-
Need for additional capacity and improved capability for molecular detection of yellow fever virus in European Expert Laboratories: External Quality Assessment, March 2018
- Cristina Domingo1 , Heinz Ellerbrok1 , Marion Koopmans2 , Andreas Nitsche1 , Katrin Leitmeyer3 , Rémi N. Charrel4 , Chantal B.E.M. Reusken2
-
View Affiliations Hide AffiliationsAffiliations: 1 Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, World Health Organization (WHO) Collaborating Centre for Emerging Infections and Biological Threats, Berlin, Germany 2 Department of Viroscience, World Health Organization (WHO) Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, The Netherlands 3 European Centre for Disease Prevention and Control (ECDC), Solna, Sweden 4 Institute of Research and Development, Unit of Emerging Viruses (UMR), Faculty of Medicine, Aix Marseille University, Marseille, FranceChantal Reuskenc.reusken erasmusmc.nl
-
View Citation Hide Citation
Citation style for this article: Domingo Cristina, Ellerbrok Heinz, Koopmans Marion, Nitsche Andreas, Leitmeyer Katrin, Charrel Rémi N., Reusken Chantal B.E.M.. Need for additional capacity and improved capability for molecular detection of yellow fever virus in European Expert Laboratories: External Quality Assessment, March 2018. Euro Surveill. 2018;23(28):pii=1800341. https://doi.org/10.2807/1560-7917.ES.2018.23.28.1800341 Received: 26 Jun 2018; Accepted: 12 Jul 2018
Abstract
An external quality assessment of yellow fever virus (YFV) molecular detection in European laboratories was organised in rapid response to an increase in human cases in Brazil in 2018 with risk of import to Europe. Detection of YFV was assessed among 32 laboratories in 23/31 European Union (EU) and European Economic Area (EEA) countries and two laboratories in one non-EU/EEA country. Adequate capabilities were lacking in 10/23 countries; five did not participate as they lacked implemented assays.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Article metrics loading...

-
From This Site
/content/10.2807/1560-7917.ES.2018.23.28.1800341dcterms_title,dcterms_subject,pub_keyword-contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution105 -
PubMed
-
Google Scholar

Full text loading...
References
-
European Centre for Disease Prevention and Control (ECDC). Rapid Risk Assessment: Yellow fever among travellers returning from South America. Stockholm: ECDC; 2017. Available from: http://ecdc.europa.eu/en/publications/Publications/14-03-2017-RRA-Yellow%20fever,%20Flaviviridae-Suriname,%20Southern%20America.pdf
-
ProMED-mail. YELLOW FEVER - NETHERLANDS: ex BRAZIL (SAO PAULO). Archive number. 20180115. 5561671. 15 Jan 2018. Available from: http://www.promedmail.org
-
Gossner CM, Haussig JM, de Bellegarde de Saint Lary C, Kaasik Aaslav K, Schlagenhauf P, Sudre B. Increased risk of yellow fever infections among unvaccinated European travellers due to ongoing outbreak in Brazil, July 2017 to March 2018. Euro Surveill. 2018;23(11):1800106. https://doi.org/10.2807/1560-7917.ES.2018.23.11.18-00106 PMID: 29560853
-
Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, et al. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol. 2012;50(12):4054-60. https://doi.org/10.1128/JCM.01799-12 PMID: 23052311
-
Patel P, Landt O, Kaiser M, Faye O, Koppe T, Lass U, et al. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol J. 2013;10(1):58. https://doi.org/10.1186/1743-422X-10-58 PMID: 23410000
-
Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J Virol Methods. 2007;146(1-2):355-8. https://doi.org/10.1016/j.jviromet.2007.05.021 PMID: 17604132
-
Drosten C, Göttig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40(7):2323-30. https://doi.org/10.1128/JCM.40.7.2323-2330.2002 PMID: 12089242
-
Bae HG, Nitsche A, Teichmann A, Biel SS, Niedrig M. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay. J Virol Methods. 2003;110(2):185-91. https://doi.org/10.1016/S0166-0934(03)00129-0 PMID: 12798247
-
Mantel N, Aguirre M, Gulia S, Girerd-Chambaz Y, Colombani S, Moste C, et al. Standardized quantitative RT-PCR assays for quantitation of yellow fever and chimeric yellow fever-dengue vaccines. J Virol Methods. 2008;151(1):40-6. https://doi.org/10.1016/j.jviromet.2008.03.026 PMID: 18501437
-
Fernandes-Monteiro AG, Trindade GF, Yamamura AM, Moreira OC, de Paula VS, Duarte AC, et al. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters. Hum Vaccin Immunother. 2015;11(7):1865-71. https://doi.org/10.4161/21645515.2014.990854 PMID: 26011746
-
Barbosa CM, Di Paola N, Cunha MP, Rodrigues-Jesus MJ, Araujo DB, Silveira VB, et al. Yellow Fever Virus RNA in Urine and Semen of Convalescent Patient, Brazil. Emerg Infect Dis. 2018;24(1):176-8. https://doi.org/10.3201/eid2401.171310 PMID: 29058663
-
Wouthuyzen-Bakker M, Knoester M, van den Berg AP. GeurtsvanKessel CH, Koopmans MP, Van Leer-Buter C, et al. Yellow fever in a traveller returning from Suriname to the Netherlands, March 2017. Euro Surveill. 2017;22(11):30488. https://doi.org/10.2807/1560-7917.ES.2017.22.11.30488 PMID: 28333617
-
Fischer C, Torres MC, Patel P, Moreira-Soto A, Gould EA, Charrel RN, et al. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil. Emerg Infect Dis. 2017;23(11):1867-71. https://doi.org/10.3201/eid2311.171131 PMID: 28949285
-
Weidmann M, Faye O, Faye O, Kranaster R, Marx A, Nunes MR, et al. Improved LNA probe-based assay for the detection of African and South American yellow fever virus strains. J Clin Virol. 2010;48(3):187-92. https://doi.org/10.1016/j.jcv.2010.04.013 PMID: 20556888
-
Ayers M, Adachi D, Johnson G, Andonova M, Drebot M, Tellier R. A single tube RT-PCR assay for the detection of mosquito-borne flaviviruses. J Virol Methods. 2006;135(2):235-9. https://doi.org/10.1016/j.jviromet.2006.03.009 PMID: 16650488
-
Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, de Lamballerie X. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 2007;7(4):467-77. https://doi.org/10.1089/vbz.2007.0206 PMID: 18020965
-
Patel P, Landt O, Kaiser M, Faye O, Koppe T, Lass U, et al. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol J. 2013;10(1):58. https://doi.org/10.1186/1743-422X-10-58 PMID: 23410000
-
Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39(5):1922-7. https://doi.org/10.1128/JCM.39.5.1922-1927.2001 PMID: 11326014
-
Brazilian Ministry of Health (IPFS). Monitoramento do Período Sazonal da Febre Amarela Brasil – 2017/2018; informe n° 26 | 2017/2018. [Monitoring of the Seasonal Period of Yellow Fever Brazil - 2017/2018; report n ° 26 | 2017/2018]. Brasilia: IPFS; 2018. (Brazilian). Available from: http://portalarquivos2.saude.gov.br/images/pdf/2018/maio/18/Informe-FA-26.pdf
-
Brent SE, Watts A, Cetron M, German M, Kraemer MU, Bogoch II, et al. International travel between global urban centres vulnerable to yellow fever transmission. Bull World Health Organ. 2018;96(5):343-354B. https://doi.org/10.2471/BLT.17.205658 PMID: 29875519
-
European Centre for Disease Prevention and Control (ECDC). Communicable disease threats report, week 22, 27 May-2 June 2018. Stockholm: ECDC; 2018 Available from: https://ecdc.europa.eu/sites/portal/files/documents/Communicable-disease-threats-report-2-june-2018.pdf
-
European Centre for Disease Prevention and Control (ECDC). Exotic vectors: mosquito maps. Stockholm: ECDC; 2016. Available from: http://ecdc.europa.eu/en/healthtopics/vectors/vector-maps/Pages/VBORNET_maps.aspx
-
Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MA, Santos FBD, et al. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci Rep. 2017;7(1):4848. https://doi.org/10.1038/s41598-017-05186-3 PMID: 28687779
-
World Health Organization (WHO). Yellow fever – Brazil; Disease outbreak news 27 February 2018. Geneva: WHO; 2018.Available from: http://www.who.int/csr/don/27-february-2018-yellow-fever-brazil/en/
-
Cleton N, Koopmans M, Reimerink J, Godeke GJ, Reusken C. Come fly with me: review of clinically important arboviruses for global travelers. J Clin Virol. 2012;55(3):191-203. https://doi.org/10.1016/j.jcv.2012.07.004 PMID: 22840968
-
Reusken CBEM, Ieven M, Sigfrid L, Eckerle I, Koopmans M. Laboratory preparedness and response with a focus on arboviruses in Europe. Clin Microbiol Infect. 2018;24(3):221-8. https://doi.org/10.1016/j.cmi.2017.12.010 PMID: 29274465

Data & Media loading...
Supplementary data
-
-
Supplementary material
-
