1887
Rapid communication Open Access
Like 0

Abstract

After no reported human cases of highly pathogenic avian influenza (HPAI) H7N9 for over a year, a case with severe disease occurred in late March 2019. Among HPAI H7N9 viral sequences, those recovered from the case and from environmental samples of a poultry slaughtering stall near their home formed a distinct clade from 2017 viral sequences. Several mutations possibly associated to antigenic drift occurred in the haemagglutinin gene, potentially warranting update of H7N9 vaccine strains.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.21.1900273
2019-05-23
2024-12-02
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2019.24.21.1900273
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/21/eurosurv-24-21-3.html?itemId=/content/10.2807/1560-7917.ES.2019.24.21.1900273&mimeType=html&fmt=ahah

References

  1. Ke C, Mok CKP, Zhu W, Zhou H, He J, Guan W, et al. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis. 2017;23(8):1332-40.  https://doi.org/10.3201/eid2308.170600  PMID: 28580899 
  2. Zhu W, Zhou J, Li Z, Yang L, Li X, Huang W, et al. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. Euro Surveill. 2017;22(19):30533.  https://doi.org/10.2807/1560-7917.ES.2017.22.19.30533  PMID: 28537546 
  3. Zhu W, Yang L, Shu Y. Did the Highly Pathogenic Avian Influenza A(H7N9) Viruses Emerged in China Raise Increased Threat to Public Health? Vector Borne Zoonotic Dis. 2019;19(1):22-5.  https://doi.org/10.1089/vbz.2018.2299  PMID: 30222520 
  4. Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27(12):1409-21.  https://doi.org/10.1038/cr.2017.129  PMID: 29151586 
  5. Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, et al. A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host Microbe. 2017;22(5):615-626.e8.  https://doi.org/10.1016/j.chom.2017.09.008  PMID: 29056430 
  6. Zhu W, Dong J, Zhang Y, Yang L, Li X, Chen T, et al. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Rep. 2018;23(3):909-17.  https://doi.org/10.1016/j.celrep.2018.03.081  PMID: 29669294 
  7. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  8. Henry Dunand CJ, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, et al. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host Microbe. 2016;19(6):800-13.  https://doi.org/10.1016/j.chom.2016.05.014  PMID: 27281570 
  9. Tan GS, Leon PE, Albrecht RA, Margine I, Hirsh A, Bahl J, et al. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathog. 2016;12(4):e1005578.  https://doi.org/10.1371/journal.ppat.1005578  PMID: 27081859 
  10. Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R. Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin. PLoS One. 2013;8(2):e49597.  https://doi.org/10.1371/journal.pone.0049597  PMID: 23437033 
  11. Wang W, Lu B, Zhou H, Suguitan AL Jr, Cheng X, Subbarao K, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol. 2010;84(13):6570-7.  https://doi.org/10.1128/JVI.00221-10  PMID: 20427525 
  12. Shi Y, Zhang W, Wang F, Qi J, Wu Y, Song H, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science. 2013;342(6155):243-7. https://doi.org/10.1126/science.1242917  PMID: 24009358 
  13. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840-2.  https://doi.org/10.1126/science.1062882  PMID: 11546875 
  14. Nguyen HT, Fry AM, Gubareva LV. Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivir Ther. 2012;17(1 Pt B):159-73.  https://doi.org/10.3851/IMP2067  PMID: 22311680 
  15. Lan Y, Zhang Y, Dong L, Wang D, Huang W, Xin L, et al. A comprehensive surveillance of adamantane resistance among human influenza A virus isolated from mainland China between 1956 and 2009. Antivir Ther. 2010;15(6):853-9.  https://doi.org/10.3851/IMP1656  PMID: 20834097 
  16. Zeng X, Tian G, Shi J, Deng G, Li C, Chen H. Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Sci China Life Sci. 2018;61(12):1465-73.  https://doi.org/10.1007/s11427-018-9420-1  PMID: 30414008 
  17. Kong W, Liu L, Wang Y, He Q, Wu S, Qin Z, et al. C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. J Gen Virol. 2015;96(Pt 2):259-68.  https://doi.org/10.1099/vir.0.071001-0  PMID: 25326314 
/content/10.2807/1560-7917.ES.2019.24.21.1900273
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error