Euroroundup Open Access
Like 0


Invasive meningococcal disease surveillance in Europe combines isolate characterisation and epidemiological data to support public health intervention. A representative European Meningococcal Strain Collection (EMSC) of IMD isolates was obtained, and whole genome sequenced to characterise 799 EMSC isolates from the epidemiological year July 2011–June 2012. To establish a genome library (GL), the isolate information was deposited in the pubMLST.org/neisseria database. Genomes were curated and annotated at 2,429 meningococcal loci, including those defining clonal complex, capsule, antigens, and antimicrobial resistance. Most genomes contained genes encoding B (n = 525; 65.7%) or C (n = 163; 20.4%) capsules; isolates were genetically highly diverse, with >20 genomic lineages, five of which comprising 60.7% (n = 485) of isolates. There were >350 antigenic fine-types: 307 were present once, the most frequent (P1.7-2,4:F5-1) comprised 8% (n = 64) of isolates. Each genome was characterised for Bexsero Antigen Sequence Typing (BAST): 25.5% (n = 204) of isolates contained alleles encoding the fHbp and/or the PorA VR1 vaccine component, but most genomes (n = 513; 64.2%) did not contain the NadA component. EMSC-GL will support an integrated surveillance of disease-associated genotypes in Europe, enabling the monitoring of hyperinvasive lineages, outbreak identification, and supporting vaccine programme implementation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Jafri RZ, Ali A, Messonnier NE, Tevi-Benissan C, Durrheim D, Eskola J, et al. Global epidemiology of invasive meningococcal disease. Popul Health Metr. 2013;11(1):17.  https://doi.org/10.1186/1478-7954-11-17  PMID: 24016339 
  2. Pace D, Pollard AJ. Meningococcal disease: clinical presentation and sequelae. Vaccine. 2012;30(Suppl 2):B3-9.  https://doi.org/10.1016/j.vaccine.2011.12.062  PMID: 22607896 
  3. Finne J, Leinonen M, Mäkelä PH. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet. 1983;2(8346):355-7.  https://doi.org/10.1016/S0140-6736(83)90340-9  PMID: 6135869 
  4. Jódar L, Feavers IM, Salisbury D, Granoff DM. Development of vaccines against meningococcal disease. Lancet. 2002;359(9316):1499-508.  https://doi.org/10.1016/S0140-6736(02)08416-7  PMID: 11988262 
  5. Holst J, Martin D, Arnold R, Huergo CC, Oster P, O’Hallahan J, et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine. 2009;27(Suppl 2):B3-12.  https://doi.org/10.1016/j.vaccine.2009.04.071  PMID: 19481313 
  6. Pizza M, Rappuoli R. Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol. 2015;23:68-72.  https://doi.org/10.1016/j.mib.2014.11.006  PMID: 25461575 
  7. Caugant DA, Maiden MC. Meningococcal carriage and disease--population biology and evolution. Vaccine. 2009;27(Suppl 2):B64-70.  https://doi.org/10.1016/j.vaccine.2009.04.061  PMID: 19464092 
  8. Feavers IM, Maiden MCJ. Recent progress in the prevention of serogroup B meningococcal disease. Clin Vaccine Immunol. 2017;24(5):e00566-16.  https://doi.org/10.1128/CVI.00566-16  PMID: 28356256 
  9. Brehony C, Rodrigues CMC, Borrow R, Smith A, Cunney R, Moxon ER, et al. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation. Vaccine. 2016;34(39):4690-7.  https://doi.org/10.1016/j.vaccine.2016.08.015  PMID: 27521232 
  10. Jolley KA, Brehony C, Maiden MC. Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev. 2007;31(1):89-96.  https://doi.org/10.1111/j.1574-6976.2006.00057.x  PMID: 17168996 
  11. Jolley KA, Maiden MC. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. Euro Surveill. 2013;18(4):20379.  https://doi.org/10.2807/ese.18.04.20379-en  PMID: 23369391 
  12. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11(1):595.  https://doi.org/10.1186/1471-2105-11-595  PMID: 21143983 
  13. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics. 2014;15(1):1138.  https://doi.org/10.1186/1471-2164-15-1138  PMID: 25523208 
  14. Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB, Jolley KA, et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis. 2013;19(4):566-73.  https://doi.org/10.3201/eid1904.111799  PMID: 23628376 
  15. Taha MK, Hedberg ST, Szatanik M, Hong E, Ruckly C, Abad R, et al. Multicenter study for defining the breakpoint for rifampin resistance in Neisseria meningitidis by rpoB sequencing. Antimicrob Agents Chemother. 2010;54(9):3651-8.  https://doi.org/10.1128/AAC.00315-10  PMID: 20606072 
  16. Taha MK, Vázquez JA, Hong E, Bennett DE, Bertrand S, Bukovski S, et al. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother. 2007;51(8):2784-92.  https://doi.org/10.1128/AAC.00412-07  PMID: 17517841 
  17. Hong E, Thulin Hedberg S, Abad R, Fazio C, Enríquez R, Deghmane AE, et al. Target gene sequencing to define the susceptibility of Neisseria meningitidis to ciprofloxacin. Antimicrob Agents Chemother. 2013;57(4):1961-4.  https://doi.org/10.1128/AAC.02184-12  PMID: 23357770 
  18. R Core Team RD. R: A Language and Environment for Statistical Computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2006.
  19. Hill DMC, Lucidarme J, Gray SJ, Newbold LS, Ure R, Brehony C, et al. Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infect Dis. 2015;15(12):1420-8.  https://doi.org/10.1016/S1473-3099(15)00267-4  PMID: 26515523 
  20. Claus H, Borrow R, Achtman M, Morelli G, Kantelberg C, Longworth E, et al. Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol. 2004;51(1):227-39.  https://doi.org/10.1046/j.1365-2958.2003.03819.x  PMID: 14651624 
  21. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology. 2012;158(Pt 4):1005-15.  https://doi.org/10.1099/mic.0.055459-0  PMID: 22282518 
  22. Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, et al. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet. 2007;3(2):e23.  https://doi.org/10.1371/journal.pgen.0030023  PMID: 17305430 
  23. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature. 2000;404(6777):502-6.  https://doi.org/10.1038/35006655  PMID: 10761919 
  24. German RR, Lee LM, Horan JM, Milstein RL, Pertowski CA, Waller MNGuidelines Working Group Centers for Disease Control and Prevention (CDC). Updated guidelines for evaluating public health surveillance systems: recommendations from the Guidelines Working Group. MMWR Recomm Rep. 2001;50(RR-13):1-35, quiz CE1-7. PMID: 18634202 
  25. Trotter CL, Chandra M, Cano R, Larrauri A, Ramsay ME, Brehony C, et al. A surveillance network for meningococcal disease in Europe. FEMS Microbiol Rev. 2007;31(1):27-36.  https://doi.org/10.1111/j.1574-6976.2006.00060.x  PMID: 17168995 
  26. Brehony C, Jolley KA, Maiden MC. Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev. 2007;31(1):15-26.  https://doi.org/10.1111/j.1574-6976.2006.00056.x  PMID: 17168997 
  27. Reuter S, Ellington MJ, Cartwright EJ, Köser CU, Török ME, Gouliouris T, et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med. 2013;173(15):1397-404.  https://doi.org/10.1001/jamainternmed.2013.7734  PMID: 23857503 
  28. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45(6):656-63.  https://doi.org/10.1038/ng.2625  PMID: 23644493 
  29. Didelot X, Urwin R, Maiden MC, Falush D. Genealogical typing of Neisseria meningitidis. Microbiology. 2009;155(Pt 10):3176-86.  https://doi.org/10.1099/mic.0.031534-0  PMID: 19643763 
  30. Bratcher HB, Bennett JS, Maiden MCJ. Evolutionary and genomic insights into meningococcal biology. Future Microbiol. 2012;7(7):873-85.  https://doi.org/10.2217/fmb.12.62  PMID: 22827308 
  31. Jolley KA, Hill DM, Bratcher HB, Harrison OB, Feavers IM, Parkhill J, et al. Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid Web-based analysis methods. J Clin Microbiol. 2012;50(9):3046-53.  https://doi.org/10.1128/JCM.01312-12  PMID: 22785191 
  32. Tsang RS, Tsai CM, Henderson AM, Tyler S, Law DK, Zollinger W, et al. Immunochemical studies and genetic background of two Neisseria meningitidis isolates expressing unusual capsule polysaccharide antigens with specificities of both serogroup Y and W135. Can J Microbiol. 2008;54(3):229-34.  https://doi.org/10.1139/W07-132  PMID: 18388994 
  33. Vogel U, Claus H, von Müller L, Bunjes D, Elias J, Frosch M. Bacteremia in an immunocompromised patient caused by a commensal Neisseria meningitidis strain harboring the capsule null locus (cnl). J Clin Microbiol. 2004;42(7):2898-901.  https://doi.org/10.1128/JCM.42.7.2898-2901.2004  PMID: 15243035 
  34. Findlow H, Vogel U, Mueller JE, Curry A, Njanpop-Lafourcade BM, Claus H, et al. Three cases of invasive meningococcal disease caused by a capsule null locus strain circulating among healthy carriers in Burkina Faso. J Infect Dis. 2007;195(7):1071-7.  https://doi.org/10.1086/512084  PMID: 17330799 
  35. Bambini S, Piet J, Muzzi A, Keijzers W, Comandi S, De Tora L, et al. An analysis of the sequence variability of meningococcal fHbp, NadA and NHBA over a 50-year period in the Netherlands. PLoS One. 2013;8(5):e65043.  https://doi.org/10.1371/journal.pone.0065043  PMID: 23717687 
  36. Harrison OB, Bray JE, Maiden MC, Caugant DA. Genomic analysis of the evolution and global spread of hyper-invasive meningococcal lineage 5. EBioMedicine. 2015;2(3):234-43.  https://doi.org/10.1016/j.ebiom.2015.01.004  PMID: 25984558 
  37. Taha MK, Achtman M, Alonso JM, Greenwood B, Ramsay M, Fox A, et al. Serogroup W135 meningococcal disease in Hajj pilgrims. Lancet. 2000;356(9248):2159.  https://doi.org/10.1016/S0140-6736(00)03502-9  PMID: 11191548 
  38. Lucidarme J, Hill DM, Bratcher HB, Gray SJ, du Plessis M, Tsang RS, et al. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J Infect. 2015;71(5):544-52.; Epub ahead of print.  https://doi.org/10.1016/j.jinf.2015.07.007  PMID: 26226598 
  39. Trotter CL, Maiden MC. Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. Expert Rev Vaccines. 2009;8(7):851-61.  https://doi.org/10.1586/erv.09.48  PMID: 19538112 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error