Outbreaks Open Access
Like 0


In September 2017, a cluster of monophasic Typhimurium isolates was identified at the National Reference Laboratory for Enteropathogenic Bacteria in Norway. We investigated the cluster to identify the source and implement control measures. We defined a case as a person with laboratory-confirmed salmonellosis with the outbreak strain multiple locus variable-number tandem repeat analysis type. We conducted descriptive epidemiological and environmental investigations and performed whole genome sequencing (WGS) with core and accessory genome multilocus sequence typing of all isolates from cases or the environment connected with this outbreak. We identified 21 cases, residing in 10 geographically dispersed counties, all of whom had consumed food or drinks from a café at Oslo Airport. Case distribution by date of symptom onset suggested that a point source was introduced in mid-August followed by continued environmental contamination. The incubation periods ranged 0–16 days and increased as the outbreak progressed, likely due to increasingly low-dose exposure as control measures were implemented. WGS confirmed an identical cluster type-944 in all cases and six environmental specimens from the café. Control measures, including temporary closure and kitchen refurbishment, failed to eliminate the environmental source. We recommend strengthened hygiene measures for established environmental contamination during an outbreak.


Article metrics loading...

Loading full text...

Full text loading...



  1. European Centre for Disease Prevention and Control (ECDC). Salmonellosis. Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/en/publications-data/salmonellosis-annual-epidemiological-report-2015
  2. MacDonald E, White R, Mexia R, Bruun T, Kapperud G, Brandal LT, et al. The role of domestic reservoirs in domestically acquired Salmonella infections in Norway: epidemiology of salmonellosis, 2000-2015, and results of a national prospective case-control study, 2010-2012. Epidemiol Infect. 2018;147:1-8. PMID: 30428947 
  3. Switt AI, Soyer Y, Warnick LD, Wiedmann M. Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathog Dis. 2009;6(4):407-15.  https://doi.org/10.1089/fpd.2008.0213  PMID: 19292687 
  4. Hopkins KL, Kirchner M, Guerra B, Granier SA, Lucarelli C, Porrero MC, et al. Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain? Euro Surveill. 2010;15(22):19580. PMID: 20546690 
  5. European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017;15(12):5077.
  6. Bonardi S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol Infect. 2017;145(8):1513-26.  https://doi.org/10.1017/S095026881700036X  PMID: 28241896 
  7. Echeita MA, Aladueña A, Cruchaga S, Usera MA. Emergence and spread of an atypical Salmonella enterica subsp. enterica serotype 4,5,12:i:- strain in Spain. J Clin Microbiol. 1999;37(10):3425. PMID: 10488227 
  8. Folkhelseinstitutet (FHI). Overvåkning av sykdommer som smitter fra mat, vann og dyr, inkludert vektorbårne sykdommer 2016 [Annual Surveillance Report for Zoonotic, Food, Water and Vectorborne Infectious Diseases in Norway 2016]. Oslo: FHI; 2017. Norwegian. Available from: https://www.fhi.no/publ/2017/overvakning-av-infeksjonssykdommer-som-smitter-fra-mat-vann-og-dyr-inkluder/
  9. Mintz ED, Cartter ML, Hadler JL, Wassell JT, Zingeser JA, Tauxe RV. Dose-response effects in an outbreak of Salmonella enteritidis. Epidemiol Infect. 1994;112(1):13-23.  https://doi.org/10.1017/S095026880005737X  PMID: 8119352 
  10. Roberts-Witteveen AR, Campbell BA, Merritt TD, Massey PD, Shadbolt CT, Durrheim DN. Egg-associated Salmonella outbreak in an aged care facility, New South Wales, 2008. Commun Dis Intell Q Rep. 2009;33(1):49-52. PMID: 19618772 
  11. Abe K, Saito N, Kasuga F, Yamamoto S. Prolonged incubation period of salmonellosis associated with low bacterial doses. J Food Prot. 2004;67(12):2735-40.  https://doi.org/10.4315/0362-028X-67.12.2735  PMID: 15633679 
  12. Kothary MH, Babu US. Infective dose of foodborne pathogens in volunteers: A review. J Food Saf. 2001;21(1):49-68.  https://doi.org/10.1111/j.1745-4565.2001.tb00307.x 
  13. Crum-Cianflone NF. Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr Gastroenterol Rep. 2008;10(4):424-31.  https://doi.org/10.1007/s11894-008-0079-7  PMID: 18627657 
  14. Folkhelseinstitutet (FHI). Spørreskjema, retningslinjer og andre hjelpemidler [Questionnaire, guidelines and other aids]. Oslo: FHI; [Accessed 15 Sept 2017]. Norwegian. Available from: https://www.fhi.no/nettpub/utbruddsveilederen/sporreskjema-retningslinjer-og-andr/sporreskjema-og-retningslinjer/
  15. World Health Organization (WHO)/Institut Pasteur. WHO Collaborating Centre for Reference and Research on Salmonella. Antigentic Formulae of the Salmonella Serovars. Paris: WHO/Institut Pasteur. 2007. Available from https://www.pasteur.fr/sites/default/files/veng_0.pdf
  16. Peters T, Bertrand S, Björkman JT, Brandal LT, Brown DJ, Erdõsi T, et al. Multi-laboratory validation study of multilocus variable-number tandem repeat analysis (MLVA) for Salmonella enterica serovar Enteritidis, 2015. Euro Surveill. 2017;22(9):30477.  https://doi.org/10.2807/1560-7917.ES.2017.22.9.30477  PMID: 28277220 
  17. NORM/NORM-VET. 2017. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø / Oslo 2018. ISSN:1502-2307 (print)/1890-9965 (electronic).
  18. European Food Safety Authority (EFSA). Scientific Opinion on monitoring and assessment of the public health risk of "Salmonella Typhimurium-like" strains. EFSA Panel on biological Hazards (BIOHAZ). EFSA J. 2010;8(10):1826.  https://doi.org/10.2903/j.efsa.2010.1826 
  19. Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14(4):e1007261.  https://doi.org/10.1371/journal.pgen.1007261  PMID: 29621240 
  20. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  21. Mair-Jenkins J, Borges-Stewart R, Harbour C, Cox-Rogers J, Dallman T, Ashton P, et al. Investigation using whole genome sequencing of a prolonged restaurant outbreak of Salmonella Typhimurium linked to the building drainage system, England, February 2015 to March 2016. Euro Surveill. 2017;22(49):17-00037.  https://doi.org/10.2807/1560-7917.ES.2017.22.49.17-00037  PMID: 29233257 
  22. Jongenburger I, den Besten HM, Zwietering MH. Statistical aspects of food safety sampling. Annu Rev Food Sci Technol. 2015;6(1):479-503.  https://doi.org/10.1146/annurev-food-022814-015546 
  23. Lynch MF, Tauxe RV, Hedberg CW. The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect. 2009;137(3):307-15.  https://doi.org/10.1017/S0950268808001969 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error