-
Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018
- Belén Rodríguez-Sánchez1,2,3 , Emilia Cercenado1,2,4 , Alix T. Coste5 , Gilbert Greub3,5,6
-
View Affiliations Hide AffiliationsAffiliations: 1 Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain 2 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain 3 These authors contributed equally to this work 4 Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain 5 Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland 6 Infectious Diseases Service, University Hospital of Lausanne, Lausanne, SwitzerlandBelén Rodriguez-Sanchezmbelen.rodriguez iisgm.com
-
View Citation Hide Citation
Citation style for this article: Rodríguez-Sánchez Belén, Cercenado Emilia, Coste Alix T., Greub Gilbert. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Euro Surveill. 2019;24(4):pii=1800193. https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800193 Received: 15 Apr 2018; Accepted: 04 Jan 2019
Abstract
MALDI-TOF MS represents a new technological era for microbiology laboratories. Improved sample processing and expanded databases have facilitated rapid and direct identification of microorganisms from some clinical samples. Automated analysis of protein spectra from different microbial populations is emerging as a potential tool for epidemiological studies and is expected to impact public health.
To demonstrate how implementation of MALDI-TOF MS has changed the way microorganisms are identified, how its applications keep increasing and its impact on public health and hospital hygiene.
A review of the available literature in PubMED, published between 2009 and 2018, was carried out.
Of 9,709 articles retrieved, 108 were included in the review. They show that rapid identification of a growing number of microorganisms using MALDI-TOF MS has allowed for optimisation of patient management through prompt initiation of directed antimicrobial treatment. The diagnosis of Gram-negative bacteraemia directly from blood culture pellets has positively impacted antibiotic streamlining, length of hospital stay and costs per patient. The flexibility of MALDI-TOF MS has encouraged new forms of use, such as detecting antibiotic resistance mechanisms (e.g. carbapenemases), which provides valuable information in a reduced turnaround time. MALDI-TOF MS has also been successfully applied to bacterial typing.
MALDI-TOF MS is a powerful method for protein analysis. The increase in speed of pathogen detection enables improvement of antimicrobial therapy, infection prevention and control measures leading to positive impact on public health. For antibiotic susceptibility testing and bacterial typing, it represents a rapid alternative to time-consuming conventional techniques.
Article metrics loading...
Full text loading...
References
-
Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x PMID: 22092265
-
Lévesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, et al. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory. PLoS One. 2015;10(12):e0144878. https://doi.org/10.1371/journal.pone.0144878 PMID: 26658918
-
Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50(1):176-9. https://doi.org/10.1128/JCM.05742-11 PMID: 22090401
-
Martiny D, Debaugnies F, Gateff D, Gérard M, Aoun M, Martin C, et al. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect. 2013;19(12):E568-81. https://doi.org/10.1111/1469-0691.12282 PMID: 23890423
-
Clerc O, Prod’hom G, Vogne C, Bizzini A, Calandra T, Greub G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis. 2013;56(8):1101-7. https://doi.org/10.1093/cid/cis1204 PMID: 23264363
-
Oviaño M, Fernández B, Fernández A, Barba MJ, Mouriño C, Bou G. Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin Microbiol Infect. 2014;20(11):1146-57. https://doi.org/10.1111/1469-0691.12729 PMID: 24942177
-
Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301(1):64-8. https://doi.org/10.1016/j.ijmm.2010.06.002 PMID: 20728405
-
Freitas AR, Sousa C, Novais C, Silva L, Ramos H, Coque TM, et al. Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis. 2017;87(4):299-307. https://doi.org/10.1016/j.diagmicrobio.2016.12.007 PMID: 28109550
-
Christner M, Trusch M, Rohde H, Kwiatkowski M, Schlüter H, Wolters M, et al. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PLoS One. 2014;9(7):e101924. https://doi.org/10.1371/journal.pone.0101924 PMID: 25003758
-
Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M. Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J Med Microbiol. 2017;66(5):670-7. https://doi.org/10.1099/jmm.0.000469 PMID: 28504926
-
Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100-11. https://doi.org/10.1373/clinchem.2014.221770 PMID: 25278500
-
Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012;93(3):965-74. https://doi.org/10.1007/s00253-011-3783-4 PMID: 22198716
-
Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48(2):444-7. https://doi.org/10.1128/JCM.01541-09 PMID: 19955282
-
Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010;48(4):1481-3. https://doi.org/10.1128/JCM.01780-09 PMID: 20164269
-
Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect. 2010;16(11):1620-5. https://doi.org/10.1111/j.1469-0691.2010.03290.x PMID: 20545958
-
Opota O, Croxatto A, Prod’hom G, Greub G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect. 2015;21(4):313-22. https://doi.org/10.1016/j.cmi.2015.01.003 PMID: 25753137
-
Rodríguez-Sánchez B, Sánchez-Carrillo C, Ruiz A, Marín M, Cercenado E, Rodríguez-Créixems M, et al. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2014;20(7):O421-7. https://doi.org/10.1111/1469-0691.12455 PMID: 24237623
-
Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol. 2010;48(5):1584-91. https://doi.org/10.1128/JCM.01831-09 PMID: 20237093
-
Schieffer KM, Tan KE, Stamper PD, Somogyi A, Andrea SB, Wakefield T, et al. Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK(®) diagnostic blood culture systems. J Appl Microbiol. 2014;116(4):934-41. https://doi.org/10.1111/jam.12434 PMID: 24410849
-
Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, et al. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol. 2011;49(7):2528-32. https://doi.org/10.1128/JCM.00339-11 PMID: 21543564
-
Bidart M, Bonnet I, Hennebique A, Kherraf ZE, Pelloux H, Berger F, et al. An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J Clin Microbiol. 2015;53(5):1761-4. https://doi.org/10.1128/JCM.03600-14 PMID: 25762771
-
Leli C, Cenci E, Cardaccia A, Moretti A, D’Alò F, Pagliochini R, et al. Rapid identification of bacterial and fungal pathogens from positive blood cultures by MALDI-TOF MS. Int J Med Microbiol. 2013;303(4):205-9. https://doi.org/10.1016/j.ijmm.2013.03.002 PMID: 23602511
-
Croxatto A, Prod’hom G, Durussel C, Greub G. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing. J Vis Exp. 2014;(92):e51985. PMID:25350577
-
Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect. 2014;20(10):1001-6. https://doi.org/10.1111/1469-0691.12640 PMID: 24698361
-
Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, Rojo-Martín MD, Gutiérrez-Fernández J, Navarro-Marí JM. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98-101. https://doi.org/10.1016/j.mimet.2014.07.016 PMID: 25063679
-
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010;5(11):1733-54. https://doi.org/10.2217/fmb.10.127 PMID: 21133692
-
Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2013;137(9):1247-54. https://doi.org/10.5858/arpa.2012-0651-OA PMID: 23216247
-
Osthoff M, Gürtler N, Bassetti S, Balestra G, Marsch S, Pargger H, et al. Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect. 2017;23(2):78-85. https://doi.org/10.1016/j.cmi.2016.08.009 PMID: 27569710
-
Dieckmann R, Malorny B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2011;77(12):4136-46. https://doi.org/10.1128/AEM.02418-10 PMID: 21515723
-
Ojima-Kato T, Yamamoto N, Nagai S, Shima K, Akiyama Y, Ota J, et al. Application of proteotyping Strain Solution™ ver. 2 software and theoretically calculated mass database in MALDI-TOF MS typing of Salmonella serotype. Appl Microbiol Biotechnol. 2017;101(23-24):8557-69. https://doi.org/10.1007/s00253-017-8563-3 PMID: 29032472
-
Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28(17):2270-1. https://doi.org/10.1093/bioinformatics/bts447 PMID: 22796955
-
Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 2005;29(5):851-75. https://doi.org/10.1016/j.femsre.2004.12.002 PMID: 16219509
-
Jadhav S, Gulati V, Fox EM, Karpe A, Beale DJ, Sevior D, et al. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol. 2015;202:1-9. https://doi.org/10.1016/j.ijfoodmicro.2015.01.023 PMID: 25747262
-
Hsueh PR, Lee TF, Du SH, Teng SH, Liao CH, Sheng WH, et al. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species. J Clin Microbiol. 2014;52(7):2371-9. https://doi.org/10.1128/JCM.00456-14 PMID: 24759706
-
Bruker Daltonic Gmb H. MALDI Biotyper Subtyping Module. Bremen: Bruker Daltonic GmbH. [Accessed4 Jan 2019]. Available from: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Separations_MassSpectrometry/Literature/Brochures/1851663_MBT_Subtyping_brochure_04-2017_ebook.pdf
-
Rizzardi K, Åkerlund T. High Molecular Weight Typing with MALDI-TOF MS - A Novel Method for Rapid Typing of Clostridium difficile. PLoS One. 2015;10(4):e0122457. https://doi.org/10.1371/journal.pone.0122457 PMID: 25923527
-
Graells T, Hernández-García M, Pérez-Jové J, Guy L, Padilla E. Legionella pneumophila recurrently isolated in a Spanish hospital: Two years of antimicrobial resistance surveillance. Environ Res. 2018;166:638-46. https://doi.org/10.1016/j.envres.2018.06.045 PMID: 29982152
-
Trnková K, Kotrbancová M, Špaleková M, Fulová M, Boledovičová J, Vesteg M. MALDI-TOF MS analysis as a useful tool for an identification of Legionella pneumophila, a facultatively pathogenic bacterium interacting with free-living amoebae: A case study from water supply system of hospitals in Bratislava (Slovakia). Exp Parasitol. 2018;184:97-102. https://doi.org/10.1016/j.exppara.2017.12.002 PMID: 29225047
-
Marín M, Cercenado E, Sánchez-Carrillo C, Ruiz A, Gómez González Á, Rodríguez-Sánchez B, et al. Accurate Differentiation of Streptococcus pneumoniae from other Species within the Streptococcus mitis Group by Peak Analysis Using MALDI-TOF MS. Front Microbiol. 2017;8:698. https://doi.org/10.3389/fmicb.2017.00698 PMID: 28487677
-
Harju I, Lange C, Kostrzewa M, Maier T, Rantakokko-Jalava K, Haanperä M. Improved Differentiation of Streptococcus pneumoniae and Other S. mitis Group Streptococci by MALDI Biotyper Using an Improved MALDI Biotyper Database Content and a Novel Result Interpretation Algorithm. J Clin Microbiol. 2017;55(3):914-22. https://doi.org/10.1128/JCM.01990-16 PMID: 28053215
-
World Health Organization (WHO). Global Tuberculosis Report 2017. Geneva: WHO; 2017. Available from: http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
-
Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, et al. Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev. 2016;29(2):239-90. https://doi.org/10.1128/CMR.00055-15 PMID: 26912567
-
Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, Bouza E. Evaluation of MALDI Biotyper Mycobacteria Library v3.0 for Identification of Nontuberculous Mycobacteria. J Clin Microbiol. 2016;54(4):1144-7. https://doi.org/10.1128/JCM.02760-15 PMID: 26842704
-
Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P, Corcoran D, et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect. 2018;24(6):599-603. https://doi.org/10.1016/j.cmi.2017.11.012 PMID: 29174730
-
van Eck K, Faro D, Wattenberg M, de Jong A, Kuipers S, van Ingen J. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Fails To Identify Nontuberculous Mycobacteria from Primary Cultures of Respiratory Samples. J Clin Microbiol. 2016;54(7):1915-7. https://doi.org/10.1128/JCM.00304-16 PMID: 27147723
-
Kehrmann J, Schoerding AK, Murali R, Wessel S, Koehling HL, Mosel F, et al. Performance of Vitek MS in identifying nontuberculous mycobacteria from MGIT liquid medium and Lowenstein-Jensen solid medium. Diagn Microbiol Infect Dis. 2016;84(1):43-7. https://doi.org/10.1016/j.diagmicrobio.2015.10.007 PMID: 26527059
-
Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, et al. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2014;52(9):3362-9. https://doi.org/10.1128/JCM.00788-14 PMID: 25009048
-
Kehrmann J, Wessel S, Murali R, Hampel A, Bange FC, Buer J, et al. Principal component analysis of MALDI TOF MS mass spectra separates M. abscessus (sensu stricto) from M. massiliense isolates. BMC Microbiol. 2016;16(1):24. https://doi.org/10.1186/s12866-016-0636-4 PMID: 26926762
-
Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DB, Norman A, Lillebaek T. Mycobacterium chimaera in Heater-Cooler Units in Denmark Related to Isolates from the United States and United Kingdom. Emerg Infect Dis. 2017;23(3):507-9. https://doi.org/10.3201/eid2303.161941 PMID: 28035898
-
Lasch P, Wahab T, Weil S, Pályi B, Tomaso H, Zange S, et al. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. J Clin Microbiol. 2015;53(8):2632-40. https://doi.org/10.1128/JCM.00813-15 PMID: 26063856
-
Tracz DM, Antonation KS, Corbett CR. Verification of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Diagnostic Identification of High-Consequence Bacterial Pathogens. J Clin Microbiol. 2016;54(3):764-7. https://doi.org/10.1128/JCM.02709-15 PMID: 26677252
-
Rudrik JT, Soehnlen MK, Perry MJ, Sullivan MM, Reiter-Kintz W, Lee PA, et al. Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms. J Clin Microbiol. 2017;55(12):3513-29. https://doi.org/10.1128/JCM.01023-17 PMID: 29021156
-
Hu YY, Cai JC, Zhou HW, Zhang R, Chen GX. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Front Microbiol. 2015;6:784. https://doi.org/10.3389/fmicb.2015.00784 PMID: 26300858
-
Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50(9):2918-31. https://doi.org/10.1128/JCM.01000-12 PMID: 22740710
-
Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389(5):1633-8. https://doi.org/10.1007/s00216-007-1558-7 PMID: 17849103
-
Mirande C, Canard I, Buffet Croix Blanche S, Charrier JP, van Belkum A, Welker M, et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015;34(11):2225-34. https://doi.org/10.1007/s10096-015-2473-z PMID: 26337432
-
Sparbier K, Schubert S, Kostrzewa M. MBT-ASTRA: A suitable tool for fast antibiotic susceptibility testing? Methods. 2016;104:48-54. https://doi.org/10.1016/j.ymeth.2016.01.008 PMID: 26804565
-
Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M, et al. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures. J Clin Microbiol. 2016;54(11):2820-4. https://doi.org/10.1128/JCM.01131-16 PMID: 27629893
-
Ceyssens PJ, Soetaert K, Timke M, Van den Bossche A, Sparbier K, De Cremer K, et al. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Combined Species Identification and Drug Sensitivity Testing in Mycobacteria. J Clin Microbiol. 2017;55(2):624-34. https://doi.org/10.1128/JCM.02089-16 PMID: 28003422
-
Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol. 2000;49(3):295-300. https://doi.org/10.1099/0022-1317-49-3-295 PMID: 10707951
-
Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(21):5487-91. https://doi.org/10.1021/ac020109k PMID: 12433077
-
Walker J, Fox AJ, Edwards-Jones V, Gordon DB. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J Microbiol Methods. 2002;48(2-3):117-26. https://doi.org/10.1016/S0167-7012(01)00316-5 PMID: 11777562
-
Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2(6):747-53. https://doi.org/10.1002/1615-9861(200206)2:6<747::AID-PROT747>3.0.CO;2-V PMID: 12112858
-
Majcherczyk PA, McKenna T, Moreillon P, Vaudaux P. The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 2006;255(2):233-9. https://doi.org/10.1111/j.1574-6968.2005.00060.x PMID: 16448500
-
Mather CA, Werth BJ, Sivagnanam S, SenGupta DJ, Butler-Wu SM. Rapid Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2016;54(4):883-90. https://doi.org/10.1128/JCM.02428-15 PMID: 26763961
-
Asakura K, Azechi T, Sasano H, Matsui H, Hanaki H, Miyazaki M, et al. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2018;13(3):e0194212. https://doi.org/10.1371/journal.pone.0194212 PMID: 29522576
-
Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol. 2011;60(11):1584-90. https://doi.org/10.1099/jmm.0.031336-0 PMID: 21680764
-
Rhoads DD, Wang H, Karichu J, Richter SS. The presence of a single MALDI-TOF mass spectral peak predicts methicillin resistance in staphylococci. Diagn Microbiol Infect Dis. 2016;86(3):257-61. https://doi.org/10.1016/j.diagmicrobio.2016.08.001 PMID: 27568365
-
Oviaño M, Gómara M, Barba MJ, Sparbier K, Pascual Á, Bou G. Quantitative and automated MALDI-TOF MS-based detection of the plasmid-mediated quinolone resistance determinant AAC(6′)-Ib-cr in Enterobacteriaceae. J Antimicrob Chemother. 2017;72(10):2952-4. https://doi.org/10.1093/jac/dkx218 PMID: 29091187
-
Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol. 2012;50(3):927-37. https://doi.org/10.1128/JCM.05737-11 PMID: 22205812
-
Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57(10):1451-70. https://doi.org/10.1016/j.addr.2005.04.002 PMID: 15950313
-
Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J Clin Microbiol. 2014;52(3):924-30. https://doi.org/10.1128/JCM.02691-13 PMID: 24403301
-
De Carolis E, Paoletti S, Nagel D, Vella A, Mello E, Palucci I, et al. A rapid diagnostic workflow for cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae detection from blood cultures by MALDI-TOF mass spectrometry. PLoS One. 2017;12(10):e0185935. https://doi.org/10.1371/journal.pone.0185935 PMID: 28982134
-
Vogne C, Prod’hom G, Jaton K, Decosterd LA, Greub G. A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin Microbiol Infect. 2014;20(12):O1106-12. https://doi.org/10.1111/1469-0691.12715 PMID: 24930405
-
Oviaño M, Barba MJ, Fernández B, Ortega A, Aracil B, Oteo J, et al. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2016;54(3):754-9. https://doi.org/10.1128/JCM.02496-15 PMID: 26677247
-
Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49(9):3321-4. https://doi.org/10.1128/JCM.00287-11 PMID: 21795515
-
Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, et al. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha). 2015;60(2):119-29. https://doi.org/10.1007/s12223-014-0349-8 PMID: 25261959
-
Monteferrante CG, Sultan S, Ten Kate MT, Dekker LJ, Sparbier K, Peer M, et al. Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J Antimicrob Chemother. 2016;71(10):2856-67. https://doi.org/10.1093/jac/dkw208 PMID: 27287232
-
Wang L, Han C, Sui W, Wang M, Lu X. MALDI-TOF MS applied to indirect carbapenemase detection: a validated procedure to clearly distinguish between carbapenemase-positive and carbapenemase-negative bacterial strains. Anal Bioanal Chem. 2013;405(15):5259-66. https://doi.org/10.1007/s00216-013-6913-2 PMID: 23584712
-
Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222-7. https://doi.org/10.1128/JCM.00984-11 PMID: 21775535
-
Hrabák J, Chudáčková E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20(9):839-53. https://doi.org/10.1111/1469-0691.12678 PMID: 24813781
-
Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol. 2015;53(5):1731-5. https://doi.org/10.1128/JCM.03094-14 PMID: 25694522
-
Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother. 2014;69(11):2972-8. https://doi.org/10.1093/jac/dku267 PMID: 25185138
-
Rotova V, Papagiannitsis CC, Skalova A, Chudejova K, Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods. 2017;137:30-3. https://doi.org/10.1016/j.mimet.2017.04.003 PMID: 28390706
-
Lee AWT, Lam JKS, Lam RKW, Ng WH, Lee ENL, Lee VTY, et al. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures. Front Microbiol. 2018;9:334. https://doi.org/10.3389/fmicb.2018.00334 PMID: 29527202
-
Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 2018;73(9):2352-9. https://doi.org/10.1093/jac/dky209 PMID: 29897463
-
Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY, et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics. 2009;9(20):4627-31. https://doi.org/10.1002/pmic.200900152 PMID: 19750514
-
De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50(7):2479-83. https://doi.org/10.1128/JCM.00224-12 PMID: 22535984
-
Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51(9):2964-9. https://doi.org/10.1128/JCM.00903-13 PMID: 23824764
-
Saracli MA, Fothergill AW, Sutton DA, Wiederhold NP. Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med Mycol. 2015;53(7):736-42. https://doi.org/10.1093/mmy/myv046 PMID: 26162474
-
Stupar P, Opota O, Longo G, Prod’hom G, Dietler G, Greub G, et al. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin Microbiol Infect. 2017;23(6):400-5. https://doi.org/10.1016/j.cmi.2016.12.028 PMID: 28062319
-
CLSI. CLSI document M100. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute, Wayne, PA. 2018
-
Lange C, Schubert S, Jung J, Kostrzewa M, Sparbier K. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection. J Clin Microbiol. 2014;52(12):4155-62. https://doi.org/10.1128/JCM.01872-14 PMID: 25232164
-
Sauget M, Bertrand X, Hocquet D. Rapid antibiotic susceptibility testing on blood cultures using MALDI-TOF MS. PLoS One. 2018;13(10):e0205603. https://doi.org/10.1371/journal.pone.0205603 PMID: 30308072
-
Van Driessche L, Bokma J, Gille L, Ceyssens PJ, Sparbier K, Haesebrouck F, et al. Rapid detection of tetracycline resistance in bovine Pasteurella multocida isolates by MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Sci Rep. 2018;8(1):13599. https://doi.org/10.1038/s41598-018-31562-8 PMID: 30206239
-
Vatanshenassan M, Boekhout T, Lass-Flörl C, Lackner M, Schubert S, Kostrzewa M, et al. Proof of Concept for MBT ASTRA, a Rapid Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)-Based Method To Detect Caspofungin Resistance in Candida albicans and Candida glabrata. J Clin Microbiol. 2018;56(9):e00420-18. https://doi.org/10.1128/JCM.00420-18 PMID: 30021820
-
Justesen US, Acar Z, Sydenham TV, Johansson ÅESGAI (ESCMID Study Group on Anaerobic Infections). Antimicrobial susceptibility testing of Bacteroides fragilis using the MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Anaerobe. 2018;54:236-9. https://doi.org/10.1016/j.anaerobe.2018.02.007 PMID: 29501419
-
Deng C, Lin M, Hu C, Li Y, Gao Y, Cheng X, et al. Establishing a serologic decision tree model of extrapulmonary tuberculosis by MALDI-TOF MS analysis. Diagn Microbiol Infect Dis. 2011;71(2):144-50. https://doi.org/10.1016/j.diagmicrobio.2011.06.021 PMID: 21855247
-
Sendid B, Poissy J, François N, Mery A, Courtecuisse S, Krzewinski F, et al. Preliminary evidence for a serum disaccharide signature of invasive Candida albicans infection detected by MALDI Mass Spectrometry. Clin Microbiol Infect. 2015;21(1):88.e1-6. https://doi.org/10.1016/j.cmi.2014.08.010 PMID: 25636941
-
Mery A, Sendid B, François N, Cornu M, Poissy J, Guerardel Y, et al. Application of Mass Spectrometry Technology to Early Diagnosis of Invasive Fungal Infections. J Clin Microbiol. 2016;54(11):2786-97. https://doi.org/10.1128/JCM.01655-16 PMID: 27605710
-
Sandhu G, Battaglia F, Ely BK, Athanasakis D, Montoya R, Valencia T, et al. Discriminating active from latent tuberculosis in patients presenting to community clinics. PLoS One. 2012;7(5):e38080. https://doi.org/10.1371/journal.pone.0038080 PMID: 22666453
-
Zhang X, Liu F, Li Q, Jia H, Pan L, Xing A, et al. A proteomics approach to the identification of plasma biomarkers for latent tuberculosis infection. Diagn Microbiol Infect Dis. 2014;79(4):432-7. https://doi.org/10.1016/j.diagmicrobio.2014.04.005 PMID: 24865408
-
Krel M, Petraitis V, Petraitiene R, Jain MR, Zhao Y, Li H, et al. Host biomarkers of invasive pulmonary aspergillosis to monitor therapeutic response. Antimicrob Agents Chemother. 2014;58(6):3373-8. https://doi.org/10.1128/AAC.02482-14 PMID: 24687510
-
Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Montecchini S, Vasile Simone R, et al. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Sci Rep. 2016;6(1):36082. https://doi.org/10.1038/srep36082 PMID: 27786297
-
Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2014;4(1):6803. https://doi.org/10.1038/srep06803 PMID: 25354905
-
Oberle M, Wohlwend N, Jonas D, Maurer FP, Jost G, Tschudin-Sutter S, et al. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study. PLoS One. 2016;11(10):e0164260. https://doi.org/10.1371/journal.pone.0164260 PMID: 27798637
-
Erler R, Wichels A, Heinemeyer EA, Hauk G, Hippelein M, Reyes NT, et al. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst Appl Microbiol. 2015;38(1):16-25. https://doi.org/10.1016/j.syapm.2014.10.009 PMID: 25466918
-
Normand AC, Becker P, Gabriel F, Cassagne C, Accoceberry I, Gari-Toussaint M, et al. Validation of a New Web Application for Identification of Fungi by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2017;55(9):2661-70. https://doi.org/10.1128/JCM.00263-17 PMID: 28637907
Data & Media loading...