1887
Rapid communication Open Access
Like 0
This item has no PDF Download

Abstract

Mosquitoes collected in Germany in 2016, including biotype , and , as well as biotype (in colony since 2011) were experimentally infected with Zika virus (ZIKV) at 18 °C or 27 °C. None of the taxa showed vector competence for ZIKV. In contrast, were susceptible for ZIKV but only at 27 °C, with transmission rates similar to an laboratory colony tested in parallel.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2017.22.2.30437
2017-01-12
2017-11-20
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2017.22.2.30437
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/22/2/eurosurv-22-30437-2.html?itemId=/content/10.2807/1560-7917.ES.2017.22.2.30437&mimeType=html&fmt=ahah

References

  1. Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016;29(3):487-524. https://doi.org/10.1128/CMR.00072-15  PMID: 27029595 
  2. World Health Organization Regional Office for Europpe (WHO/Europe). Zika virus technical report. Interim risk assessment WHO European Region. Copenhagen: WHO/Europe; 2016. Available from: http://www.euro.who.int/en/health-topics/emergencies/zika-virus/technical-reports-and-guidelines-on-zika-virus/zika-virus-technical-report.-interim-risk-assessment-for-who-european-region
  3. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis. 2016;10(3):e0004543.
  4. Aliota MT, Peinado SA, Osorio JE, Bartholomay LC. Culex pipiens and Aedes triseriatus Mosquito susceptibility to Zika virus. Emerg Infect Dis. 2016;22(10):1857-9. https://doi.org/10.3201/eid2210.161082  PMID: 27434194 
  5. Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M, Failloux AB. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill. 2016;21(35):30333. https://doi.org/10.2807/1560-7917.ES.2016.21.35.30333  PMID: 27605159 
  6. Boccolini D, Toma L, Di Luca M, Severini F, Romi R, Remoli ME, et al. Experimental investigation of the susceptibility of Italian Culex pipiens mosquitoes to Zika virus infection. Euro Surveill. 2016;21(35):30328. https://doi.org/10.2807/1560-7917.ES.2016.21.35.30328  PMID: 27605056 
  7. Fernandes RS, Campos SS, Ferreira-de-Brito A, de Miranda RM, Barbosa da Silva KA, de Castro MG, et al. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl Trop Dis. 2016;10(9):e0004993.
  8. Guo XX, Li CX, Deng YQ, Xing D, Liu QM, Wu Q, et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg Microbes Infect. 2016;5(9):e102. https://doi.org/10.1038/emi.2016.102  PMID: 27599470 
  9. Huang Y-JS, Ayers VB, Lyons AC, Unlu I, Alto BW, Cohnstaedt LW, et al. Culex species mosquitoes and Zika virus. Vector Borne Zoonotic Dis. 2016;16(10):673-6. https://doi.org/10.1089/vbz.2016.2058  PMID: 27556838 
  10. Vogels CBF, van de Peppel LJJ, van Vliet AJH, Westenberg M, Ibañez-Justicia A, Stroo A, et al. Winter activity and aboveground hybridization between the two biotypes of the West Nile virus vector Culex pipiens. Vector Borne Zoonotic Dis. 2015;15(10):619-26. https://doi.org/10.1089/vbz.2015.1820  PMID: 26394124 
  11. Leggewie M, Badusche M, Rudolf M, Jansen S, Börstler J, Krumkamp R, et al. Culex pipiens and Culex torrentium populations from Central Europe are susceptible to West Nile virus infection. One Health. 2016;2:88-94. https://doi.org/10.1016/j.onehlt.2016.04.001 
  12. Chao D-Y, Davis BS, Chang G-JJ. Development of multiplex real-time reverse transcriptase PCR assays for detecting eight medically important flaviviruses in mosquitoes. J Clin Microbiol. 2007;45(2):584-9. https://doi.org/10.1128/JCM.00842-06  PMID: 17108075 
  13. Driggers RW, Ho C-Y, Korhonen EM, Kuivanen S, Jääskeläinen AJ, Smura T, et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med. 2016;374(22):2142-51. https://doi.org/10.1056/NEJMoa1601824  PMID: 27028667 
  14. Jöst H, Bürck-Kammerer S, Hütter G, Lattwein E, Lederer S, Litzba N, et al. Medical importance of Sindbis virus in south-west Germany. J Clin Virol. 2011;52(3):278-9. https://doi.org/10.1016/j.jcv.2011.08.002  PMID: 21893428 
  15. Nikolay B. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap? Trans R Soc Trop Med Hyg. 2015;109(10):609-18. https://doi.org/10.1093/trstmh/trv066  PMID: 26286946 
  16. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435-47. https://doi.org/10.1089/vbz.2011.0814  PMID: 22448724 
  17. Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, et al. Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res. 2013;112(4):1787-90. https://doi.org/10.1007/s00436-012-3230-1  PMID: 23242268 
  18. Pluskota B, Jöst A, Augsten X, Stelzner L, Ferstl I, Becker N. Successful overwintering of Aedes albopictus in Germany. Parasitol Res. 2016;115(8):3245-7. https://doi.org/10.1007/s00436-016-5078-2  PMID: 27112761 
  19. Huber K, Schuldt K, Rudolf M, Marklewitz M, Fonseca DM, Kaufmann C, et al. Distribution and genetic structure of Aedes japonicus japonicus populations (Diptera: Culicidae) in Germany. Parasitol Res. 2014;113(9):3201-10. 25056941 https://doi.org/10.1007/s00436-014-4000-z 
/content/10.2807/1560-7917.ES.2017.22.2.30437
Loading

Data & Media loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error