- Qiuzhi Chang1, Izzeldin Abuelaish2, Asaf Biber3, Hanaa Jaber3, Alanna Callendrello1, Cheryl P Andam1, Gili Regev-Yochay3,4,5, William P Hanage1,5, on behalf of the PICR Study Group1,2,3,4,5
-
View Affiliations Hide AffiliationsAffiliations: 1 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States 2 Global Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada 3 Infectious Disease Unit, Sheba Medical Center, affiliated to the Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel 4 Infectious Disease Epidemiology Section, the Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel 5 These authors contributed equallyQiuzhi Changqchang mail.harvard.edu
-
View Citation Hide Citation
Citation style for this article: Chang Qiuzhi, Abuelaish Izzeldin, Biber Asaf, Jaber Hanaa, Callendrello Alanna, Andam Cheryl P, Regev-Yochay Gili, Hanage William P, on behalf of the PICR Study Group. Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Euro Surveill. 2018;23(34):pii=1700592. https://doi.org/10.2807/1560-7917.ES.2018.23.34.1700592 Received: 24 Aug 2017; Accepted: 19 Apr 2018
Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009
Abstract
Remarkably high carriage prevalence of a community-associated meticillin-resistant Staphylococcus aureus (MRSA) strain of sequence type (ST) 22 in the Gaza strip was reported in 2012. This strain is linked to the pandemic hospital-associated EMRSA-15. The origin and evolutionary history of ST22 in Gaza communities and the genomic elements contributing to its widespread predominance are unknown. Methods: We generated high-quality draft genomes of 61 ST22 isolates from Gaza communities and, along with 175 ST22 genomes from global sources, reconstructed the ST22 phylogeny and examined genotypes unique to the Gaza isolates. Results: The Gaza isolates do not exhibit a close relationship with hospital-associated ST22 isolates, but rather with a basal population from which EMRSA-15 emerged. There were two separate resistance acquisitions by the same MSSA lineage, followed by diversification of other genetic determinants. Nearly all isolates in the two distinct clades, one characterised by staphylococcal cassette chromosome mec (SCCmec) IVa and the other by SCCmec V and MSSA isolates, contain the toxic shock syndrome toxin-1 gene. Discussion: The genomic diversity of Gaza ST22 isolates is not consistent with recent emergence in the region. The results indicate that two divergent Gaza clones evolved separately from susceptible isolates. Researchers should not assume that isolates identified as ST22 in the community are examples of EMRSA-15 that have escaped their healthcare roots. Future surveillance of MRSA is essential to the understanding of ST22 evolutionary dynamics and to aid efforts to slow the further spread of this lineage.

Article metrics loading...

-
From This Site
/content/10.2807/1560-7917.ES.2018.23.34.1700592dcterms_title,dcterms_subject,pub_keyword105 -
PubMed
-
Google Scholar

Full text loading...
References
-
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629-41. https://doi.org/10.1038/nrmicro2200 PMID: 19680247
-
Centers for Disease Control and Prevention (CDC). Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep. 1999;48(32):707-10. PMID: 21033181
-
Biber A, Abuelaish I, Rahav G, Raz M, Cohen L, Valinsky L, et al. PICR Study Group. A typical hospital-acquired methicillin-resistant Staphylococcus aureus clone is widespread in the community in the Gaza strip. PLoS One. 2012;7(8):e42864. https://doi.org/10.1371/journal.pone.0042864 PMID: 22916171
-
Salgado CD, Farr BM, Calfee DP. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis. 2003;36(2):131-9. https://doi.org/10.1086/345436 PMID: 12522744
-
Regev-Yochay G, Carmeli Y, Raz M, Pinco E, Etienne J, Leavitt A, et al. Prevalence and genetic relatedness of community-acquired methicillin-resistant Staphylococcus aureus in Israel. Eur J Clin Microbiol Infect Dis. 2006;25(11):719-22. https://doi.org/10.1007/s10096-006-0210-3 PMID: 17043835
-
Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013;23(4):653-64. https://doi.org/10.1101/gr.147710.112 PMID: 23299977
-
Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ, Tomita T, et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6(11):90. https://doi.org/10.1186/s13073-014-0090-6 PMID: 25422674
-
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063
-
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3. https://doi.org/10.1093/bioinformatics/btv421 PMID: 26198102
-
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943
-
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-8. https://doi.org/10.1093/bioinformatics/btr330 PMID: 21653522
-
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15. https://doi.org/10.1093/nar/gku1196 PMID: 25414349
-
Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212-20. https://doi.org/10.1128/AAC.01310-13 PMID: 24145532
-
Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 2012;40(Database issue)D641-645. https://doi.org/10.1093/nar/gkr989 PMID: 22067448
-
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3. https://doi.org/10.1093/bioinformatics/btu033 PMID: 24451623
-
Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):vew007. https://doi.org/10.1093/ve/vew007 PMID: 27774300
-
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969-73. https://doi.org/10.1093/molbev/mss075 PMID: 22367748
-
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969-73. https://doi.org/10.1093/molbev/mss075 PMID: 22367748
-
Sako T, Tsuchida N. Nucleotide sequence of the staphylokinase gene from Staphylococcus aureus. Nucleic Acids Res. 1983;11(22):7679-93. https://doi.org/10.1093/nar/11.22.7679 PMID: 6359061
-
van Wamel WJB, Rooijakkers SHM, Ruyken M, van Kessel KPM, van Strijp JAG. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188(4):1310-5. https://doi.org/10.1128/JB.188.4.1310-1315.2006 PMID: 16452413
-
Novick RP. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid. 2003;49(2):93-105. https://doi.org/10.1016/S0147-619X(02)00157-9 PMID: 12726763
-
Marchese A, Gualco L, Maioli E, Debbia E. Molecular analysis and susceptibility patterns of meticillin-resistant Staphylococcus aureus (MRSA) strains circulating in the community in the Ligurian area, a northern region of Italy: emergence of USA300 and EMRSA-15 clones. Int J Antimicrob Agents. 2009;34(5):424-8. https://doi.org/10.1016/j.ijantimicag.2009.06.016 PMID: 19651493
-
Conceição T, Diamantino F, Coelho C, de Lencastre H, Aires-de-Sousa M. Contamination of public buses with MRSA in Lisbon, Portugal: a possible transmission route of major MRSA clones within the community. PLoS One. 2013;8(11):e77812. https://doi.org/10.1371/journal.pone.0077812 PMID: 24223124
-
Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Active Bacterial Core Surveillance Program of the Emerging Infections Program Network. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352(14):1436-44. https://doi.org/10.1056/NEJMoa043252 PMID: 15814879
-
Roche FM, Downer R, Keane F, Speziale P, Park PW, Foster TJ. The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem. 2004;279(37):38433-40. https://doi.org/10.1074/jbc.M402122200 PMID: 15234962
-
Johnson AP. Methicillin-resistant Staphylococcus aureus: the European landscape. J Antimicrob Chemother. 2011;66(Suppl 4):iv43-8. https://doi.org/10.1093/jac/dkr076 PMID: 21521706
-
Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One. 2011;6(4):e17936. https://doi.org/10.1371/journal.pone.0017936 PMID: 21494333
-
Geraci DM, Bonura C, Giuffrè M, Aleo A, Saporito L, Graziano G, et al. tst1-positive ST22-MRSA-IVa in healthy Italian preschool children. Infection. 2014;42(3):535-8. https://doi.org/10.1007/s15010-013-0583-z PMID: 24448875
-
Udo EE, Boswihi SS, Al-Sweih N. High prevalence of toxic shock syndrome toxin-producing epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) strains in Kuwait hospitals. New Microbes New Infect. 2016;12:24-30. https://doi.org/10.1016/j.nmni.2016.03.008 PMID: 27222714
-
Abou Shady HM, Bakr AEA, Hashad ME, Alzohairy MA. Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: a comparative study of two cities in Saudi Arabia and Egypt. Braz J Infect Dis. 2015;19(1):68-76. https://doi.org/10.1016/j.bjid.2014.09.005 PMID: 25523075
-
Al-Bakri AG, Al-Hadithi H, Kasabri V, Othman G, Kriegeskorte A, Becker K. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian population. Epidemiol Infect. 2013;141(11):2384-91. https://doi.org/10.1017/S0950268813000010 PMID: 23340022
-
Al Laham N, Mediavilla JR, Chen L, Abdelateef N, Elamreen FA, Ginocchio CC, et al. MRSA clonal complex 22 strains harboring toxic shock syndrome toxin (TSST-1) are endemic in the primary hospital in Gaza, Palestine. PLoS One. 2015;10(3):e0120008. https://doi.org/10.1371/journal.pone.0120008 PMID: 25781188
-
Köser CU, Holden MTG, Ellington MJ, Cartwright EJP, Brown NM, Ogilvy-Stuart AL, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012;366(24):2267-75. https://doi.org/10.1056/NEJMoa1109910 PMID: 22693998

Data & Media loading...
