Research article Open Access
Like 0
This item has no PDF Download


Resistant pathogens infections cause in healthcare settings, higher patient mortality, longer hospitalisation times and higher costs for treatments. Strengthening and coordinating local, national and international surveillance systems is the cornerstone for the control of antimicrobial resistance (AMR). In this study, the WHONET-SaTScan software was applied in a hospital in Italy to identify potential outbreaks of AMR. Data from San Filippo Neri Hospital in Rome between 2012 and 2014 were extracted from the national surveillance system for antimicrobial resistance (AR-ISS) and analysed using the simulated prospective analysis for real-time cluster detection included in the WHONET-SaTScan software. Results were compared with the hospital infection prevention and control system. The WHONET-SaTScan identified 71 statistically significant clusters, some involving pathogens carrying multiple resistance phenotypes. Of these 71, three were also detected by the hospital system, while a further 15, detected by WHONET-SaTScan only, were considered of relevant importance and worth further investigation by the hospital infection control team. In this study, the WHONET-SaTScan system was applied for the first time to the surveillance of AMR in Italy as a tool to strengthen this surveillance to allow more timely intervention strategies both at local and national level, using data regularly collected by the Italian national surveillance system.


Article metrics loading...

Loading full text...

Full text loading...



  1. Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS, Eisenstein BI, et al. Infectious Diseases Society of America (IDSA). Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011;52(Suppl 5):S397-428.  https://doi.org/10.1093/cid/cir153  PMID: 21474585 
  2. Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, et al. A framework for global surveillance of antibiotic resistance. Drug Resist Updat. 2011;14(2):79-87.  https://doi.org/10.1016/j.drup.2011.02.007  PMID: 21482177 
  3. World Health Organization (WHO). Antimicrobial resistance. Geneva: WHO. [Accessed 29 Apr 2014]. Available from: http://www.who.int/mediacentre/factsheets/fs194/en/
  4. Weinberg J. Surveillance and control of infectious diseases at local, national and international levels. Clin Microbiol Infect. 2005;11(Suppl 1):12-4.  https://doi.org/10.1111/j.1469-0691.2005.01083.x  PMID: 15760438 
  5. Brown D, Canton R, Dubreuil L, Gatermann S, Giske C, MacGowan A, et al. Widespread implementation of EUCAST breakpoints for antibacterial susceptibility testing in Europe. Euro Surveill. 2015;20(2):21008.  https://doi.org/10.2807/1560-7917.ES2015.20.2.21008  PMID: 25613780 
  6. O’Brien TF, Stelling J. The world’s microbiology laboratories can be a global microbial sensor network. Biomedica. 2014;34(Suppl 1):9-15. PMID: 24968031 
  7. Antimicrobial resistance interactive database (EARS-Net). [Accessed 6 Aug 2016]. Available from: http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/database.aspx
  8. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2015.
  9. World Health Organization (WHO). WHONET Software. Geneva: WHO. [Accessed 30 Jan 2016]. Available from: http://www.who.int/drugresistance/whonetsoftware/en/
  10. WHONET. Documentation. [Accessed 26 Jan 2016]. Available from: http://www.whonet.org/www/documentation.html
  11. Stelling JM, O’Brien TF. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis. 1997;24(Suppl 1):S157-68.  https://doi.org/10.1093/clinids/24.Supplement_1.S157  PMID: 8994799 
  12. SaTScan - Software for the spatial, temporal, and space-time scan statistics. [Accessed 25 Oct 2015]. Available from: http://www.satscan.org/
  13. Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc A.2001;164(1):61-72.  https://doi.org/10.1111/1467-985X.00186 
  14. Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005;2(3):e59.  https://doi.org/10.1371/journal.pmed.0020059  PMID: 15719066 
  15. Huang SS, Yokoe DS, Stelling J, Placzek H, Kulldorff M, Kleinman K, et al. Automated detection of infectious disease outbreaks in hospitals: a retrospective cohort study. PLoS Med. 2010;7(2):e1000238.  https://doi.org/10.1371/journal.pmed.1000238  PMID: 20186274 
  16. Viñas MR, Tuduri E, Galar A, Yih K, Pichel M, Stelling J, et al. Group MIDAS - Argentina. Laboratory-based prospective surveillance for community outbreaks of Shigella spp. in Argentina. PLoS Negl Trop Dis. 2013;7(12):e2521.  https://doi.org/10.1371/journal.pntd.0002521  PMID: 24349586 
  17. Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, et al. Collaborative Group WHONET-Argentina. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect. 2010;138(6):873-83.  https://doi.org/10.1017/S0950268809990884  PMID: 19796449 
  18. Vlek ALM, Cooper BS, Kypraios T, Cox A, Edgeworth JD, Auguet OT. Clustering of antimicrobial resistance outbreaks across bacterial species in the intensive care unit. Clin Infect Dis. 2013;57(1):65-76.  https://doi.org/10.1093/cid/cit192  PMID: 23549524 
  19. Sisto A, D’Ancona F, Meledandri M, Pantosti A, Rossolini GM, Raglio A, et al. Micronet network participants. Carbapenem non-susceptible Klebsiella pneumoniae from Micronet network hospitals, Italy, 2009 to 2012. Euro Surveill. 2012;17(33):20247. PMID: 22913976 
  20. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. Växjö: EUCAST; 2016. Available from: http://www.eucast.org.
  21. Centers for Disease Control (CDC). Guidelines for evaluating surveillance systems. MMWR Suppl. 1988;37(5):1-18. PMID: 3131659 
  22. van Mourik MS, Troelstra A, van Solinge WW, Moons KG, Bonten MJ. Automated surveillance for healthcare-associated infections: opportunities for improvement. Clin Infect Dis. 2013;57(1):85-93.  https://doi.org/10.1093/cid/cit185  PMID: 23532476 
  23. Sisto A, D’Ancona F, Meledandri M, Pantosti A, Goglio A. Acinetobacter baumanni in Italian hospitals: results from a retrospective data analysis from the Micronet Network laboratories. 2011; Presentation at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) and International Congress of Chemotherapy (ICC). Milan: 21st ECCMID; 27th ICC. 7 – 10 May 2011. P701.
  24. Faires MC, Pearl DL, Ciccotelli WA, Berke O, Reid-Smith RJ, Weese JS. The use of the temporal scan statistic to detect methicillin-resistant Staphylococcus aureus clusters in a community hospital. BMC Infect Dis. 2014;14(1):375.  https://doi.org/10.1186/1471-2334-14-375  PMID: 25005247 
  25. Falagas ME, Mourtzoukou EG, Polemis M, Vatopoulos ACGreek System for Surveillance of Antimicrobial Resistance. Trends in antimicrobial resistance of Acinetobacter baumannii clinical isolates from hospitalised patients in Greece and treatment implications. Clin Microbiol Infect. 2007;13(8):816-9.  https://doi.org/10.1111/j.1469-0691.2007.01761.x  PMID: 17610601 
  26. Chaniotaki S, Giakouppi P, Tzouvelekis LS, Panagiotakos D, Kozanitou M, Petrikkos G, et al. WHONET Study Group. Quinolone resistance among Escherichia coli strains from community-acquired urinary tract infections in Greece. Clin Microbiol Infect. 2004;10(1):75-8.  https://doi.org/10.1111/j.1469-0691.2004.00807.x  PMID: 14706091 
  27. Oteo J, Baquero F, Vindel A, Campos JSpanish members of the European Antimicrobial Resistance Surveillance System. Antibiotic resistance in 3113 blood isolates of Staphylococcus aureus in 40 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2000-2002). J Antimicrob Chemother. 2004;53(6):1033-8.  https://doi.org/10.1093/jac/dkh214  PMID: 15128722 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error