1887
Surveillance and outbreak report Open Access
Like 0
This item has no PDF Download

Abstract

Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2017.22.2.30439
2017-01-12
2017-10-20
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2017.22.2.30439
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/22/2/eurosurv-22-30439-4.html?itemId=/content/10.2807/1560-7917.ES.2017.22.2.30439&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Global tuberculosis report 2015. Geneva: WHO; 2015. WHO/HTM/TB/2015.22. Available from: http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf
  2. European Centre for Disease Prevention and Control (ECDC)/WHO Regional Office for Europe. Tuberculosis surveillance and monitoring in Europe 2016. Stockholm: ECDC; 2016. Available from: http://ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=1452
  3. Balabanova Y, Ignatyeva O, Fiebig L, Riekstina V, Danilovits M, Jaama K, et al. Survival of patients with multidrug-resistant tuberculosis in Eastern Europe: what makes a difference? Thorax. 2016;71(9):854-61.
  4. Niemann S, Köser CU, Gagneux S, Plinke C, Homolka S, Bignell H, et al. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One. 2009;4(10):e7407.  https://doi.org/10.1371/journal.pone.0007407 
  5. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10(2):e1001387.  https://doi.org/10.1371/journal.pmed.1001387 
  6. Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, et al. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One. 2013;8(3):e58235.  https://doi.org/10.1371/journal.pone.0058235 
  7. Schürch AC, Kremer K, Daviena O, Kiers A, Boeree MJ, Siezen RJ, et al. High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol. 2010;48(9):3403-6.  https://doi.org/10.1128/JCM.00370-10 
  8. Campbell PJ, Morlock GP, Sikes RD, Dalton TL, Metchock B, Starks AM, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(5):2032-41.  https://doi.org/10.1128/AAC.01550-10 
  9. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 2011;44(1):106-10.  https://doi.org/10.1038/ng.1038 
  10. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, et al. Modernizing Medical Microbiology (MMM) Informatics Group. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15(10):1193-202.  https://doi.org/10.1016/S1473-3099(15)00062-6 
  11. Outhred AC, Jelfs P, Suliman B, Hill-Cawthorne GA, Crawford AB, Marais BJ, et al. Added value of whole-genome sequencing for management of highly drug-resistant TB. J Antimicrob Chemother. 2015;70(4):1198-202.
  12. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med. 2011;364(8):730-9.  https://doi.org/10.1056/NEJMoa1003176 
  13. Stucki D, Ballif M, Bodmer T, Coscolla M, Maurer AM, Droz S, et al. Tracking a tuberculosis outbreak over 21 years: strain-specific single-nucleotide polymorphism typing combined with targeted whole-genome sequencing. J Infect Dis. 2015;211(8):1306-16.
  14. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog. 2012;8(8):e1002824.  https://doi.org/10.1371/journal.ppat.1002824 
  15. Walker TM, Monk P, Smith EG, Peto TE. Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect. 2013;19(9):796-802.  https://doi.org/10.1111/1469-0691.12183 
  16. Lambregts-van Weezenbeek CS, Sebek MM, van Gerven PJ, de Vries G, Verver S, Kalisvaart NA, et al. Tuberculosis contact investigation and DNA fingerprint surveillance in The Netherlands: 6 years’ experience with nation-wide cluster feedback and cluster monitoring. Int J Tuberc Lung Dis. 2003;7(12) Suppl 3;S463-70.
  17. Mears J, Abubakar I, Crisp D, Maguire H, Innes JA, Lilley M, et al. Prospective evaluation of a complex public health intervention: lessons from an initial and follow-up cross-sectional survey of the tuberculosis strain typing service in England. BMC Public Health. 2014;14(1):1023.  https://doi.org/10.1186/1471-2458-14-1023 
  18. Centers for Disease Prevention and Control (CDC). TB genotyping information management system (TB GIMS). Atlanta: CDC. [Accessed: 31 March 2016]. Available from: http://www.cdc.gov/tb/programs/genotyping/tbgims/default.htm
  19. De Beer JL, Kodmon C, van der Werf MJ, van Ingen J, van Soolingen D. ECDC MDR-TB molecular surveillance project participants. Molecular surveillance of multi- and extensively drug-resistant tuberculosis transmission in the European Union from 2003 to 2011. Euro Surveill. 2014;19(11):20742.  https://doi.org/10.2807/1560-7917.ES2014.19.11.20742 
  20. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ. 1969;41(1):21-43.
  21. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31(2):406-9.
  22. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907-14.
  23. Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, et al. Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming. Bioinformatics. 2011;27(10):1351-8.  https://doi.org/10.1093/bioinformatics/btr151 
  24. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13(2):137-46.  https://doi.org/10.1016/S1473-3099(12)70277-3 
  25. Feuerriegel S, Oberhauser B, George AG, Dafae F, Richter E, Rüsch-Gerdes S, et al. Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-incidence setting. BMC Microbiol. 2012;12(1):90.  https://doi.org/10.1186/1471-2180-12-90 
  26. Marttila HJ, Soini H, Huovinen P, Viljanen MK. katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother. 1996;40(9):2187-9.
  27. Miotto P, Cabibbe AM, Feuerriegel S, Casali N, Drobniewski F, Rodionova Y, et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. MBio. 2014;5(5):e01819-14.  https://doi.org/10.1128/mBio.01819-14 
  28. Plinke C, Cox HS, Zarkua N, Karimovich HA, Braker K, Diel R, et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J Antimicrob Chemother. 2010;65(7):1359-67.  https://doi.org/10.1093/jac/dkq120 
  29. DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE 3rd. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2000;97(17):9677-82.  https://doi.org/10.1073/pnas.97.17.9677 
  30. Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol. 2004;53(1):275-82.  https://doi.org/10.1111/j.1365-2958.2004.04120.x 
  31. Diel R, Loytved G, Nienhaus A, Castell S, Detjen A, Geerdes-Fenge H, et al. Neue Empfehlungen für die Umgebungsuntersuchungen bei Tuberkulose. [New recommendations for contact tracing in tuberculosis]. Gesundheitswesen. 2011;73(6):369-88. German.http://dx.doi.org/ https://doi.org/10.1055/s-0030-1256574 
  32. Bogyi M, Hagel E, Hirtl T, Klein JP, Rumetshofer R, Wolf K, et al. Österreichische Leitlinie zur Tuberkulose – Umgebungsuntersuchung. [Austrian guidelines for tuberculosis contact tracing]. Vienna: Bundesministerium für Gesundheit (BMG). [Accessed: 31 March 2016]. German. Available from: http://www.bmgf.gv.at/home/Leitlinie_Tuberkulose_Umgebungsuntersuchung
  33. Decision No. 1082/2013/EU of the European Parliament and the council of the European Union of 22 October 2013 on serious cross-border threats to health and repealing Decision No 2119/98/EC. Offical Journal of the European Union. Luxembourg: Publications Office of the European Union. 5.11.2013:L 293. Available from: http://ec.europa.eu/health/preparedness_response/docs/decision_serious_crossborder_threats_22102013_en.pdf
  34. Perez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E et al. Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis. 2014;209:98e108.
  35. Schürch AC, Kremer K, Kiers A, Daviena O, Boeree MJ, Siezen RJ, et al. The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol. 2010;10(1):108-14.  https://doi.org/10.1016/j.meegid.2009.10.002 
  36. Anderson LF, Tamne S, Brown T, Watson JP, Mullarkey C, Zenner D, et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing. Lancet Infect Dis. 2014;14(5):406-15.  https://doi.org/10.1016/S1473-3099(14)70022-2 
  37. Sandgren A, Schepisi MS, Sotgiu G, Huitric E, Migliori GB, Manissero D, et al. Tuberculosis transmission between foreign- and native-born populations in the EU/EEA: a systematic review. Eur Respir J. 2014;43(4):1159-71.  https://doi.org/10.1183/09031936.00117213 
  38. Coscolla M, Barry PM, Oeltmann JE, Koshinsky H, Shaw T, Cilnis M, et al. Genomic epidemiology of multidrug-resistant Mycobacterium tuberculosis during transcontinental spread. J Infect Dis. 2015;212(2):302-10.  https://doi.org/10.1093/infdis/jiv025 
  39. Kohl TA, Diel R, Harmsen D, Rothgänger J, Walter KM, Merker M, et al. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J Clin Microbiol. 2014;52(7):2479-86.  https://doi.org/10.1128/JCM.00567-14 
  40. Driver CR, Macaraig M, McElroy PD, Clark C, Munsiff SS, Kreiswirth B, et al. Which patients’ factors predict the rate of growth of Mycobacterium tuberculosis clusters in an urban community? Am J Epidemiol. 2006;164(1):21-31.  https://doi.org/10.1093/aje/kwj153 
  41. Kik SV, Verver S, van Soolingen D, de Haas PE, Cobelens FG, Kremer K, et al. Tuberculosis outbreaks predicted by characteristics of first patients in a DNA fingerprint cluster. Am J Respir Crit Care Med. 2008;178(1):96-104.  https://doi.org/10.1164/rccm.200708-1256OC 
  42. Althomsons SP, Kammerer JS, Shang N, Navin TR. Using routinely reported tuberculosis genotyping and surveillance data to predict tuberculosis outbreaks. PLoS One. 2012;7(11):e48754.  https://doi.org/10.1371/journal.pone.0048754 
  43. Oeltmann JE, Click eurosurveillance, Moonan PK. Using tuberculosis patient characteristics to predict future cases with matching genotype results. Public Health Action. 2014;4(1):47-52.  https://doi.org/10.5588/pha.13.0098 
  44. Dara M, de Colombani P, Petrova-Benedict R, Centis R, Zellweger JP, Sandgren A, et al. Minimum package for cross-border TB control and care in the WHO European region: a Wolfheze consensus statement. Eur Respir J. 2012;40(5):1081-90.  https://doi.org/10.1183/09031936.00053012 
/content/10.2807/1560-7917.ES.2017.22.2.30439
Loading

Data & Media loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error