1887
Surveillance and outbreak report Open Access
Like 0

Abstract

Zoonotic infections by avian influenza viruses occur at the human–poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2016.21.35.30331
2016-09-01
2017-10-23
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2016.21.35.30331
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/21/35/eurosurv-21-30331-4.html?itemId=/content/10.2807/1560-7917.ES.2016.21.35.30331&mimeType=html&fmt=ahah

References

  1. Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology. 2015;479-480:234-46.  https://doi.org/10.1016/j.virol.2015.03.009 
  2. de Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 2014;33(8):823-41.  https://doi.org/10.1002/embj.201387442 
  3. Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med. 2015;57(5):501-8.  https://doi.org/10.1097/JOM.0000000000000448 
  4. Tellier R. Review of aerosol transmission of influenza A virus. Emerg Infect Dis. 2006;12(11):1657-62.  https://doi.org/10.3201/eid1211.060426 
  5. Lowen AC, Steel J. Roles of humidity and temperature in shaping influenza seasonality. J Virol. 2014;88(14):7692-5.  https://doi.org/10.1128/JVI.03544-13 
  6. World Health Organization (WHO). Influenza at the human-animal interface. Summary and assessment as of 14 December 2015. Geneva: WHO; 2015. Available from: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_14_Dec_2015.pdf?ua=1
  7. Peiris JSM, Cowling BJ, Wu JT, Feng L, Guan Y, Yu H, et al. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia. Lancet Infect Dis. 2016;16(2):252-8.  https://doi.org/10.1016/S1473-3099(15)00502-2 
  8. Liu B, Havers F, Chen E, Yuan Z, Yuan H, Ou J, et al. Risk factors for influenza A(H7N9) disease--China, 2013. Clin Infect Dis. 2014;59(6):787-94.  https://doi.org/10.1093/cid/ciu423 
  9. Kang M, He J, Song T, Rutherford S, Wu J, Lin J, et al. Environmental Sampling for Avian Influenza A(H7N9) in Live-Poultry Markets in Guangdong, China. PLoS One. 2015;10(5):e0126335.  https://doi.org/10.1371/journal.pone.0126335 
  10. Indriani R, Samaan G, Gultom A, Loth L, Irianti S, Adjid R, et al. Environmental sampling for avian influenza virus A (H5N1) in live-bird markets, Indonesia. Emerg Infect Dis. 2010;16(12):1889-95.  https://doi.org/10.3201/eid1612.100402 
  11. Lindsley WG, Schmechel D, Chen BT. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. J Environ Monit. 2006;8(11):1136-42.  https://doi.org/10.1039/b609083d 
  12. World Health Organization (WHO). WHO information for molecular diagnosis of influenza virus – update. Geneva: WHO; Mar 2014. Available from: http://www.who.int/influenza/gisrs_laboratory/molecular_diagnosis/en/
  13. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146(12):2275-89.  https://doi.org/10.1007/s007050170002 
  14. Bogner P, Capua I, Lipman DJ, Cox NJ. others. A global initiative on sharing avian flu data. Nature. 2006;442(7106):981.  https://doi.org/10.1038/442981a 
  15. Smith GJ, Donis RO. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respi Viruses. 2015;9(5):271-6.  https://doi.org/10.1111/irv.12324 
  16. Pu J, Wang S, Yin Y, Zhang G, Carter RA, Wang J, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci USA. 2015;112(2):548-53.  https://doi.org/10.1073/pnas.1422456112 
  17. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA. 1999;96(16):9363-7.  https://doi.org/10.1073/pnas.96.16.9363 
  18. Xu KM, Smith GJ, Bahl J, Duan L, Tai H, Vijaykrishna D, et al. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol. 2007;81(19):10389-401.  https://doi.org/10.1128/JVI.00979-07 
  19. Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun. 2013;4:1935.  https://doi.org/10.1038/ncomms2922 
  20. Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013;9(3):e1003205.  https://doi.org/10.1371/journal.ppat.1003205 
  21. Lindsley WG, Noti JD, Blachere FM, Thewlis RE, Martin SB, Othumpangat S, et al. Viable influenza A virus in airborne particles from human coughs. J Occup Environ Hyg. 2015;12(2):107-13.  https://doi.org/10.1080/15459624.2014.973113 
  22. Jonges M, van Leuken J, Wouters I, Koch G, Meijer A, Koopmans M. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms. PLoS One. 2015;10(5):e0125401.  https://doi.org/10.1371/journal.pone.0125401 
  23. Choi MJ, Torremorell M, Bender JB, Smith K, Boxrud D, Ertl JR, et al. Live animal markets in Minnesota: a potential source for emergence of novel influenza A viruses and interspecies transmission. Clin Infect Dis. 2015;61(9):1355-62.  https://doi.org/10.1093/cid/civ618 
  24. Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PLoS One. 2013;8(8):e71444.  https://doi.org/10.1371/journal.pone.0071444 
  25. Carvalho TC, Peters JI, Williams RO 3rd. Influence of particle size on regional lung deposition--what evidence is there? Int J Pharm. 2011;406(1-2):1-10.
  26. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature. 2006;440(7083):435-6.
  27. Khan SU, Anderson BD, Heil GL, Liang S, Gray GC. A Systematic Review and Meta-Analysis of the Seroprevalence of Influenza A(H9N2) Infection Among Humans. J Infect Dis. 2015;212(4):562-9.  https://doi.org/10.1093/infdis/jiv109 
  28. Yang P, Ma C, Shi W, Cui S, Lu G, Peng X, et al. A serological survey of antibodies to H5, H7 and H9 avian influenza viruses amongst the duck-related workers in Beijing, China. PLoS One. 2012;7(11):e50770.  https://doi.org/10.1371/journal.pone.0050770 
  29. Nasreen S, Uddin Khan S, Azziz-Baumgartner E, Hancock K, Veguilla V, Wang D, et al. Seroprevalence of antibodies against highly pathogenic avian influenza A (H5N1) virus among poultry workers in Bangladesh, 2009. PLoS One. 2013;8(9):e73200.  https://doi.org/10.1371/journal.pone.0073200 
  30. Sun Y, Liu J. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015;6(1):18-25.  https://doi.org/10.1007/s13238-014-0111-7 
  31. Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281(2):156-62.  https://doi.org/10.1006/viro.2000.0799 
  32. Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog. 2014;10(11):e1004508.  https://doi.org/10.1371/journal.ppat.1004508 
  33. Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J Virol. 2015;89(17):8671-6.  https://doi.org/10.1128/JVI.01034-15 
  34. Pantin-Jackwood MJ, Miller PJ, Spackman E, Swayne DE, Susta L, Costa-Hurtado M, et al. Role of poultry in the spread of novel H7N9 influenza virus in China. J Virol. 2014;88(10):5381-90.  https://doi.org/10.1128/JVI.03689-13 
  35. Makarova NV, Ozaki H, Kida H, Webster RG, Perez DR. Replication and transmission of influenza viruses in Japanese quail. Virology. 2003;310(1):8-15.  https://doi.org/10.1016/S0042-6822(03)00094-1 
  36. Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, Baumgarth N, et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza Other Respi Viruses. 2012;6(6):404-16.  https://doi.org/10.1111/j.1750-2659.2011.00331.x 
/content/10.2807/1560-7917.ES.2016.21.35.30331
Loading

Data & Media loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error