media: Radio New Zealand International</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>27/10/2012<sup>d</sup></td>
<td>20/04/2014</td>
<td>DENV-1, DENV-3</td>
<td>Circulation of virus, no outbreak declared; 2 confirmed cases imported into Queensland Australia (1 case in 2013 and 1 case in 2014) and 6 cases into New Caledonia (5 cases in 2013 and 1 case in 2014); 4 cases of dengue serotype unknown imported into New Zealand since April 2014, of which 1 in July 2014.</td>
<td>[33, 35]</td>
</tr>
<tr>
<td>Fiji</td>
<td>Oct-13</td>
<td>5/06/2014</td>
<td>DENV-3</td>
<td>25,300 suspected cases, 15 deaths. Outbreak is ongoing; 15 confirmed cases imported into Queensland Australia from December 2013 to May 2014.</td>
<td>[33], media: Radio Australia, Fiji Broadcasting Corporation</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>Feb-13</td>
<td>6/09/2014</td>
<td>DENV-1, DENV-3</td>
<td>As of 23 May 2014, 2188 positive cases since February 2013, and between 16 400 and 34 000 clinical visits estimated. 11 severe cases in March 2014 and 5 severe cases requiring hospitalisation in July 2014. DENV1 outbreak is still ongoing, but there are no cases of DENV3 reported since April 2014.</td>
<td>[36]</td>
</tr>
<tr>
<td>Wallis & Futuna</td>
<td>Jan-13</td>
<td>28/03/2013</td>
<td>DENV-1</td>
<td>88 suspected cases and 16 confirmed of which 11 imported cases from New Caledonia.</td>
<td>[37]</td>
</tr>
<tr>
<td>Solomon Islands</td>
<td>Dec-12</td>
<td>15/08/2014</td>
<td>DENV-3</td>
<td>2,697 reported cases as of 31 December 2013. As of June 2014, 1,762 suspected cases since January 2014, and 282 out of 1,000 samples tested positive in rapid tests. In March 2014 DENV-3 confirmed. Outbreak still ongoing.</td>
<td>[32, 33], media: Solomon Star</td>
</tr>
<tr>
<td>Kosrae, Federated States of Micronesia</td>
<td>Sep-12</td>
<td>19/07/2013</td>
<td>DENV-4</td>
<td>729 reported clinical cases; 206 cases laboratory confirmed by rapid diagnostic tests. No deaths reported.</td>
<td>[9, 37]</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Sep-12</td>
<td>17/09/2014</td>
<td>DENV-1</td>
<td>Largest ever recorded outbreak of dengue in New Caledonia with 10,978 cases and 5 deaths from September 2012 to September 2013; 338 cases of dengue recorded in 2014 of which 45% were DENV-1. Virus circulation ongoing, with latest reported dengue case on 12 September 2014.</td>
<td>[35]</td>
</tr>
<tr>
<td>Fiji</td>
<td>15/07/2012<sup>d</sup></td>
<td>31/12/2012</td>
<td>DENV-2</td>
<td>Circulation of virus, no outbreak declared. 2 imported cases in Queensland Australia;</td>
<td>[33]</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Mar-12</td>
<td>4/05/2012</td>
<td>DENV-1</td>
<td>243 clinical cases.</td>
<td>[32]</td>
</tr>
<tr>
<td>Niue</td>
<td>Feb-12</td>
<td>20/07/2012</td>
<td>DENV-1</td>
<td>More than 100 cases.</td>
<td>Media: Radio New Zealand International</td>
</tr>
<tr>
<td>Country</td>
<td>Month of Onset</td>
<td>Latest Information</td>
<td>Implicated Mosquito Borne Virus</td>
<td>Summary</td>
<td>Sources</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chikungunya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokelau</td>
<td>Jul-14</td>
<td>11/09/2014</td>
<td>CHIKV</td>
<td>164 suspected cases reported. CHIKV confirmed.</td>
<td>[32]</td>
</tr>
<tr>
<td>Samoa</td>
<td>Jul-14</td>
<td>1/09/2014</td>
<td>CHIKV</td>
<td>433 cases reported over 4 weeks. 21 RT-PCR positives out of 59 samples (as of 28 Aug 2014).</td>
<td>[37], media: Samoa Observer</td>
</tr>
<tr>
<td>American Samoa</td>
<td>Jun-14</td>
<td>17/09/2014</td>
<td>CHIKV</td>
<td>823 probable cases reported, with 15 hospitalisations. CHIKV confirmed.</td>
<td>[37], media Radio New Zealand International</td>
</tr>
<tr>
<td>Tonga</td>
<td>Feb-14</td>
<td>11/09/2014</td>
<td>CHIKV</td>
<td>Over 10,000 suspected cases reported. Ongoing circulation of CHIKV confirmed.</td>
<td>[32-34]</td>
</tr>
<tr>
<td>Yap, Federated States of Micronesia</td>
<td>Aug-13</td>
<td>10/09/2014</td>
<td>CHIKV</td>
<td>A total of 1,711 suspected cases identified in Yap State. Circulation of CHIKV reconfirmed.</td>
<td>[37]</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Jan-14</td>
<td>2/06/2014</td>
<td>CHIKV</td>
<td>A total of 32 confirmed cases from January to May 2013.</td>
<td>[35]</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>Jun-12</td>
<td>25/11/2013</td>
<td>CHIKV</td>
<td>A major outbreak spread over Papua New Guinea in 2013. Number of cases not reported, but estimated in media to be tens of thousands of cases.</td>
<td>[2], media: Australia Network News, Pacnews</td>
</tr>
<tr>
<td>Zika virus infections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook Islands</td>
<td>Feb-14</td>
<td>29/05/2014</td>
<td>ZIKV</td>
<td>Outbreak is over. 932 suspected and 50 confirmed cases.</td>
<td>[32], media: Radio New Zealand International</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Jan-14</td>
<td>17/09/2014</td>
<td>ZIKV</td>
<td>Imported cases reported in November 2013, first autochtonous case reported in January 2014. 1,400 confirmed cases of which 35 imported cases. Outbreak peaked in April 2014. Last case reported on 2nd August 2014.</td>
<td>[35]</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>Oct-13</td>
<td>4/05/2014</td>
<td>ZIKV</td>
<td>8,723 suspected cases reported and more than 30,000 estimated clinical visits due to Zika. Outbreak declared over but virus circulation may be ongoing.</td>
<td>[36]</td>
</tr>
</tbody>
</table>

- Cases reported are increasing or peaking
- Cases reported are decreasing or viral circulation is ongoing
- Outbreak is reported to be over and/or no cases have been reported for one year.

CHIKV: chikungunya virus; DENV: dengue virus serotype 1-4; RT-PCR: reverse-transcriptase polymerase chain reaction; ZIKV: Zika virus.

a Only incident outbreaks and circulation notified during the reported period. Outbreaks first reported in 2011 (DENV-4 in Marshal Islands, DENV-2 in Yap and circulation of DENV in Papua New Guinea and Fiji) and still ongoing in 2012 are not presented.

b An outbreak is considered an outbreak when reported as such or when the first autochtonous cases are reported, and new circulation if there have been no events reported during one year.

c Month of start equals the month of first report, as this reflects circulation of virus.

d Easter Island experienced a Zika virus infection outbreak starting February 2014, but is not presented in the table as it is not part of the 22 countries and territories of the Pacific Public Health Surveillance Network.
The epidemiology of mosquito-borne viruses in the Pacific Region

Mosquito-borne virus diseases in the Pacific Region have a distinct epidemiology due to small populations scattered over thousands of tropical and sub-tropical islands on both sides of the equator in relative geographic isolation, together with (nowadays) significant people’s mobility and thereby exposure to circulating arboviruses through the airline networks of the Asia-Pacific region (Figure 1).

Between January 2012 and 17 September 2014, a total of 28 new mosquito-borne viral outbreaks (n=25) and circulation (n=3) were documented: 18 DENV 1–4 outbreaks (2012: 7; 2013: 6; 2014: 5), 7 chikungunya virus (CHIKV) (2012: 1; 2013: 2; 2014: 4) and 3 Zika virus infection outbreaks (2012: 0; 2013: 1; 2014: 2), respectively.

Looking at the first semester of 2014, the number of outbreaks and circulating mosquito-borne viruses seem to be increasing (Figure 2). During the same period, DENV-3 became the dominating dengue virus, and since Zika virus started to spread in the end of 2013, there was concurrent circulation of DENV-1,2 and -3, CHIKV and Zika virus (Table, Figure 2).

Dengue
The epidemic pattern of dengue in the Pacific Region has typically presented in form of sporadic or rare epidemics rather than a hyperepidemic/endemic pattern, with one dominating serotype sweeping across the islands every 3 to 5 years, and with varying duration of circulation in different islands largely depending on population size [1,7-8]. During 2012, there were outbreaks of all four serotypes of DENV documented for the first time during one year (Figure 2) [1]. DENV-1 was the dominating serotype in 2012 and beginning 2013, causing the largest documented dengue outbreak ever in New Caledonia, with 10,978 confirmed cases and 5 deaths from September 2012 to September 2013. Since 2012 there have only been reports of one outbreak with DENV-2 and -4 respectively: DENV-2 recently caused an outbreak in Tuvalu with 408 suspected cases (4% of the population) and DENV-4 caused a large outbreak in Kosrae in September 2012 to March 2013 with 729 clinical cases (11% of the population) (Table) [9]. Furthermore there have been reports of new circulation of DENV-2 in Fiji. (Table) After having been absent in the region for 18 years, DENV-3 has after the reintroduction in 2012, become the dominating DENV in the region with five ongoing outbreaks, one of them in Fiji, with 25,300 suspected cases and 15 deaths (Table, Figure 3) [1,10].

Figure 1
Map of newly reported dengue, chikungunya and Zika virus infection outbreaks or new virus circulation, Pacific Region, January 2012–17 September 2014 (n=28)

CHIKV: chikungunya virus; DENV: dengue virus serotype 1-4; ZIKV: Zika virus.

| Numbers of cases reported increasing or peaking. |
| Numbers of cases reported decreasing or viral circulation is ongoing. |
| Outbreak reported to be over and/or no cases have been reported for one year. |

Only incident outbreaks and virus circulation reported during the period. Outbreaks first reported in 2011 (DENV-2 in Marshall Islands, DENV-3 in Yap and circulation of DENV in Papua New Guinea and Fiji) and still ongoing in 2012 are not presented.

The 22 Pacific Island countries and territories that are core members of the Pacific Public Health Surveillance Network and referred to as the Pacific Region.

Real-time interactive map with current epidemiological situation and alerts is available from: www.spc.int/phd/epidemics
Chikungunya
After being reported in the Pacific for the first time in a small tightly controlled outbreak in New Caledonia in 2011 [11], CHIKV is currently becoming established in the Region (Figure 1, Table) [2]. In Papua New Guinea in 2012-13, the largest epidemic in the Region so far with estimated (though poorly documented) tens of thousands of cases, was caused by the East Central South African (ECSA) lineage of the virus [2]. The Asian lineage of the virus was responsible for the outbreak in Yap State (2013-14) [12] and also in New Caledonia (2013) where CHIKV re-emerged in the middle of a large DENV-1 epidemic and caused a small outbreak, similar to the 2011 outbreak (Table) [13]. Phylogenetic analyses of the CHIKV involved in the outbreaks in Tonga, Samoa and American Samoa are not yet available. Due to the on-going geographic expansion of *Aedes albopictus* in the Pacific region (Figure 3), virus genotype monitoring is a crucial aspect of surveillance.

Zika virus infections
After the first documented Pacific Zika outbreak in Yap in 2007 [14], the Asian lineage of the virus reappeared in French Polynesia in October 2013, and has since caused large outbreaks in New Caledonia (1,400 confirmed cases), Cook Islands (over 900 cases) and Easter Island that is not part of the PPHSN (Figure 1, Table) [3]. In French Polynesia, extrapolation of the 8,746 suspect cases reported by the sentinel surveillance network allows to infer that over 30,000 medical consultations were due to the spread of Zika virus throughout the archipelago. Between November 2013 and February 2014, increased incidence of neurological complications, including 42 cases of Guillain-Barré syndrome, was a unique and worrying feature of the French Polynesian outbreak that warrants further studies [3].

Discussion and Conclusions

Burdens on the Pacific countries and territories
Mosquito-borne outbreaks are greatly exacerbating the pre-existing burden that Pacific Island primary healthcare systems face. If not managed well, the epidemic wave may threaten societies broadly, affecting trade, tourism and work force beyond the direct morbidity and mortality toll [2]. During the chikungunya outbreak in Reunion Island, one third of the around 800,000 inhabitants were infected, peaking at more than 47,000 estimated cases in one week, with estimated productivity loss of €17.4 million (range €6 to €28.9 million) and medical costs of €43.9 million that were met by the French state [15-17]. Much of the burden on the Pacific Region of the concurrent epidemics of all three diseases covered here is unknown and further studies are warranted, especially on co-infection and the effect of sequential infection with different viruses.

Zika virus disease, generally reported to have a mild clinical presentation, was associated with neurological complications during concurrent Zika virus disease and dengue epidemics in French Polynesia [3,18]. The Pacific Region may be particularly vulnerable to communicable diseases due to isolation and immunologically naive populations, but also due to rates of non-communicable disease, such as obesity, diabetes and cardiovascular disease, that are among the world’s highest on some islands [19].

The risk for further spread
While there have been efforts to improve surveillance in the Pacific over the past two decades, it is not likely that the extent of the current increase in diversity and frequency of mosquito-borne virus outbreaks in the Pacific can be explained solely by improved surveillance systems. In the island setting of the Indian Ocean, the largest documented CHIKV outbreak lasted four years (2004–2007) [15]. Therefore, considering also the previous dengue outbreaks in the Pacific Region [1-2] and the diversity of the current outbreaks, it seems likely that the Pacific Region is in the early stages of an epidemic wave for the three mosquito-borne viruses that started in 2012 and is likely to continue for several years.

The risk for further spread in the Pacific Region is high for several reasons. Firstly, it is likely that there is little immunity to these diseases, as DENV-3 had not been...
Circulating in the Region since 1995 [1] and prior to the current wave, CHIKV and Zika virus occurrence in the Pacific was limited to two documented outbreaks [11, 14]. Secondly, competent vectors present in the Region, mainly *Ae. aegypti* and *Ae. albopictus*, but also other local mosquitoes such as *Ae. polynesiensis* or *Ae. hensilli* are known to transmit these viruses (Figure 3) [20]. These species have been incriminated in DENV transmission on epidemiological and/or experimental (laboratory infections) grounds. Several of them are confirmed or strongly suspected vectors of CHIKV and Zika viruses [21]. Thirdly, large population mobility and airline travel facilitate the spread [22].

Vector control capacity in the Pacific Region is often limited or insufficient [11]. At present, there is no ongoing entomological surveillance system targeting vectors of dengue and other arboviruses established in the Region except in New Caledonia, Fiji and French Polynesia. The current knowledge about mosquito distribution in the other countries and territories is based on data collected during entomological investigations in surveys from the second half of the 20th century and from some more recent surveys [20]. Interestingly, the three viruses involved in this epidemic wave are not broadly mosquito-borne, but specifically *Aedes (Stegomyia)*-borne.

The cause of the recent increase in mosquito-borne disease in the Pacific Region is largely unknown, but is in line with a global increase of emerging diseases, and likely driven by a combination of socio-economic, environmental and ecological factors [23].

The continuous challenges of dengue and chikungunya [24] and more recently Zika virus infections [25]...
for Europe, the re-emergence of dengue in Japan [26], and the first-time chikungunya transmission in the Americas [27], show that these viruses pose a threat to any country with competent vectors. The epidemiology of mosquito-borne viruses in the Pacific may be changing. There are close links between the several European overseas countries and territories in the Pacific Region and Europe and the United States [28]. Considering the extensive airline travel between the Pacific Region and other parts of the world where the viruses have not yet been established e.g. Europe and the United States, it should be of international interest to stay informed of the spread of the current Pacific Region wave of mosquito-borne viruses and to support surveillance and control efforts [2,23,29].

Examples of response from PPHSN partners to the epidemic situation include the provision of support and capacity building to Pacific Islands in surveillance, outbreak investigation and response, and mass-gathering surveillance. The Pacific Outbreak Manual is also being updated to include specific response guidelines for the three viruses [30].

To further enhance surveillance and response measures, Pacific Directors and Ministers of Health have shared the current risk assessment, and the upcoming Pacific International Health Regulations meeting will focus on mosquito-borne diseases. Island primary healthcare-based systems have difficulties to cope with high caseloads and there is a need for early multi-disciplinary preparedness and response to face larger outbreaks adequately [2].

Acknowledgements
All PPHSN partners should be acknowledged for the hard work that has contributed to this overview. In particular we wish to acknowledge: the Pacific Island countries and territories and their health professionals for country reports and updates on PacNet and to the Pacific Syndromic Surveillance reports; the WHO Suva for managing the Pacific Syndromic Surveillance reports; all international and regional partner organisations that assist PPHSN member countries in surveillance and outbreak investigations and capacity building thereof; national laboratories for primary diagnosis and sampling and laboratories serving as regional references or assisting in first diagnostic confirmation of mosquito-borne disease – Fiji Centre for Communicable Disease Control (FCDC)/Mataika House, Guam Public Health Laboratory (GPHL), Institut Pasteur New Caledonia (IPNC), Institut Louis Malardé (ILM) Tahiti French Polynesia, CDC Atlanta US, CDC Puerto Rico, Hawaii State Laboratory (HSL), Fort Collins Laboratory USA, Queensland University of Technology (QUT) Australia, Queensland Health & Forensic Scientific Services (QHFS5) Australia; and the surveillance units reporting imported cases of mosquito-borne disease – La Direction des Affaires Sanitaires et Sociales de la Nouvelle-Calédonie (DASSNC) New Caledonia, Queensland Health Australia notifiable conditions data and Institute of Environmental Science and Research (ESR) New Zealand dengue report.

Conflict of interest
None declared.

References

34. Institute of Environmental Science and Research Ltd (ESR). Dengue weekly updates. Porirua, New Zealand. For details, contact ESR (Institute of Environmental Science and Research Ltd) (ange.bissielo@esr.cri.nz)

37. PacNet country reports. For details in PacNet report archives, contact the Focal Point of the Pacific Public Health Surveillance Coordinating Body [FocalPointPPHSNCB@spc.int]mailto:FocalPointPPHSNCB@spc.int
First secondary case of Ebola outside Africa:
epidemiological characteristics and contact monitoring,
Spain, September to November 2014

M A López1, C Amela2, M Ordobas1, M F Domínguez-Berjón1, C Álvarez3, M Martínez4, M J Sierra2, F Simon5, J M Jansá6, D Plachouras1, J Astray(jenaro.astray@salud.madrid.org)1, Working group of Ebola outbreak investigation team of Madrid1
1. Epidemiology Area of the Autonomous Community of Madrid, General Directorate of Primary Care, Health Authority of the Autonomous Community of Madrid, Madrid, Spain
2. Coordinating Centre for Health Alerts and Emergencies (CCAES), General Directorate of Public Health, Quality and Innovation, Madrid, Spain
3. Subdirectorate of Health Prevention and Promotion, General Directorate of Primary Care, Health Authority of the Autonomous Community of Madrid, Madrid, Spain
4. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
5. The members of the group are listed at the end of the article

Citation style for this article:

On 6 October 2014, a case of Ebola virus disease (EVD) acquired outside Africa was detected in Madrid in a healthcare worker who had attended to a repatriated Spanish missionary and used proper personal protective equipment. The patient presented with fever <38.6 °C without other EVD-compatible symptoms in the days before diagnosis. No case of EVD was identified in the 232 contacts investigated. The experience has led to the modification of national protocols.

Introduction
The current Ebola virus disease (EVD) epidemic affecting countries in West Africa is the largest ever registered outbreak of this disease [1]. Ongoing intensive transmission in the community and in healthcare facilities associated with weak health systems including limited human and material resources hinder adequate outbreak control and case management. Healthcare workers (HCW) in these areas have been significantly affected during this epidemic [2-5].

On 7 August 2014, the Spanish government decided to repatriate a Spanish missionary healthcare worker at the St. Joseph’s hospital in Monrovia (Liberia) who had tested positive for Ebola virus. On arrival, the person was admitted to the infectious diseases isolation unit at the reference hospital (La Paz-Carlos III Hospital Complex in Madrid). The patient remained hospitalised until his death on 12 August. On 22 September, a second Spanish missionary healthcare worker who had worked at a hospital in Lunsar (Sierra Leone) and who was also suffering from Ebola virus infection was repatriated under the same procedure. This patient was admitted to the same reference hospital where he died on 25 September. One of the HCW who was caring for the second repatriated Ebola case was diagnosed with EVD on 6 October. This was the first secondary case of this disease outside Africa.

In this paper we describe the epidemiological characteristics and public health control measures adopted after the identification of this first transmission outside the epidemic area. The information and lessons learnt in Spain may contribute to improving preparedness and response guidelines and protocols in non-affected countries. The risk of transmission of Ebola virus to healthcare professionals associated with repatriated patients needs to be reassessed and considered for future surveillance and control measures in these settings [5-7].

Epidemiological investigation and contact monitoring

Case description
The secondary case of EVD diagnosed in Spain on 6 October was one of the 117 HCW who had participated in the care of the two repatriated EVD cases. The HCW completed the 21-day monitoring period after caring for the first case on 30 August. On 21 and 25 September, she was exposed to the second patient and presumably contaminated fomites. She was classified as a low-risk contact and was therefore self-monitoring for symptoms, in accordance with the protocol [8]. The HCW had used appropriate personal protective equipment (PPE), i.e. waterproof long-sleeved clothing covering the feet, waterproof footwear, hood, face mask or goggles, double layer of gloves, and FP3 respirator [8], and she did not recall any incident during its use.
Following the established procedures for HCW caring for EVD patients [8], the hospital recommended self-monitoring for 21 days from 25 September onwards. According to these procedures, the HCW was supposed to inform the monitoring official at the hospital in case of fever >38.6 °C and any of the symptoms of the disease: severe headache, vomiting, diarrhoea, abdominal pain or bleeding. On the following day, 26 September, she was off duty. She contacted the monitoring official for the first time on 2 October.

Symptoms started on 29 September. She presented malaise and low-grade fever <38 °C. The grade fever remained at this level for three days and increased to 38 °C in the three following days [9]. Figure 1 shows the evolution and timeline of events.

On 6 October at 04:00, she called the public health officials to report a temperature of 37.3°C, general malaise, nausea and cough. These symptoms led the public health officer to request medical evaluation at home and to refer her to the closest hospital. On admission at 07:00, she had a temperature of 36.7 °C, blood pressure of 90/60 mm Hg, 95% oxygen saturation measured by means of pulse oximetry, and a maculopapular rash. She reported that she had not received antipyretic agents [9]. At 08:00 on 6 October, the hospital contacted the public health services and they decided to classify the case as under investigation for EVD and send blood samples to the national reference laboratory. The patient’s condition worsened in the following hours [9] and at 18:00, the reference laboratory confirmed the diagnosis of EVD. The patient was transferred to the reference hospital under strict isolation measures. The patient received antiviral treatment and convalescent serum from a recovered Ebola patient. On 21 October, the case tested EVD-negative in two samples taken 48 hours apart and, according to protocols, was considered free of Ebola virus infection on 1 November when a PCR test of all body fluid samples yielded negative results. The isolation measures were suspended on the same day, and the patient was finally discharged on 5 November 2014.

Contact monitoring

The epidemiological investigation began at the time of diagnosis. Information on the patient’s possible exposure was requested and contact identification, risk classification and monitoring began at the same time. A committee of experts was established for the classification of contacts. High- and low-risk classification criteria and the action taken for each group are

* Culture results for all body fluids taken on 21 October were negative
Table 1
Classification of contacts and public health measures adopted for the secondary Ebola case, Madrid, 6 October–27 November 2014

<table>
<thead>
<tr>
<th>CLASSIFICATION OF CONTACTS</th>
<th>PUBLIC HEALTH MEASURES FOR CONTACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-risk contact</td>
<td>A person who, with appropriate PPE and without incidences in the use of PPE, had direct contact with a confirmed case, with his/her body fluids or any material that has potentially been contaminated in the course of healthcare;</td>
</tr>
<tr>
<td></td>
<td>Active monitoring: professionals responsible for monitoring contacts have daily contact with the monitored individual, measure his/her axillary temperature twice a day and record the presence of any symptom;</td>
</tr>
<tr>
<td></td>
<td>A person who has stayed in a closed physical space in which there could have been fomites with biological remains from the case and who does not comply with high-risk contact criteria (e.g. seats in the waiting room, the same surgery, the same ambulance, etc)</td>
</tr>
<tr>
<td></td>
<td>The identity of contacts for monitoring is sent to health centres and hospitals (alerts in electronic clinical records) for early detection in case they consult for Ebola-related symptoms. The Blood Donors Centres of the Madrid Region also receive electronic alerts in the clinical records to avoid any incident related to possible blood donations by these individuals.</td>
</tr>
<tr>
<td>High-risk contact</td>
<td>Close contact (distance <1 m), without appropriate PPE or with incidences in the use of PPE, with a confirmed case who was coughing, vomiting, bleeding or had diarrhoea;</td>
</tr>
<tr>
<td></td>
<td>Quarantine is indicated. In order to facilitate the compliance with the quarantine, hospital quarantine is offered to these contacts. All contacts included in this group (15 people) agreed to be admitted voluntarily.</td>
</tr>
<tr>
<td></td>
<td>Unprotected sexual relation with a confirmed case three months after the onset of symptoms;</td>
</tr>
<tr>
<td></td>
<td>Direct contact with clothing, bedclothes or fomites contaminated with the blood, urine or body fluids of a confirmed case, without appropriate PPE or with incidences in the use of PPE;</td>
</tr>
<tr>
<td></td>
<td>Percutaneous wound (e.g. needle-stick injury) or mucosal exposure to body fluids, tissues or laboratory samples of a confirmed case;</td>
</tr>
<tr>
<td></td>
<td>Healthcare given to a case or handling of his/her samples, without the appropriate PPE or with incidences in the use of PPE.</td>
</tr>
</tbody>
</table>

Table 2
Number of contacts of the secondary Ebola case by exposure place, relationship with case and risk category (high risk contacts in brackets), Madrid, Spain, 29 September–27 November 2014 (n=232)

<table>
<thead>
<tr>
<th>Relation with case/ place of exposure</th>
<th>Cleaner</th>
<th>Patient/patient’s aid</th>
<th>Spouse</th>
<th>HCW</th>
<th>Dog sacrifice</th>
<th>Ambulance technicians</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport by ambulance*</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Primary care</td>
<td>2 (1)</td>
<td>22</td>
<td>0</td>
<td>4 (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28 (2)</td>
</tr>
<tr>
<td>Home</td>
<td>8*</td>
<td>0</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>17 (2)</td>
</tr>
<tr>
<td>Hospital</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7 (7)</td>
<td>0</td>
<td>0</td>
<td>3 (1)</td>
<td>12 (8)</td>
</tr>
<tr>
<td>Other activities</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7 (3)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>16 (1)</td>
<td>34</td>
<td>1 (1)</td>
<td>17 (9)</td>
<td>6</td>
<td>10</td>
<td>11 (4)</td>
<td>95 (55)</td>
</tr>
<tr>
<td>HCW at reference hospital</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>126</td>
</tr>
<tr>
<td>Reference laboratory</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total contacts</td>
<td>27 (1)</td>
<td>34</td>
<td>1 (1)</td>
<td>130 (9)</td>
<td>6</td>
<td>10</td>
<td>24 (4)</td>
<td>232 (15)</td>
</tr>
</tbody>
</table>

HCW: healthcare worker who attended to the secondary case.

* Two ambulances: from home to first hospital and from first hospital to reference hospital.

* The home cleaning was performed on the day after the patient was discharged from hospital.
presented in Table 1. These actions were adapted from those established in the current protocol [8]. The first epidemiological information was provided by a family member of the patient at the hospital and was completed with available health and administrative records and the locations the patient reported to have visited from onset of symptoms until hospitalisation.

A total of 232 contacts were identified, of whom 15 were classified as high-risk and 217 as low-risk (Table 2). Most contacts, excluding HCW at reference hospital, occurred on the day of diagnosis at the hospital where the diagnosis was established (Figure 2). The 15 contacts classified as high-risk were informed of the risks associated with their contact with the case and were recommended a quarantine, at a hospital facility if possible. All of them voluntarily agreed to undergo hospital quarantine for 21 days after the last exposure day.

One of the low-risk contacts presented fever during the monitoring, but EVD was ruled out.

A total of 126 hospital employees were in contact with the patient during her stay at the hospital. Follow-up ended on 27 November, 21 days after the final exposure of the hospital cleaning staff. By that time, none of the contacts monitored had presented EVD.

Discussion
Action protocols are based on the evidence obtained in the outbreak in Africa [9-11]. Early detection of cases for minimising the probability of transmission is the key aim of contact monitoring. However, when the first secondary case was diagnosed in Spain, the case definition provided in the existing national protocol and in most international protocols (European Centre for Disease Prevention and Control [12], United States (US) Centers for Disease Control and Prevention [13,14]) required a fever of >38.6 °C and symptoms compatible with the disease. This definition was not sensitive enough to detect this case in the first stages of disease. The non-specific clinical presentation of Ebola also makes early case detection difficult. This situation was also observed in the two secondary cases diagnosed a few days later in the US [15-17].

We would like to draw attention to the ‘pauci symptomatic’ presentation of EVD in infected contacts closely monitored after exposure to confirmed cases outside of the epidemic area in Africa not described up to now.

The public health measures applied immediately to the contacts of the secondary case in Madrid included active monitoring of low-risk contacts and quarantine for high-risk contacts. All contacts accepted these measures. However, in the future it may be necessary to apply the quarantine to more people or to contacts who refuse to be quarantined. In our opinion, it is necessary to develop procedures and laws which would establish and help apply the quarantine.

The experience with the repatriated cases in several non-epidemic countries and the secondary transmissions identified in Spain and in the US have resulted in proposals to modify existing protocols. These proposals [18] include increased sensitivity of the case definition and the implementation of quarantine for low-risk contacts.
definitions for persons under investigation in order to detect possible cases in the initial phases of the disease, particularly for contacts of confirmed cases, and a revision of contact classification and monitoring measures.

The Spanish experience highlights that the generation of secondary cases among HCW caring for repatriated EVD patients represents the currently main risk for Europe as has happened also in US [8,13-15]. The risk is very low, however it can not be excluded [19].

Despite the existence of preparedness and response plans, trained professional teams, 24/7 alert systems and contingency plans for control and response of communicable diseases in both hospitals, the number of exposed contacts among HCW was high. After the secondary case was diagnosed, training and assessment was reinforced for all healthcare professionals involved in the treatment and care of EVD and a committee was set up to classify incidents. This alert shows the need for constant updating and training of professionals in the use of PPE and strict application of donning and doffing procedures in order to minimise the risks. Hence it is necessary to provide adequate risk communication and create awareness in HCW who care for these patients.

Despite the rapid activation of the protocols and control measures, this first case of secondary transmission of EVD outside Africa has represented an unprecedented challenge for the health services and public health authorities in Spain [9,12-14] and has highlighted the need to strengthen continuous preparation and training in order to respond properly to this type of emergency.

Acknowledgements

We would like to thank all the clinicians, informatics and laboratory workers involved in the management of the outbreak.

Conflict of interest

None declared.

Authors’ contributions

Jenaro Astray and Mª Ángeles López wrote the first draft of the manuscript. Mª Ángeles López managed the Ebola outbreak alert system, Jenaro Astray coordinated the Ebola response team of the Community of Madrid and acted as a liaison to the reference hospital, Maria Ordobás was responsible for contact monitoring, Felicitas Dominguez managed the alert information system, Carmen Álvarez and Manuel Martínez led the Ebola Crisis Committee. Carmen Amelia, Mª José Sierra and Fernando Simón coordinated the Ebola response at the national level, and Carmen Amelia also participated in the regional Ebola response team. Josep Iansa and Damiants Plachouras participated in the contact classification and assessment. The working group participated in the fieldwork, conducting epidemiological survey, classifying cases and contact monitoring. All authors critically read and revised the drafts of the manuscripts.

Members of the working group of the Ebola outbreak investigation team of Madrid

References

www.cdc.gov/vhf/ebola/hcp/clinician-information-us-healthcare-settings.html

Migration-related tuberculosis: epidemiology and characteristics of tuberculosis cases originating outside the European Union and European Economic Area, 2007 to 2013

C Ködmön 1, P Zucs 1, MJ van der Werf 1
1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
Correspondence: Csaba Ködmön (csaba.kodmon@ecdc.europa.eu)

Migrants arriving from high tuberculosis (TB)-incidence countries may pose a significant challenge to TB control programmes in the host country. TB surveillance data for 2007–2013 submitted to the European Surveillance System were analysed. Notified TB cases were stratified by origin and reporting country. The contribution of migrant TB cases to the TB epidemiology in EU/EEA countries was analysed. Migrant TB cases accounted for 17.4% (n = 92,039) of all TB cases reported in the EU/EEA in 2007–2013, continuously increasing from 13.6% in 2007 to 21.8% in 2013. Of 91,925 migrant cases with known country of origin, 29.3% were from the Eastern Mediterranean, 23.0% from south-east Asia, 21.4% from Africa, 21.4% from the World Health Organization European Region (excluding EU/EEA), and 12.9% from other regions. Of 46,499 migrant cases with known drug-susceptibility test results, 2.9% had multidrug-resistant TB, mainly (51.7%) originating from the European Region. The increasing contribution of TB in migrants from outside the EU/EEA to the TB burden in the EU/EEA is mainly due to a decrease in native TB cases. Especially in countries with a high proportion of TB cases in non-EU/EEA migrants, targeted prevention and control initiatives may be needed to progress towards TB elimination.

Introduction

The tuberculosis (TB) notification rate in the European Union and European Economic Area (EU/EEA) declined from 16.8 per 100,000 population in 2007 to 12.7 per 100,000 in 2013 [1]. However, in some low-incidence countries, the decline in TB notification rate has slowed down, especially in countries reporting a high proportion of TB cases in individuals of foreign origin, i.e. migrants. In general, migration is influenced by socioeconomic and political factors [2]. Economic, social and political stability is relatively high in the EU/EEA which thus attracts immigrants from many low-income countries around the world [3]. On average (years 2007–2012), 1.5 million migrants from outside the EU/EEA were registered annually in EU and EEA countries [4]. A considerable proportion of these migrants are coming from countries with a high TB burden such as Bangladesh, Brazil, China, India, Morocco, Pakistan, Russian Federation, Somalia and Ukraine [5]. They may arrive in the EU/EEA with active TB disease, or with latent TB infection (LTBI). To detect TB disease in migrants, several EU/EEA countries have introduced (pre-)entry screening programmes [6-8]. Screening of migrants for LTBI is also being explored by some countries, such as the Netherlands [9]. However, screening programmes will not identify all TB or LTBI cases among migrants, due to the limited sensitivity of the current screening tests (mainly chest x-ray and tuberculin skin test or interferon gamma release assay). Also, not all migrant groups are covered by the screening programme, e.g. undocumented migrants are often not included. In addition, migrants frequently travel back to their country of origin where they may be (re-)infected with TB [10].

Migrants developing TB may pose a challenge to TB programmes in the EU/EEA due to language and cultural differences [11]. Also, undocumented migrants may not access the healthcare system due to fear of deportation, and migrants whose stay is legal may be unfamiliar with the healthcare system and therefore encounter problems in seeking healthcare [12]. Since countries with low TB notification rates report high numbers of TB cases in migrants in particular, it is important to study this phenomenon because addressing TB in migrants will be essential to achieving the goal of TB programmes, i.e. TB elimination [13]. Therefore, the aim of this study is to quantify and to geographically
and epidemiologically characterise migration-related importation of TB to EU/EEA countries.

Methods

The European Centre for Disease Prevention and Control (ECDC) has collected case-based TB surveillance data from EU and EEA countries since 2007 and stored them in a common database (The European Surveillance System, TESSy) hosted by ECDC. Designated national surveillance institutions are responsible for data reporting to TESSy and for data validation.

The detailed data collection methods and definitions are described elsewhere [1]. TB cases were defined according to agreed case definitions published by the European Commission [14] and confirmed, probable and possible cases were included in the analysis. Surveillance data reported by 29 EU/EEA countries and covering the period from 2007 to 2013 were extracted from the database on 3 October 2014. Place of birth was used as a proxy indicator for the geographic origin of a TB case in most countries; except for Austria, Belgium, Greece, Poland, Hungary (from 2010 onwards) and for Malta (only in 2010) where citizenship was used. Place of birth outside EU/EEA borders was used as proxy for migrant TB in most countries. Non-EU/EEA citizenship was used for Austria, Belgium, Greece, Poland, Hungary (from 2010 onwards) and for Malta (only in 2010).

The analysis was restricted to TB cases with known origin. The areas of origin were defined according to the World Health Organization (WHO) regions described in the Global Tuberculosis Report, 2013 [15].

The European Region refers to the WHO European Region excluding the EU and EEA (Iceland, Liechtenstein and Norway) countries. To assign country of origin (based on place of birth), we used the ISO 3166–1 codes for countries, dependent territories, and special areas of geographical interest which are published by the International Organization for Standardization [16]. The origin of cases reported by or from populated Overseas Countries and Territories of EU countries was assigned according to their geographic location and such cases counted as cases in individuals of non-EU/EEA origin. Cases reported/coded in the system as originating (based on place of birth) either from ‘Soviet Union’ (Former Soviet Union (FSU) countries: Armenia, Azerbaijan, Belarus, Estonia (EU), Georgia, Kazakhstan, Kyrgyzstan, Latvia (EU), Lithuania (EU), Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan) or ‘Yugoslavia’ (Bosnia and Herzegovina, Croatia (EU), Kosovo*, Montenegro, Serbia, Slovenia (EU) and the former Yugoslav Republic of Macedonia) were classified as cases of unspecified origin (n = 114), because some parts of those two historical countries belong to the EU today as indicated in brackets.

Liechtenstein reported TB surveillance data to TESSy only for 2007 and was therefore excluded from the analysis. Croatia joined the EU in July 2013 and was considered a non-EU/EEA country in the analysis. France, Italy, and Spain are not reporting drug resistance data to TESSy and were excluded from the analysis of laboratory data and drug resistance. Treatment outcome data were not reported by France, Greece,
and Italy in 2007–2012, and by Spain in 2007–2009. Therefore, these countries were excluded from the treatment outcome analysis. TB treatment was considered successful if a case was cured or their treatment completed 12 months after start of treatment.

TB cases were described by year of reporting, origin and country of reporting. Native cases (EU/EEA origin) and cases from outside the EU/EEA were compared by sex, age, previous treatment history, TB site, laboratory confirmation status, drug resistance, HIV status and treatment outcome. Differences were considered statistically significant, if $p < 0.01$ as determined by
Figure 4
Distribution of tuberculosis cases originating from India, Pakistan, Somalia, Morocco, Turkey, Russian Federation, Bangladesh and the Philippines across the five European Union/European Economic Area countries with the highest reported numbers, 2007–2013 (n=47,440)

EEA: European Economic Area; EU: European Union; TB: tuberculosis.
Table A
Characteristics of tuberculosis cases with reported country of origin by region of origin, European Union/European Economic Area, 2007–2013 (n=491,538)

<table>
<thead>
<tr>
<th>WHO Region</th>
<th>Total (n=491,538)</th>
<th>EU/EEA</th>
<th>Total non-EU/EEA</th>
<th>Total Mediterranean</th>
<th>South-East Asian</th>
<th>African</th>
<th>European (excluding EU/EEA)</th>
<th>Western Pacific</th>
<th>Americas</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>491,538</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age groups (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45–64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous TB history</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site of disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-pulmonary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory confirmation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not confirmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory data not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug resistance among DST done</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DST done among laboratory confirmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono-resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR among DST done</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDR among MDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested for HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-positive among tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DST: drug susceptibility testing; MDR: multidrug resistant; EEA: European Economic Area; EU: European Union; N: number; WHO: World Health Organization; XDR: extensively drug resistant.

* Percentage among TB cases in individuals of non-EU/EEA origin.
The chi-squared test. Statistical analysis was performed using Stata 13 software (StataCorp, Texas, US).

Results

Of 527,467 TB cases notified in the EU/EEA from 2007 to 2013, 399,613 (75.8%) were reported as originating from EU/EEA countries, 92,039 (17.4%) as originating from non-EU/EEA countries, and for 35,815 (6.8%), country of origin was not reported. Among 491,652 TB cases with reported country of origin, 122,627 (24.9%) originated from outside the reporting country. Of these, 91,925 (75%) originated from outside the EU/EEA, 30,588 (24.9%) were of EU/EEA origin, and 114 (0.1%) originated from ‘Soviet Union’ or ‘Yugoslavia’. The proportion of TB cases with reported non-EU/EEA origin increased from 13.6% (n=11,403) in 2007 to 21.8% (n=14,050) in 2013, the proportion of TB cases with reported EU/EEA origin decreased from 77.8% (n=65,390) in 2007 to 73.4% (n=47,185) in 2013, while the proportion of TB cases with unknown or unspecified origin decreased from 8.6% (n=7,221) to 4.8% (n=3,092) in the same period (p<0.001) (Figure 1).

Of 92,039 cases with non-EU/EEA origin, the country of origin was reported for 91,925 (99.9%) cases, with the majority coming from the Eastern Mediterranean Region (29.3%, n=26,945), the South-East Asian Region (23.0%, n=21,097) and the African Region (21.4%, n=19,629) (Table). Compared with native TB cases, TB cases in individuals of non-EU/EEA origin were more frequently female (42.0% vs 33.8%, p<0.001) and under 45 years of age (71.8% vs 45.1%, p<0.001) (Table). Cases of non-EU/EEA origin had a previous TB history less frequently (6.2% vs 14.7%, p<0.001), but a proportion of cases with unknown previous history three times higher than native cases. Extrapulmonary TB was much more commonly diagnosed in cases of non-EU/EEA origin (41.8% vs 16.3%, p<0.001). Very similar proportions, just over 50% of cases were laboratory-confirmed in both native and migrant cases, but the latter were much more extensively tested for drug susceptibility (97.0% vs 68.5%, p<0.001), and were found to be mono-resistant and poly-resistant slightly more frequently, but not multidrug-resistant (9.9% vs 2.9%, p<0.001). The majority of multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB cases in individuals of non-EU/EEA origin were from the European Region, where the highest percentage of MDR-TB cases among the cases with available drug susceptibility testing (DST) results (9.6%, n=704) was observed, as well as the highest percentage of XDR-TB cases among MDR-TB (9.7%, n=68). Of 704 MDR-TB cases originating from the European Region, 678 (96.3%) were notified in cases coming from 13 non-EU/EEA ‘Soviet Union’ countries (data not shown). The highest percentage of mono-resistance to a first-line anti-TB drug was observed in cases originating from the Western Pacific Region (10.4%, n=358). Most cases with mono-resistance originated from the Philippines, Vietnam and China (145, 117 and 48 respectively). Among the mono-resistant TB cases from the Philippines, 83.4% (n=121) were resistant to isoniazid, while in cases originating from Vietnam and China, 55.6% (n=65) and 60.4% (n=29) were resistant to isoniazid (data not shown). In the period 2007–2013 the trend in MDR-TB prevalence among cases of non-EU/EEA origin did
not change significantly (p = 0.94, data not shown). Cases of non-EU/EEA origin were tested for HIV much less frequently than native cases (6.4% vs 20.8%, p < 0.001), but tested HIV-positive twice as often (9.6% vs 4.8%, p < 0.001). Among cases of non-EU/EEA origin, the majority and highest prevalence of HIV co-infection was found in cases originating from the African Region. A higher proportion of treatment success was reported in migrant cases (77.4% vs 74.6%, p < 0.001), while the proportion that died during treatment was lower (3.2% vs 8.2%, p < 0.001). The percentage of TB cases where the treatment outcome was 'lost to follow-up' was lower in the cases of non-EU/EEA origin (5.4% vs 6.6%), but the percentage of non-evaluated cases was higher (7.0% vs 5.2%). The lowest treatment success rate, 70.4%, was observed among cases from the European Region.

From 2007 to 2011, the number of notified TB cases in individuals of non-EU/EEA origin increased for all WHO Regions except for the European region (Figure 2). Thereafter, the number remained the same, or decreased slightly. In the same period, the number of TB cases with unknown country of origin decreased from 8.6% in 2007 to 4.8% in 2013. The mean annual increase in the period 2007–2011 was highest for cases originating from Americas (13.5%; standard deviation (SD): 18.4), followed by the African Region (10.9%; SD: 20.8), the South-East Asian Region (6.9%; SD: 8.1), the Eastern Mediterranean Region (6.9%; SD: 5.3) and the Western Pacific Region (2.8%; SD: 4.2), while for cases originating from the European Region a mean annual decrease of 1.3% (SD: 3.7) was observed. The mean increase in the number of notified cases was the highest for cases originating from the Eastern Mediterranean Region (n = 309; SD: 183.1), followed by the African Region (n = 256; SD: 411.3), the South-East Asian Region (n = 248; SD: 238.2), the Americas (n = 75; SD: 145.1) and the Western Pacific Region (n = 25; SD: 52.7). The notification of cases originating from the European Region showed the mean decrease of 26 cases annually (SD: 63.2).

Of all TB cases in individuals of non-EU/EEA origin, 40.9% (n = 37,573) were reported by the United Kingdom (UK), 12.8% (n = 11,728) by Germany and 10.1% (n = 9,264) by Italy (Figure 3A). The highest contribution of TB cases in individuals of non-EU/EEA origin to the national TB burden was observed in Norway with 82.4% (n = 1,997), Sweden with 79.9% (n = 3,274) and Malta with 78.1% (n = 228) (Figure 3B).

The reported non-EU/EEA TB cases originated from 186 countries, dependent territories, and special areas of geographical interest with 51.6% coming from India (15.3%), Pakistan (10.9%), Somalia (8.5%), Morocco (5.7%), Turkey (3.0%), Russian Federation (2.9%), Bangladesh (2.7%), and the Philippines (2.6%). Their distribution mirrors the typical migration flows and destination country preferences (Figure 4). Between 2007 and 2013, increasing numbers of TB cases from India, Pakistan and Morocco were notified (p < 0.001, data not shown).

Most cases from India (80.3%, n = 11,293) were reported by the UK (Figure 4). The UK also reported a large percentage of the cases originating from Pakistan (70.5%, n = 7,073), from Somalia (41.2%, n = 3,228), from Bangladesh (74.7%, n = 1,833), and from Philippines (36.7%, n = 892). Germany reported 66.8% (n = 1,838) of all reported cases from Turkey and 40.6% (n = 1,091) of all reported cases from Russian Federation. While, Italy reported the largest percentage of cases from Morocco (28.7%, n = 1,493).

Discussion

Almost one in five TB cases notified in the EU/EEA between 2007 and 2013 originated from a country outside the EU/EEA, but this varied from <1% to 80% between the 29 countries included in this study. The percentage of migrant TB cases increased from 13.6% to 21.8% between 2007 and 2013, while the overall number of cases of non-EU/EEA origin increased from 11,403 in 2007 to 14,975 in 2011 and slightly decreased thereafter to 14,050 in 2013. The increasing percentage of migrant TB among all notified TB cases is largely attributable to the decreasing numbers of native TB cases and cases with unknown origin. The highest mean annual increase in notifications was observed in TB cases originating from the Eastern Mediterranean and African Regions. The only decreasing trend was seen in cases originating from the European Region. Increasing trends in notified TB cases in migrants have also been observed in other high-income countries such as Australia, Canada, and the United States (US) [17-19].

TB cases originating from eight countries accounted for 51.6% of all TB cases in individuals of non-EU/EEA origin. This can be explained by the burden of TB in these countries [15] and the relatively high number of migrants from these countries to the EU/EEA [5,6]. Data from Australia, Canada, and the US showed that the TB notification rate among migrants is strongly associated with the TB burden in the country of origin [18]. Among foreign-born and US-born cases in the US, the level of education, living conditions, low income and unemployment were associated with higher TB rates; this association was stronger in the foreign-born cases. According to the authors, these results support the hypothesis that the TB rates among foreign-born cases are more strongly influenced by experiences in their country of origin than by the environments in the host country [19]. Similarly to the situation in the EU/EEA, the 25 to 44 years-old age group was most represented in the US among foreign-born TB cases [20]. In the EU/EEA, the high proportions of males seen among cases originating from the Eastern Mediterranean and European Regions suggest that the majority of TB cases from these regions are migrant workers. This is supported by Eurostat data according to which, on average...
Exposure to TB before immigration to the EU/EEA and when travelling back to the country of origin for family visits may result in relatively high latent TB infection rates in migrant populations [21-23]. Several studies suggest that the majority of cases among migrants occur due to TB infection or re-infection when travelling to their home country [20,24,25] or due to reactivation of latent TB [20,26,27]. However, TB in migrants might also be due to recent infection or re-infection in the host country after local exposure [27-30].

According to the Eurostat data, there are remarkable differences in the number of migrants received by different EU/EEA countries. The UK, Italy, Germany, France, the Netherlands and Spain received the highest number of non-EU/EEA migrants during the period 2007–2012 [4]. In most EU/EEA Member States, this migration peaked in 2010, which was probably largely attributable to the global financial crisis [4,31]. Both the geographical distribution of reported TB cases in individuals of non-EU/EEA origin and their overall trend over time appears to follow the general migration patterns described [5,20]. As the biggest reporting country of TB cases in individuals of non-EU/EEA origin, the UK saw the majority of these cases originating from India, Pakistan and Bangladesh. The same three countries were also among the top five countries contributing to the TB burden in the US [20].

The highest prevalence of MDR-TB and XDR-TB was observed among cases of non-EU/EEA European origin. In the US in 2007–2009, 1.5% of foreign-born cases with available DST results were reported with MDR-TB, and the highest percentage (9.3%) was also observed among cases of European origin [32]. Equally, in Canada, the highest percentage of MDR-TB cases (2.9%) among foreign-born TB cases originated from the European Region [33]. This reflects the high prevalence of drug resistance among TB cases in the non-EU/EEA European Region [15].

Extrapulmonary TB was more frequently reported in TB cases in individuals of non-EU/EEA origin. Since extrapulmonary TB (excluding laryngeal TB) is rarely infectious, these cases will not contribute to transmission in the host country but do have an impact on health service costs. Further, extrapulmonary TB can result in significant suffering [34] and the diagnosis is often challenging [35]. Therefore, healthcare workers need to have a relatively high level of suspicion when persons of non-EU/EEA origin present with unexplained signs and symptoms that might be caused by extrapulmonary TB.

As expected, given the global HIV situation [36], most HIV co-infections were observed among cases of African and Western Pacific origin. In Japan, 63.4% foreign-born smear-positive TB cases had a successful treatment outcome in the period 2007–2010 [37]. The situation in the EU/EEA is much better with 77.4% of TB cases in individuals of non-EU/EEA origin having a successful treatment outcome 12 months after starting treatment. Among TB cases in individuals of non-EU/EEA origin notified in EU/EEA, 17.9% percent did not have treatment outcome data reported, while in Japan, treatment outcome was not available for 16.6% of foreign-born smear-positive cases [37]. In the EU/EEA, the lowest treatment success rate (70.4%) was observed in cases from the European Region. This is probably attributable to the high percentage of MDR TB and XDR TB cases which require more than 12 months of treatment and would therefore be reported as 'still on treatment' 12 months after starting treatment. Another reason may be the high percentage of non-evaluated cases (10.0%) which might mask the real number of cases lost to follow-up. The non-uniform use of treatment outcome categories such as ‘lost to follow-up’, ‘transferred out’, ‘still on treatment’ and ‘unknown’ across the EU/EEA Member States might contribute to the high number of cases with non-evaluated treatment outcome [38]. In contrast to an earlier publication from the year 2000 that covers the period 1993-1997, where origin from ‘Eastern Europe’ and ‘Yugoslavia’ were identified as risk factors for loss to follow-up [39], the percentage of this treatment outcome in our study was smaller in TB cases in individuals of non-EU/EEA origin than in cases of EU/EEA origin. The percentage was especially low in cases originating from the European Region outside the EU/EEA. The treatment success rate in TB cases in individuals of non-EU/EEA origin was higher compared with native TB cases (77.4% vs 74.6%), and the fatality rate was lower (3.2% vs 8.2%). The percentage of TB cases over 64 years of age was lower in migrants compared with native TB cases (8.9% vs 21.0%) which explains the treatment outcome results.

Limitations

This study is based on TB surveillance data submitted to ECDC by the EU/EEA countries. In the EU/EEA TB surveillance system, only a limited number of variables are collected. Also, not all reported information is complete, and data quality is primarily the responsibility of the individual country. The origin of 6.8% of TB cases notified between 2007 and 2013 was not reported. In addition, three countries did not report case-based drug resistance data, and four countries did not report case-based treatment outcome data for the whole period. Due to this missing information, our results might not provide the complete picture of TB epidemiology among cases of non-EU/EEA origin. Furthermore, TB rates among immigrants could not be calculated due to the unavailability of migrant population data.

The differences in reporting of country of origin (country of birth vs nationality) might affect the comparability of data between some countries. The burden of non-EU/EEA migrant TB cases might be underestimated.
in countries reporting nationality, as the migrants might have obtained the citizenship of the host country before TB was diagnosed.

Italy, France and Spain are not reporting TB drug resistance data to TESSy. The exclusion of TB cases reported by these countries compromises the representativeness of laboratory results in this study as these three countries received a relatively high number of non-EU/EEA immigrants.

The laboratory confirmation rate has been shown to be below 50% in some major reporting countries EU/EEA MSs [1] which might lead to the underestimation of resistant TB cases.

The HIV testing coverage among TB cases is suboptimal and does therefore not allow for an in-depth analysis of the data. The low testing coverage might lead to under- or over estimation of TB/HIV co-infection in EU/EEA.

Conclusions

Migration from outside the EU/EEA contributes markedly to the TB burden in the EU/EEA. Targeted prevention and control efforts (e.g. access to healthcare for all migrants including undocumented migrants, avoiding interruption of treatment) and implementation of active case finding approaches (e.g. screening at entry point, screening for latent TB infection) focussed on non-EU/EEA migrants may be needed in order to diagnose cases early, provide adequate treatment and support and reduce the burden of TB among migrants.

*This designation is without prejudice to positions on status, and is in line with United Nations Security Council resolution 1244/99 and the International Court of Justice Opinion on the Kosovo declaration of independence.

Acknowledgements

The authors acknowledge the nominated national operational contact points for tuberculosis (in alphabetical order): Peter Henrik Andersen, Delphine Antoine, Trude Margrete Arnesen, Thorstein Blondal, Dominica Ioana Chiotan, Edita Davidaviciene, Irene Demuth, Raquel Duarte, Sabine Erne, Walter Haas, Alexander Indra, Jerker Jonsson, Ourania Kalkouni, Maria Koliou, Maria Korzeniewska – Kosela, Gabor Kovacs, Joan O’Donnell, Anaita Pace-Asciak, Maria Grazia Pompa, Elena Rodriguez Valin, Alexandar Simunovic, Erika Slump, Hanna Soini, Ivan Solovic, Petra Svetina, Lucy Thomas, Tonka Varleva, Piret Viiklepp, Kate Vulane, Jilj Wallenfels and Maryse Wanlin, who provided the surveillance data used in this analysis.

No specific sources of funding were used for this study. The authors performed the study as part of their job at ECDC.

Conflict of interest

None declared.

Authors’ contributions

CK contributed to the study design, performed the data analysis, and wrote the first draft of the manuscript. PZ contributed to the study design, and contributed to further versions of the manuscript and approved the final version before submission. MvdW contributed to the study design and data analysis, and contributed to further versions of the manuscript and approved the final version before submission.

References

25. Ormerod LP, Green RM, Gray S. Are there still effects on tuberculosis rates after travel to or contact with visitors from countries with a high prevalence of tuberculosis. J Respir Crit Care Med. 1998;158(6):1871-5. DOI: 10.1164/ajrccm.158.6.9804106 PMID: 9847280

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made. This article was copyright of the authors in 2016.
AUSTRIA
Mitteilungen der Sanitätsverwaltung
Bundesministerium für Gesundheit Familie und Jugend, Vienna
Monthly, print only. In German.
http://www.bmgfj.gv.at/cms/site/thema.html?channel=CH0951

BELGIUM
Vlaams Infectieziektebulletin
Department of Infectious Diseases Control, Flanders
Quarterly, print and online. In Dutch, summaries in English.
http://www.infectieziektebulletin.be

BULGARIA
Bulletin of the National Centre of Infectious and Parasitic Diseases, Sofia
Print version. In Bulgarian.
http://www.ncipd.org/

CYPRUS
Newsletter of the Network for Surveillance and Control of Communicable Diseases in Cyprus
Medical and Public Health Services, Ministry of Health, Nicosia
Biannual, print and online. In Greek.
http://www.moh.gov.cy

CZECH REPUBLIC
Zpravy CEM (Bulletin of the Centre of Epidemiology and Microbiology)
Centrum Epidemiologie a Mikrobiologie Státního Zdravotního Ústavu, Prague
Monthly, print and online. In Czech, titles in English.
http://www.szu.cz/cema/edefaultt.htm

EPIDAT (Notifications of infectious diseases in the Czech Republic)

DENMARK
EPI-NEWS
Department of Epidemiology, Statens Serum Institut, Copenhagen
Weekly, print and online. In Danish and English.
http://www.ssi.dk

FINLAND
Kansanterveyslaitos
Department of Infectious Disease Epidemiology, National Public Health Institute, Helsinki
Monthly, print and online. In Finnish.
http://www.ktl.fi/portal/suomi/osastot/infе/tutkimus/tartuntatautien_seuranta/tartuntatautilaakarin_kommentit, kommentit/

FRANCE
Bulletin épidémiologique hebdomadaire
Institut de veille sanitaire, Saint-Maurice Cedex
Weekly, print and online. In French.
http://www.invs.sante.fr/beh/default.htm

GERMANY
Epidemiologisches Bulletin
Robert Koch-Institut, Berlin
Weekly, print and online. In German.
http://www.rki.de/DE/Content/Infekt/EpidBull/epid__bull__node.html

GREECE
HCDCP Newsletter
Hellenic Centre for Disease Control and Prevention (HCDCP/KEELPNO), Athens
Monthly, online. In English and Greek.
http://www2.keelpno.gr/blog/?lang=en

HUNGARY
Epinfo (az Országos Epidemiológiai Központ epidemiológiai információs hetlaponja)
National Center For Epidemiology, Budapest
Weekly, online. In Hungarian.
http://www.oek.hu/oek.web/?o=839&n=41&pid=7&lang=hun

ICELAND
EPI-ICE
Landlæknisembættið
Directorate Of Health, Seljarnames
Monthly, online. In Icelandic and English.
http://www.landlaeknir.is

IRELAND
EPI-INSIGHT
Health Protection Surveillance Centre, Dublin
Monthly, print and online. In English.
http://www.hpsc.ie/hpsc/EPI-Insight

ITALY
Notiziario dell’Istituto Superiore di Sanità
Istituto Superiore di Sanità, Reparto di Malattie Infettive, Rome
Monthly, online. In Italian.
http://www.iss.it/publ/noti/index.php?lang=1&tipo=4

Bolletino Epidemiologico Nazionale (BEN)
Istituto Superiore di Sanità, Reparto di Malattie Infettive, Rome
Monthly, online. In Italian.
http://www.epicentro.iss.it/ben

LATVIA
Epidemioloģijas Bileteni
Sabiedrības veselības agentūra
Center for Communicable Disease Prevention and Control, Vilnius
Online. In Lithuanian.

LITHUANIA
Epidemiologijos žinios
Užkreciamujų ligų profilaktikos ir kontroles centras
Center for Communicable Disease Prevention and Control, Vilnius
Online. In Lithuanian.

NETHERLANDS
Infecziezieken Bulletin
Rijksinstituut voor Volksgezondheid en Milieu
National Institute of Public Health and the Environment, Bilthoven
Monthly, print and online. In Dutch.
http://www.rivm.nl/infeczieziekenbulletin

NORWAY
MSIS-rapport
Folkehelseinstituttet, Oslo
Weekly, print and online. In Norwegian.
http://www.folkehelse.no/nyhetsbrevb/msis
Poland
Meldunki o zachorowaniach na choroby zakazne i zatruciach w Polsce
Panstwowy Zakład Higieny, National Institute of Hygiene, Warsaw
Fortnightly, online. In Polish and English.
http://www.pzh.gov.pl

Portugal
Saúde em Números
Ministério da Saúde, Direcção-Geral da Saúde, Lisbon
Sporadic, print only. In Portuguese.
http://www.dgs.pt

Romania
Info Epidemiologie
Centrul pentru Prevenirea si Controlul Bolilor Transmise, National Centre of Communicable Diseases Prevention and Control, Institute of Public Health, Bucharest
Sporadic, print only. In Romanian.

Slovenia
CNB Novice
Inštitut za varovanje zdravja, Center za nalezljive bolezni, Institute of Public Health, Center for Infectious Diseases, Ljubljana
Monthly, online. In Slovene.
http://www.ivz.si

Spain
Boletín Epidemiológico Semanal
Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid
Fortnightly, print and online. In Spanish.
http://revista.isciii.es

Sweden
Folkhälsomyndighetens nyhetsbrev
Folkhälsomyndigheten, Stockholm
Weekly, online. In Swedish.
http://www.folkhalsomyndigheten.se/

United Kingdom
England and Wales
Health Protection Report
Weekly, online only. In English.

Northern Ireland
Communicable Diseases Monthly Report
Communicable Disease Surveillance Centre, Northern Ireland, Belfast
Monthly, print and online. In English.
http://www.cdscni.org.uk/publications

Scotland
Health Protection Scotland Weekly Report
Health Protection Scotland, Glasgow
Weekly, print and online. In English.
http://www.hps.scot.nhs.uk/ewr/

European Union
"Europa" is the official portal of the European Union. It provides up-to-date coverage of main events and information on activities and institutions of the European Union.
http://europa.eu

European Commission - Public Health
http://ec.europa.eu/health/

Health-EU Portal
The Health-EU Portal (the official public health portal of the European Union) includes a wide range of information and data on health-related issues and activities at both European and international level.
http://ec.europa.eu/health-eu/

European Centre for Disease Prevention and Control
European Centre for Disease Prevention and Control (ECDC)
The European Centre for Disease Prevention and Control (ECDC) was established in 2005. It is an EU agency with aim to strengthen Europe’s defences against infectious diseases. It is seated in Stockholm, Sweden.
http://www.ecdc.europa.eu
Visit our website at www.eurosurveillance.org

The Eurosurveillance print edition is a compilation of short and long articles that have previously been published on our website.

All the articles in this issue are available online: you can print each page separately or download the whole quarterly in pdf format.

The website archives all articles since 1995, and offers a search facility.

To receive Eurosurveillance’s free electronic releases and e-alerts by email, please subscribe on our website.

Papers published in the former monthly release are indexed for MEDLINE since January 2001, and papers published in the weekly release from January 2005 (with the exception of short, non-scientific notices) are also indexed for MEDLINE.

The Index Medicus abbreviation for Eurosurveillance is Euro Surveill.

Follow us on Twitter: #eurosurveillance