Perspective Open Access
Like 1


Decisions in public health should be based on the best available evidence, reviewed and appraised using a rigorous and transparent methodology. The Project on a Framework for Rating Evidence in Public Health (PRECEPT) defined a methodology for evaluating and grading evidence in infectious disease epidemiology, prevention and control that takes different domains and question types into consideration. The methodology rates evidence in four domains: disease burden, risk factors, diagnostics and intervention. The framework guiding it has four steps going from overarching questions to an evidence statement. In step 1, approaches for identifying relevant key areas and developing specific questions to guide systematic evidence searches are described. In step 2, methodological guidance for conducting systematic reviews is provided; 15 study quality appraisal tools are proposed and an algorithm is given for matching a given study design with a tool. In step 3, a standardised evidence-grading scheme using the Grading of Recommendations Assessment, Development and Evaluation Working Group (GRADE) methodology is provided, whereby findings are documented in evidence profiles. Step 4 consists of preparing a narrative evidence summary. Users of this framework should be able to evaluate and grade scientific evidence from the four domains in a transparent and reproducible way.


Article metrics loading...

Loading full text...

Full text loading...



  1. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312(7023):71-2.  https://doi.org/10.1136/bmj.312.7023.71  PMID: 8555924 
  2. World Health Organization (WHO). WHO handbook for guideline development. Geneva: WHO; 2012. Available from: http://apps.who.int/iris/bitstream/10665/75146/1/9789241548441_eng.pdf
  3. Kelly M, Morgan A, Ellis S, Younger T, Huntley J, Swann C. Evidence based public health: A review of the experience of the National Institute of Health and Clinical Excellence (NICE) of developing public health guidance in England. Soc Sci Med. 2010;71(6):1056-62.  https://doi.org/10.1016/j.socscimed.2010.06.032  PMID: 20678836 
  4. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380-2.  https://doi.org/10.1016/j.jclinepi.2010.09.011  PMID: 21185693 
  5. European Centre for Disease Prevention and Control (ECDC). Evidence-based methodologies for public health – How to assess the best available evidence when time is limited and there is lack of sound evidence. Stockholm: ECDC; 2011. Available from: https://ecdc.europa.eu/en/publications-data/evidence-based-methodologies-public-health
  6. Harder T, Takla A, Rehfuess E, Sánchez-Vivar A, Matysiak-Klose D, Eckmanns T, et al. Evidence-based decision-making in infectious diseases epidemiology, prevention and control: matching research questions to study designs and quality appraisal tools. BMC Med Res Methodol. 2014;14(1):69.  https://doi.org/10.1186/1471-2288-14-69  PMID: 24886571 
  7. Harder T, Abu Sin M, Bosch-Capblanch X. Bruno Coignard, de Carvalho Gomes H, Duclos P, et al. Towards a framework for evaluating and grading evidence in public health. Health Policy. 2015;119(6):732-6. PMID: 25863647 
  8. Robert Koch Institute. PRECEPT project. Berlin: Robert Koch Institute; 2017. Available from: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/InfDiseaseEpidem/Div33/PRECEPT/PRECEPT_II_en.html
  9. National Institute for Health Clinical Excellence (NICE). Methods for the development of NICE public health guidance. 2nd ed. London: NICE; 2012. Available from: https://www.nice.org.uk/process/pmg4/chapter/introduction
  10. Joanna Briggs Institute. The Joanna Briggs Institute Reviewers Manual 2014: The Systematic Review of Prevalence and Incidence Data. Adelaide: Joanna Briggs Institute;2014. Available from: https://joannabriggs.org/assets/docs/sumari/ReviewersManual_2014-The-Systematic-Review-of-Prevalence-and-Incidence-Data_v2.pdf
  11. Bossuyt PM, Leeflang MM. Chapter 6: Developing criteria for including studies. Version 0.4. In: Cochrane Handbook for Systematic Reviews of Diagnostic Accuracy. The Cochrane Collaboration; 2008. Available from: http://methods.cochrane.org/sites/methods.cochrane.org.sdt/files/public/uploads/Chapter06-Including-Studies%20%28September-2008%29.pdf
  12. Anderson LM, Petticrew M, Rehfuess E, Armstrong R, Ueffing E, Baker P, et al. Using logic models to capture complexity in systematic reviews. Res Synth Methods. 2011;2(1):33-42.  https://doi.org/10.1002/jrsm.32  PMID: 26061598 
  13. Rohwer A, Pfadenhauer L, Burns J, Brereton L, Gerhardus A, Booth A, et al. Series: Clinical Epidemiology in South Africa. Paper 3: Logic models help make sense of complexity in systematic reviews and health technology assessments. J Clin Epidemiol. 2017; Mar(83):37-47. https://doi.org/ https://doi.org/10.1016/j.jclinepi.2016.06.012  PMID:27498377
  14. Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [updated March 2011]. 2011. Available from: http://www.cochrane-handbook.org/
  15. Petticrew M, Rehfuess E, Noyes J, Higgins JPT, Mayhew A, Pantoja T, et al. Synthesizing evidence on complex interventions: how meta-analytical, qualitative, and mixed-method approaches can contribute. J Clin Epidemiol. 2013;66(11):1230-43.  https://doi.org/10.1016/j.jclinepi.2013.06.005  PMID: 23953082 
  16. Harder T, Remschmidt C, Haller S, Eckmanns T, Wichmann O. Use of existing systematic reviews for evidence assessments in infectious disease prevention: a comparative case study. Syst Rev. 2016;5(1):171.  https://doi.org/10.1186/s13643-016-0347-9  PMID: 27724950 
  17. Robinson KA, Whitlock EP, Oneil ME, Anderson JK, Hartling L, Dryden DM, et al. Integration of existing systematic reviews into new reviews: identification of guidance needs. Syst Rev. 2014;3(1):60.  https://doi.org/10.1186/2046-4053-3-60  PMID: 24956937 
  18. Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Grimshaw J, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013-20.  https://doi.org/10.1016/j.jclinepi.2008.10.009  PMID: 19230606 
  19. Whiting P, Savović J, Higgins JPT, Caldwell DM, Reeves BC, Shea B, et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225-34.  https://doi.org/10.1016/j.jclinepi.2015.06.005  PMID: 26092286 
  20. Spencer FA, Iorio A, You J, Murad MH, Schünemann HJ, Vandvik PO, et al. Uncertainties in baseline risk estimates and confidence in treatment effects. BMJ. 2012;345(nov14 1):e7401. PMID: 23152569 
  21. Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008;336(7653):1106-10.  https://doi.org/10.1136/bmj.39500.677199.AE  PMID: 18483053 
  22. Iorio A, Spencer FA, Falavigna M, Alba C, Lang E, Burnand B, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ. 2015;350(mar16 7):h870. PMID: 25775931 
  23. Lewin S, Glenton C, Munthe-Kaas H, Carlsen B, Colvin CJ, Gülmezoglu M, et al. Using qualitative evidence in decision making for health and social interventions: an approach to assess confidence in findings from qualitative evidence syntheses (GRADE-CERQual). PLoS Med. 2015;12(10):e1001895.  https://doi.org/10.1371/journal.pmed.1001895  PMID: 26506244 
  24. Haller S, Deindl P, Cassini A, Suetens C, Zingg W, Abu Sin M, et al. Neurological sequelae of healthcare-associated sepsis in very-low-birthweight infants: Umbrella review and evidence-based outcome tree. Euro Surveill. 2016;21(8):30143.  https://doi.org/10.2807/1560-7917.ES.2016.21.8.30143  PMID: 26940884 
  25. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43.  https://doi.org/10.1186/1471-2288-14-43  PMID: 24667063 
  26. Critical Appraisal Skills Programme (CASP). CASP appraisal tools. Oxford: CASP UK; 2017. Available from: http://www.casp-uk.net/casp-tools-checklists
  27. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-36.  https://doi.org/10.7326/0003-4819-155-8-201110180-00009  PMID: 22007046 
  28. Cho MK, Bero LA. Instruments for assessing the quality of drug studies published in the medical literature. JAMA. 1994;272(2):101-4.  https://doi.org/10.1001/jama.1994.03520020027007  PMID: 8015115 
  29. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9.  https://doi.org/10.1016/j.jclinepi.2011.11.014  PMID: 22742910 
  30. Al-Jader LN, Newcombe RG, Hayes S, Murray A, Layzell J, Harper PS. Developing a quality scoring system for epidemiological surveys of genetic disorders. Clin Genet. 2002;62(3):230-4.  https://doi.org/10.1034/j.1399-0004.2002.620308.x  PMID: 12220439 
  31. Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50: A guideline developer’s handbook. Edinburgh: SIGN; 2011. Available from: http://www.sign.ac.uk/pdf/sign50.pdf
  32. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. [Accessed 8 Sep 2017]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
  33. Cochrane Effective Practice and Organisation of Care (EPOC). Suggested risk of bias criteria for EPOC reviews. [Accessed 22 Sep 2017]. Available from: http://epoc.cochrane.org/resources/epoc-resources-review-authors
  34. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.  https://doi.org/10.1136/bmj.i4919  PMID: 27733354 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error