Review Open Access
Like 0


Sepsis is a frequent cause of death in very-low-birthweight infants and often results in neurological impairment. Its attributable risk of sequelae has not been systematically assessed. To establish an outcome tree for mapping the burden of neonatal sepsis, we performed systematic literature searches to identify systematic reviews addressing sequelae of neonatal sepsis. We included cohort studies and performed meta-analyses of attributable risks. Evidence quality was assessed using GRADE. Two systematic reviews met inclusion criteria. The first included nine cohort studies with 5,620 participants and five outcomes (neurodevelopmental impairment, cerebral palsy, vision impairment, hearing impairment, death). Pooled risk differences varied between 4% (95% confidence interval (CI):2–10) and 13% (95% CI:5–20). From the second review we analysed four studies with 472 infants. Positive predictive value of neurodevelopmental impairment for later cognitive impairment ranged between 67% (95% CI:22–96) and 83% (95% CI:36–100). Neonatal sepsis increases risk of permanent neurological impairment. Effect size varies by outcome, with evidence quality being low to very low. Data were used to construct an outcome tree for neonatal sepsis. Attributable risk estimates for sequelae following neonatal sepsis are suitable for burden estimation and may serve as outcome parameters in interventional studies.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lawn JE, Cousens S, Zupan JLancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365(9462):891-900.  https://doi.org/10.1016/S0140-6736(05)71048-5  PMID: 15752534 
  2. Vergnano S, Menson E, Kennea N, Embleton N, Russell AB, Watts T, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F9-14.  https://doi.org/10.1136/adc.2009.178798  PMID: 20876594 
  3. Alshaikh B, Yusuf K, Sauve R. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J Perinatol. 2013;33(7):558-64.  https://doi.org/10.1038/jp.2012.167  PMID: 23328927 
  4. Chan GJ, Lee AC, Baqui AH, Tan J, Black RE. Risk of early-onset neonatal infection with maternal infection or colonization: a global systematic review and meta-analysis. PLoS Med. 2013;10(8):e1001502.  https://doi.org/10.1371/journal.pmed.1001502  PMID: 23976885 
  5. Klinger G, Levy I, Sirota L, Boyko V, Reichman B, Lerner-Geva L, Israel Neonatal N. Epidemiology and risk factors for early onset sepsis among very-low-birthweight infants. Am J Obstet Gynecol 2009; 201(1):38 e1-6.
  6. Murphy DJ, Hope PL, Johnson A. Neonatal risk factors for cerebral palsy in very preterm babies: case-control study. BMJ. 1997;314(7078):404-8.  https://doi.org/10.1136/bmj.314.7078.404  PMID: 9040385 
  7. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357-65.  https://doi.org/10.1001/jama.292.19.2357  PMID: 15547163 
  8. Shah DK, Doyle LW, Anderson PJ, Bear M, Daley AJ, Hunt RW, Inder TE. Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J Pediatr 2008; 153(2):170-5, 175.e171.
  9. Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998;44(4):665-75.  https://doi.org/10.1002/ana.410440413  PMID: 9778266 
  10. Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 2014;134(2):e444-53.  https://doi.org/10.1542/peds.2013-2336  PMID: 25070300 
  11. Kretzschmar M, Mangen MJ, Pinheiro P, Jahn B, Fèvre EM, Longhi S, et al. BCoDE consortium. New methodology for estimating the burden of infectious diseases in Europe. PLoS Med. 2012;9(4):e1001205.  https://doi.org/10.1371/journal.pmed.1001205  PMID: 22529750 
  12. Cislak A, Safron M, Pratt M, Gaspar T, Luszczynska A. Family-related predictors of body weight and weight-related behaviours among children and adolescents: a systematic umbrella review. Child Care Health Dev. 2012;38(3):321-31.  https://doi.org/10.1111/j.1365-2214.2011.01285.x  PMID: 21752064 
  13. Ioannidis JP, Zhou Y, Chang CQ, Schully SD, Khoury MJ, Freedman AN. Potential increased risk of cancer from commonly used medications: an umbrella review of meta-analyses. Ann Oncol. 2014;25(1):16-23.  https://doi.org/10.1093/annonc/mdt372  PMID: 24310915 
  14. Whitlock EP, Lin JS, Chou R, Shekelle P, Robinson KA. Using existing systematic reviews in complex systematic reviews. Ann Intern Med. 2008;148(10):776-82.  https://doi.org/10.7326/0003-4819-148-10-200805200-00010  PMID: 18490690 
  15. Robinson KA, Whitlock EP, Oneil ME, Anderson JK, Hartling L, Dryden DM, et al. Integration of existing systematic reviews into new reviews: identification of guidance needs. Syst Rev. 2014;3(1):60.  https://doi.org/10.1186/2046-4053-3-60  PMID: 24956937 
  16. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151(4):264-9, W264.
  17. The World Bank. Country and Lending Groups. Washington, DC: The World Bank. [Accessed: 6 February 2015] Available from: http://data.worldbank.org/about/country-and-lending-groups
  18. Bayley N. Bayley Scales of infant development. 2nd ed. San Antonio, TX: Psychological Corporation; 1993.
  19. Wechsler D. Wechsler Intelligence Scale for children. New York: Psychological Corp.; 1949.
  20. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7(1):10.  https://doi.org/10.1186/1471-2288-7-10  PMID: 17302989 
  21. Hartling L, Milne A, Hamm MP, Vandermeer B, Ansari M, Tsertsvadze A, et al. Testing the Newcastle Ottawa Scale showed low reliability between individual reviewers. J Clin Epidemiol. 2013;66(9):982-93.  https://doi.org/10.1016/j.jclinepi.2013.03.003  PMID: 23683848 
  22. Higgins JPTAD. Sterne JAC, editors. Assessing risk of bias in included studies. In: Higgins JPT, Green S,editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from: www.cochrane-handbook.org
  23. Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50: A guideline developer's handbook. Edinburgh: SIGN; October 2014. Available from: http://www.sign.ac.uk/guidelines/fulltext/50/
  24. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380-2.  https://doi.org/10.1016/j.jclinepi.2010.09.011  PMID: 21185693 
  25. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.  https://doi.org/10.1136/bmj.39489.470347.AD  PMID: 18436948 
  26. Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71.  https://doi.org/10.1186/2046-4053-2-71  PMID: 24007720 
  27. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10: Analysing and Presenting Results. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. The Cochrane Collaboration, 2010. Available from: http://srdta.cochrane.org/
  28. Ergaz Z, Ornoy A. Perinatal and early postnatal factors underlying developmental delay and disabilities. Dev Disabil Res Rev. 2011;17(2):59-70.  https://doi.org/10.1002/ddrr.1101  PMID: 23362026 
  29. Swinburn K, McIntyre S, Hines M, Novak I. Research for infants at high risk of cerebral palsy: Is it time for an agreed set of outcomes and measures? 6th Biennial Conference of the Australasian Academy of Cerebral Palsy & Developmental Medicine, United Kingdom: Wiley-Blackwell Publishing Ltd; 2012.
  30. Teune MJ, Bakhuizen S, Gyamfi Bannerman C, Opmeer BC, van Kaam AH, van Wassenaer AG, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol. 2011; 205(4):374. e1-9.
  31. Grether JK, Nelson KB, Emery ES 3rd, Cummins SK. Prenatal and perinatal factors and cerebral palsy in very low birth weight infants. J Pediatr. 1996;128(3):407-14.  https://doi.org/10.1016/S0022-3476(96)70292-5  PMID: 8774515 
  32. Hoekstra RE, Ferrara TB, Couser RJ, Payne NR, Connett JE. Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23-26 weeks’ gestational age at a tertiary center. Pediatrics. 2004;113(1 Pt 1):e1-6.  https://doi.org/10.1542/peds.113.1.e1  PMID: 14702487 
  33. Jang DH, Sung IY, Jeon JY, Moon HJ, Kim KS, Kim EA, et al. Neurodevelopmental outcomes in very low-birth-weight infants in Korea: 1998-2007 vs 1989-1997. J Child Neurol. 2011;26(11):1405-10.  https://doi.org/10.1177/0883073811408606  PMID: 21693650 
  34. Kono Y, Mishina J, Yonemoto N, Kusuda S, Fujimura MNICU Network, Japan. Neonatal correlates of adverse outcomes in very low-birthweight infants in the NICU Network. Pediatr Int. 2011;53(6):930-5.  https://doi.org/10.1111/j.1442-200X.2011.03424.x  PMID: 21752150 
  35. Lee BE, Cheung PY, Robinson JL, Evanochko C, Robertson CM. Comparative study of mortality and morbidity in premature infants (birth weight, < 1,250 g) with candidemia or candidal meningitis. Clin Infect Dis. 1998;27(3):559-65.  https://doi.org/10.1086/514712  PMID: 9770157 
  36. Tapia Collados C, Feret Siguile MA, Serrano Martínez JL, Sánchez Payá J, Palazón Azorín I, Alonso Barrena AV, et al. [Clinical course and prognostic factors in newborns with very low birth weight]. An Esp Pediatr. 1997;47(4):398-404. PMID: 9499310 
  37. Addison K, Griffin MP, Moorman JR, Lake DE, O’Shea TM. Heart rate characteristics and neurodevelopmental outcome in very low birth weight infants. J Perinatol. 2009;29(11):750-6.  https://doi.org/10.1038/jp.2009.81  PMID: 19554011 
  38. Chen YY, Chen HC, Wang TM, Hsui CC. Developmental outcomes among very low birth weight infants with normal cranial ultrasound images. Clinical Neonatology. 2008; 15(1):5-9.
  39. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Wilson-Costello D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics. 2005;116(2):333-41.  https://doi.org/10.1542/peds.2005-0173  PMID: 16061586 
  40. Friedman S, Richardson SE, Jacobs SE, O’Brien K. Systemic Candida infection in extremely low birth weight infants: short term morbidity and long term neurodevelopmental outcome. Pediatr Infect Dis J. 2000;19(6):499-504.  https://doi.org/10.1097/00006454-200006000-00002  PMID: 10877162 
  41. Göçer C Kavuncuoğlu S, Arslan G, Ertem I, Özbek S, Öztüregen E, et al. Neurodevelopmental problems and factors affecting neurological morbidity of very low birth weight premature infants. Turkish Archives of Pediatrics. 2011; 46:199-206. Available from: http://www.turkpediatriarsivi.com/sayilar/205/buyuk/207-214ing.pdf
  42. Msall ME, Buck GM, Rogers BT, Merke DP, Wan CC, Catanzaro NL, et al. Multivariate risks among extremely premature infants. J Perinatol. 1994;14(1):41-7. PMID: 8169677 
  43. Schlapbach LJ, Aebischer M, Adams M, Natalucci G, Bonhoeffer J, Latzin P, et al. Swiss Neonatal Network and Follow-Up Group. Impact of sepsis on neurodevelopmental outcome in a Swiss National Cohort of extremely premature infants. Pediatrics. 2011;128(2):e348-57.  https://doi.org/10.1542/peds.2010-3338  PMID: 21768312 
  44. Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992-1995. Arch Pediatr Adolesc Med. 2000;154(7):725-31.  https://doi.org/10.1001/archpedi.154.7.725  PMID: 10891026 
  45. Luttikhuizen dos Santos ES, de Kieviet JF, Königs M, van Elburg RM, Oosterlaan J. Predictive value of the Bayley scales of infant development on development of very preterm/very low birth weight children: a meta-analysis. Early Hum Dev. 2013;89(7):487-96.  https://doi.org/10.1016/j.earlhumdev.2013.03.008  PMID: 23597678 
  46. Kitchen WH, Ford GW, Rickards AL, Lissenden JV, Ryan MM. Children of birth weight less than 1000 g: changing outcome between ages 2 and 5 years. J Pediatr. 1987;110(2):283-8.  https://doi.org/10.1016/S0022-3476(87)80174-9  PMID: 2433422 
  47. Munck P, Niemi P, Lapinleimu H, Lehtonen L, Haataja LPIPARI Study Group. Stability of cognitive outcome from 2 to 5 years of age in very low birth weight children. Pediatrics. 2012;129(3):503-8.  https://doi.org/10.1542/peds.2011-1566  PMID: 22371467 
  48. Ross G, Lipper EG, Auld PA. Consistency and change in the development of premature infants weighing less than 1,501 grams at birth. Pediatrics. 1985;76(6):885-91. PMID: 4069857 
  49. Victorian Infant Collaborative Study Group. Eight-year outcome in infants with birth weight of 500 to 999 grams: continuing regional study of 1979 and 1980 births. J Pediatr. 1991;118(5):761-7.  https://doi.org/10.1016/S0022-3476(05)80044-7  PMID: 2019933 
  50. Dezoete JA, MacArthur BA, Tuck B. Prediction of Bayley and Stanford-Binet scores with a group of very low birthweight children. Child Care Health Dev. 2003;29(5):367-72.  https://doi.org/10.1046/j.1365-2214.2003.00349.x  PMID: 12904244 
  51. Doyle LW, Casalaz DVictorian Infant Collaborative Study Group. Outcome at 14 years of extremely low birthweight infants: a regional study. Arch Dis Child Fetal Neonatal Ed. 2001;85(3):F159-64.  https://doi.org/10.1136/fn.85.3.F159  PMID: 11668155 
  52. Evensen KA, Skranes J, Brubakk AM, Vik T. Predictive value of early motor evaluation in preterm very low birth weight and term small for gestational age children. Early Hum Dev. 2009;85(8):511-8.  https://doi.org/10.1016/j.earlhumdev.2009.04.007  PMID: 19450939 
  53. Janssen AJ, Nijhuis-van der Sanden MW, Akkermans RP, Tissingh J, Oostendorp RA, Kollée LA. A model to predict motor performance in preterm infants at 5 years. Early Hum Dev. 2009;85(9):599-604.  https://doi.org/10.1016/j.earlhumdev.2009.07.001  PMID: 19643556 
  54. Potharst ES, Houtzager BA, van Sonderen L, Tamminga P, Kok JH, Last BF, et al. Prediction of cognitive abilities at the age of 5 years using developmental follow-up assessments at the age of 2 and 3 years in very preterm children. Dev Med Child Neurol. 2012;54(3):240-6.  https://doi.org/10.1111/j.1469-8749.2011.04181.x  PMID: 22188215 
  55. Rose SA, Feldman JF, Wallace IF. Infant information processing in relation to six-year cognitive outcomes. Child Dev. 1992;63(5):1126-41.  https://doi.org/10.2307/1131522  PMID: 1446544 
  56. Sajaniemi N, Hakamies-Blomqvist L, Katainen S, von Wendt L. Early cognitive and behavioral predictors of later performance: a follow-up study of ELBW children from ages 2 to 4. Early Child Res Q. 2001;16(3):343-61.  https://doi.org/10.1016/S0885-2006(01)00107-7 
  57. Siegel LS. Correction for prematurity and its consequences for the assessment of the very low birth weight infant. Child Dev. 1983;54(5):1176-88.  https://doi.org/10.2307/1129673  PMID: 6194943 
  58. Skranes J, Vik T, Nilsen G, Smevik O, Andersson HW, Brubakk AM. Can cerebral MRI at age 1 year predict motor and intellectual outcomes in very-low-birthweight children? Dev Med Child Neurol. 1998;40(4):256-62.  https://doi.org/10.1111/j.1469-8749.1998.tb15458.x  PMID: 9593497 
  59. Spittle AJ, Spencer-Smith MM, Eeles AL, Lee KJ, Lorefice LE, Anderson PJ, et al. Does the Bayley-III Motor Scale at 2 years predict motor outcome at 4 years in very preterm children? Dev Med Child Neurol. 2013;55(5):448-52.  https://doi.org/10.1111/dmcn.12049  PMID: 23216518 
  60. van Vliet EO, de Kieviet JF, van der Voorn JP, Been JV, Oosterlaan J, van Elburg RM. Placental pathology and long-term neurodevelopment of very preterm infants. Am J Obstet Gynecol. 2012; 206(6):489. e1-7.
  61. Weisglas-Kuperus N, Baerts W, Smrkovsky M, Sauer PJ. Effects of biological and social factors on the cognitive development of very low birth weight children. Pediatrics. 1993;92(5):658-65. PMID: 7692381 
  62. Williams ML, Lewandowski LJ, Coplan J, D’Eugenio DB. Neurodevelopmental outcome of preschool children born preterm with and without intracranial hemorrhage. Dev Med Child Neurol. 1987;29(2):243-9.  https://doi.org/10.1111/j.1469-8749.1987.tb02142.x  PMID: 3582794 
  63. Yeh TF, Lin YJ, Lin HC, Huang CC, Hsieh WS, Lin CH, et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med. 2004;350(13):1304-13.  https://doi.org/10.1056/NEJMoa032089  PMID: 15044641 
  64. Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med. 2002;21(11):1575-600.  https://doi.org/10.1002/sim.1188  PMID: 12111921 
  65. Schlapbach LJ, Aebischer M, Adams M, Natalucci G, Bonhoeffer J, Latzin P, et al. Swiss Neonatal Network and Follow-Up Group. Impact of sepsis on neurodevelopmental outcome in a Swiss National Cohort of extremely premature infants. Pediatrics. 2011;128(2):e348-57.  https://doi.org/10.1542/peds.2010-3338  PMID: 21768312 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error