Research Open Access
Like 0



The occurrence of antibiotic resistance in faecal bacteria in sewage is likely to reflect the current local clinical resistance situation.


This observational study investigated the relationship between resistance rates in sewage and clinical samples representing the same human populations.


were isolated from eight hospital (n = 721 isolates) and six municipal (n = 531 isolates) sewage samples, over 1 year in Gothenburg, Sweden. An inexpensive broth screening method was validated against disk diffusion and applied to determine resistance against 11 antibiotics in sewage isolates. Resistance data on isolated from clinical samples from corresponding local hospital and primary care patients were collected during the same year and compared with those of the sewage isolates by linear regression.


resistance rates derived from hospital sewage and hospital patients strongly correlated (r2 = 0.95 for urine and 0.89 for blood samples), as did resistance rates in from municipal sewage and primary care urine samples (r2 = 0.82). Resistance rates in hospital sewage isolates were close to those in hospital clinical isolates while resistance rates in municipal sewage isolates were about half of those measured in primary care isolates. Resistance rates in municipal sewage isolates were more stable between sampling occasions than those from hospital sewage.


Our findings provide support for development of a low-cost, sewage-based surveillance system for antibiotic resistance in , which could complement current monitoring systems and provide clinically relevant antibiotic resistance data for countries and regions where surveillance is lacking.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization (WHO). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO; 2017.
  2. World Health Organization (WHO). Worldwide country situation analysis: response to antimicrobial resistance. Geneva: WHO; 2015.
  3. World Health Organization (WHO). Global antimicrobial resistance surveillance system (GLASS) report. Geneva: WHO; 2018.
  4. Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ Int. 2017;99:131-50.  https://doi.org/10.1016/j.envint.2016.12.016  PMID: 28038971 
  5. Yuan S-F, Liu Z-H, Huang R-P, Yin H, Dang Z. Levels of six antibiotics used in China estimated by means of wastewater-based epidemiology. Water Sci Technol. 2016;73(4):769-75.  https://doi.org/10.2166/wst.2015.526  PMID: 26901719 
  6. Ort C, van Nuijs ALN, Berset J-D, Bijlsma L, Castiglioni S, Covaci A, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. 2014;109(8):1338-52.  https://doi.org/10.1111/add.12570  PMID: 24861844 
  7. van Nuijs ALN, Castiglioni S, Tarcomnicu I, Postigo C, Lopez de Alda M, Neels H, et al. Illicit drug consumption estimations derived from wastewater analysis: a critical review. Sci Total Environ. 2011;409(19):3564-77.  https://doi.org/10.1016/j.scitotenv.2010.05.030  PMID: 20598736 
  8. Bisseux M, Colombet J, Mirand A, Roque-Afonso A-M, Abravanel F, Izopet J, et al. Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: a one-year experiment in central France, 2014 to 2015. Euro Surveill. 2018;23(7).  https://doi.org/10.2807/1560-7917.ES.2018.23.7.17-00237  PMID: 29471623 
  9. Hellmér M, Paxéus N, Magnius L, Enache L, Arnholm B, Johansson A, et al. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl Environ Microbiol. 2014;80(21):6771-81.  https://doi.org/10.1128/AEM.01981-14  PMID: 25172863 
  10. Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, et al. Comparison of enterococcal populations in animals, humans, and the environment--a European study. Int J Food Microbiol. 2003;88(2-3):133-45.  https://doi.org/10.1016/S0168-1605(03)00176-4  PMID: 14596986 
  11. Mahon BM, Brehony C, McGrath E, Killeen J, Cormican M, Hickey P, et al. Indistinguishable NDM-producing Escherichia coli isolated from recreational waters, sewage, and a clinical specimen in Ireland, 2016 to 2017. Euro Surveill. 2017;22(15):30513.  https://doi.org/10.2807/1560-7917.ES.2017.22.15.30513  PMID: 28449738 
  12. Drieux L, Haenn S, Moulin L, Jarlier V. Quantitative evaluation of extended-spectrum β-lactamase-producing Escherichia coli strains in the wastewater of a French teaching hospital and relation to patient strain. Antimicrob Resist Infect Control. 2016;5(1):9.  https://doi.org/10.1186/s13756-016-0108-5  PMID: 27030806 
  13. Jørgensen SB, Søraas AV, Arnesen LS, Leegaard TM, Sundsfjord A, Jenum PA. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS One. 2017;12(10):e0186576.  https://doi.org/10.1371/journal.pone.0186576  PMID: 29040337 
  14. Zarfel G, Galler H, Feierl G, Haas D, Kittinger C, Leitner E, et al. Comparison of extended-spectrum-β-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection. Environ Pollut. 2013;173:192-9.  https://doi.org/10.1016/j.envpol.2012.09.019  PMID: 23202650 
  15. Kwak Y-K, Colque P, Byfors S, Giske CG, Möllby R, Kühn I. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: does it reflect the resistance trends in the society? Int J Antimicrob Agents. 2015;45(1):25-32.  https://doi.org/10.1016/j.ijantimicag.2014.09.016  PMID: 25465520 
  16. Reinthaler FF, Galler H, Feierl G, Haas D, Leitner E, Mascher F, et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J Water Health. 2013;11(1):13-20.  https://doi.org/10.2166/wh.2012.207  PMID: 23428545 
  17. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases. (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9(8):ix-xv.  https://doi.org/10.1046/j.1469-0691.2003.00790.x 
  18. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Version 7.0. Växjö: EUCAST; 2017.
  19. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0. Växjö: EUCAST; 2016.
  20. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 1.0. Växjö: EUCAST; 2013.
  21. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing. Version 6.0. Växjö: EUCAST; 2017.
  22. Lindberg RH, Östman M, Olofsson U, Grabic R, Fick J. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Res. 2014;58:221-9.  https://doi.org/10.1016/j.watres.2014.03.076  PMID: 24768701 
  23. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11):2465-6. PMID: 3069867 
  24. Yu G. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions. Stat Probab Lett. 2009;79(14):1621-9.  https://doi.org/10.1016/j.spl.2009.04.010 
  25. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/
  26. Yang CM, Lin MF, Liao PC, Yeh HW, Chang BV, Tang TK, et al. Comparison of antimicrobial resistance patterns between clinical and sewage isolates in a regional hospital in Taiwan. Lett Appl Microbiol. 2009;48(5):560-5.  https://doi.org/10.1111/j.1472-765X.2009.02572.x  PMID: 19291216 
  27. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach C-F, et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ. 2016;572:697-712.  https://doi.org/10.1016/j.scitotenv.2016.06.228  PMID: 27542633 
  28. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345-60.  https://doi.org/10.1016/j.scitotenv.2013.01.032  PMID: 23396083 
  29. Korzeniewska E, Korzeniewska A, Harnisz M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf. 2013;91:96-102.  https://doi.org/10.1016/j.ecoenv.2013.01.014  PMID: 23433837 
  30. Colque Navarro P, Fernandez H, Möllby R, Otth L, Tiodolf M, Wilson M, et al. Antibiotic resistance in environmental Escherichia coli - a simple screening method for simultaneous typing and resistance determination. J Water Health. 2014;12(4):692-701.  https://doi.org/10.2166/wh.2014.216  PMID: 25473978 
  31. Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, et al. Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ. 2013;450-451:155-61.  https://doi.org/10.1016/j.scitotenv.2013.02.015  PMID: 23474261 
  32. Galvin S, Boyle F, Hickey P, Vellinga A, Morris D, Cormican M. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol. 2010;76(14):4772-9.  https://doi.org/10.1128/AEM.02898-09  PMID: 20525867 
  33. Aali R, Nikaeen M, Khanahmad H, Hassanzadeh A. Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters. Int J Prev Med. 2014;5(7):887-94. PMID: 25105001 
  34. Swedish Medical Products Agency. Läkemedelsbehandling av urinvägsinfektioner i öppenvård - behandlingsrekommendation: Information från Läkemedelsverket. [Drug treatment of urinary tract infections in outpatient care - treatment recommendation: Information from the Swedish Medical Products Agency]. 2017;(28)5:21-36. Swedish.
  35. Kronenberg A, Koenig S, Droz S, Mühlemann K. Active surveillance of antibiotic resistance prevalence in urinary tract and skin infections in the outpatient setting. Clin Microbiol Infect. 2011;17(12):1845-51.  https://doi.org/10.1111/j.1469-0691.2011.03519.x  PMID: 21880098 
  36. Clermont O, Couffignal C, Blanco J, Mentré F, Picard B, Denamur ECOLIVILLE and COLIBAFI groups. Two levels of specialization in bacteraemic Escherichia coli strains revealed by their comparison with commensal strains. Epidemiol Infect. 2017;145(5):872-82.  https://doi.org/10.1017/S0950268816003010  PMID: 28029088 
  37. Nielsen KL, Dynesen P, Larsen P, Frimodt-Møller N. Faecal Escherichia coli from patients with E. coli urinary tract infection and healthy controls who have never had a urinary tract infection. J Med Microbiol. 2014;63(Pt 4):582-9.  https://doi.org/10.1099/jmm.0.068783-0  PMID: 24464694 
  38. Dang TND, Zhang L, Zöllner S, Srinivasan U, Abbas K, Marrs CF, et al. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. Infect Genet Evol. 2013;19:212-8.  https://doi.org/10.1016/j.meegid.2013.07.017  PMID: 23891665 
  39. Cooke NM, Smith SG, Kelleher M, Rogers TR. Major differences exist in frequencies of virulence factors and multidrug resistance between community and nosocomial Escherichia coli bloodstream isolates. J Clin Microbiol. 2010;48(4):1099-104.  https://doi.org/10.1128/JCM.02017-09  PMID: 20107091 
  40. Ko YJ, Moon H-W, Hur M, Park C-M, Cho SE, Yun Y-M. Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in Korean community and hospital settings. Infection. 2013;41(1):9-13.  https://doi.org/10.1007/s15010-012-0272-3  PMID: 22723075 
  41. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7):e1002158.  https://doi.org/10.1371/journal.ppat.1002158  PMID: 21811410 
  42. Runcharoen C, Moradigaravand D, Blane B, Paksanont S, Thammachote J, Anun S, et al. Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Med. 2017;9(1):6.  https://doi.org/10.1186/s13073-017-0397-1  PMID: 28118859 
  43. Yan T, O’Brien P, Shelton JM, Whelen AC, Pagaling E. Municipal Wastewater as a Microbial Surveillance Platform for Enteric Diseases: A Case Study for Salmonella and Salmonellosis. Environ Sci Technol. 2018;52(8):4869-77.  https://doi.org/10.1021/acs.est.8b00163  PMID: 29630348 
  44. Munk P, Andersen VD, de Knegt L, Jensen MS, Knudsen BE, Lukjancenko O, et al. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds. J Antimicrob Chemother. 2017;72(2):385-92.  https://doi.org/10.1093/jac/dkw415  PMID: 28115502 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error