Research article Open Access
Like 0


We aimed to identify the optimal strategy that should be used by public health authorities against transmission of chikungunya virus in mainland France. The theoretical model we developed, which mimics the current surveillance system, predicted that without vector control (VC), the probability of local transmission after introduction of viraemic patients was around 2%, and the number of autochthonous cases between five and 15 persons per hectare, depending on the number of imported cases. Compared with this baseline, we considered different strategies (VC after clinical suspicion of a case or after laboratory confirmation, for imported or autochthonous cases): Awaiting laboratory confirmation for suspected imported cases to implement VC had no significant impact on the epidemiological outcomes analysed, mainly because of the delay before entering into the surveillance system. However, waiting for laboratory confirmation of autochthonous cases before implementing VC resulted in more frequent outbreaks. After analysing the economic cost of such strategies, our study suggested implementing VC immediately after the notification of a suspected autochthonous case as the most efficient strategy in settings where local transmission has been proven. Nevertheless, we identified that decreasing reporting time for imported cases should remain a priority.


Article metrics loading...

Loading full text...

Full text loading...



  1. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science. 2000;287(5452):443-9.  https://doi.org/10.1126/science.287.5452.443  PMID: 10642539 
  2. McMichael AJ. Environmental and social influences on emerging infectious diseases: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2004;359(1447):1049-58.  https://doi.org/10.1098/rstb.2004.1480  PMID: 15306389 
  3. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514-9.  https://doi.org/10.1126/science.1239401  PMID: 23908230 
  4. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468(7324):647-52.  https://doi.org/10.1038/nature09575  PMID: 21124449 
  5. Bradley CA, Altizer S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol. 2007;22(2):95-102.  https://doi.org/10.1016/j.tree.2006.11.001  PMID: 17113678 
  6. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007;7(1):76-85.  https://doi.org/10.1089/vbz.2006.0562  PMID: 17417960 
  7. Chevillon C, Briant L, Renaud F, Devaux C. The Chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol. 2008;16(2):80-8.  https://doi.org/10.1016/j.tim.2007.12.003  PMID: 18191569 
  8. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370(9602):1840-6.  https://doi.org/10.1016/S0140-6736(07)61779-6  PMID: 18061059 
  9. Rezza G. Aedes albopictus and the reemergence of Dengue. BMC Public Health. 2012;12(1):72.  https://doi.org/10.1186/1471-2458-12-72  PMID: 22272602 
  10. Nasci RS. Movement of chikungunya virus into the Western hemisphere. Emerg Infect Dis. 2014;20(8):1394-5.  https://doi.org/10.3201/eid2008.140333  PMID: 25061832 
  11. Van Bortel W, Dorleans F, Rosine J, Blateau A, Rousset D, Matheus S, et al. Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Euro Surveill. 2014;19(13):20759.  https://doi.org/10.2807/1560-7917.ES2014.19.13.20759  PMID: 24721539 
  12. Cauchemez S, Ledrans M, Poletto C, Quenel P, de Valk H, Colizza V, et al. Local and regional spread of chikungunya fever in the Americas. Euro Surveill. 2014;19(28):20854.  https://doi.org/10.2807/1560-7917.ES2014.19.28.20854  PMID: 25060573 
  13. Mansuy JM, Grouteau E, Mengelle C, Claudet I, Izopet J. Chikungunya in the Caribbean--threat for Europe. Emerg Infect Dis. 2014;20(8):1423-5.  https://doi.org/10.3201/eid2008.140650  PMID: 25062125 
  14. Roche B, Léger L, L’Ambert G, Lacour G, Foussadier R, Besnard G, et al. The spread of Aedes albopictus in Metropolitan France: contribution of environmental drivers and human activities and predictions for a near future. PLoS One. 2015;10(5):e0125600.  https://doi.org/10.1371/journal.pone.0125600  PMID: 25962160 
  15. Paty MC, Six C, Charlet F, Heuzé G, Cochet A, Wiegandt A, et al. Large number of imported chikungunya cases in mainland France, 2014: a challenge for surveillance and response. Euro Surveill. 2014;19(28):20856.  https://doi.org/10.2807/1560-7917.ES2014.19.28.20856  PMID: 25060572 
  16. Chikungunya et dengue - Données de la surveillance renforcée en 2015. [Chikungunya and dengue – enhanced surveillance data 2015]. Paris: Institut de Veille Sanitaire; 2015. French. Available from: http://www.invs.sante.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-transmission-vectorielle/Dengue/Donnees-epidemiologiques/France-metropolitaine/Chikungunya-et-dengue-Donnees-de-la-surveillance-renforcee-en-2014
  17. Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton University Press; 2008.
  18. Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys. 2001;115(4):1716-33.  https://doi.org/10.1063/1.1378322 
  19. Cianci D, Van den Broek J, Caputo B, Marini F, Della Torre A, Heesterbeek H, et al. Estimating mosquito population size from mark-release-recapture data. J Med Entomol. 2013;50(3):533-42.  https://doi.org/10.1603/ME12126  PMID: 23802447 
  20. Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, Merler S. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS One. 2011;6(5):e18860.  https://doi.org/10.1371/journal.pone.0018860  PMID: 21559329 
  21. Roche B, Rohani P, Dobson AP, Guégan JFJ-F. The impact of community organization on vector-borne pathogens. Am Nat. 2013;181(1):1-11.  https://doi.org/10.1086/668591  PMID: 23234841 
  22. Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014;8(5):e2848.  https://doi.org/10.1371/journal.pntd.0002848  PMID: 24810901 
  23. Robinson M, Conan A, Duong V, Ly S, Ngan C, Buchy P, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8(9):e3120.  https://doi.org/10.1371/journal.pntd.0003120  PMID: 25210729 
  24. Dumont Y, Chiroleu F, Domerg C. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math Biosci. 2008;213(1):80-91.  https://doi.org/10.1016/j.mbs.2008.02.008  PMID: 18394655 
  25. Dumont Y, Chiroleu F. Vector control for the Chikungunya disease. Math Biosci Eng. 2010;7(2):313-45.  https://doi.org/10.3934/mbe.2010.7.313  PMID: 20462292 
  26. Dhimal M, Gautam I, Joshi HD, O’Hara RB, Ahrens B, Kuch U. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Negl Trop Dis. 2015;9(3):e0003545.  https://doi.org/10.1371/journal.pntd.0003545  PMID: 25774518 
  27. Nur Aida H, Abu Hassan A, Nurita AT, Che Salmah MR, Norasmah B. Population analysis of Aedes albopictus (Skuse) (Diptera:Culicidae) under uncontrolled laboratory conditions. Trop Biomed. 2008;25(2):117-25. PMID: 18948882 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error