1887
Research Open Access
Like 0

Abstract

Introduction

During summer 2016, Norway observed an increase in subsp. serovar Chester cases among travellers to Greece.

Aim

Our aim was to investigate genetic relatedness of Chester for surveillance and outbreak detection by core genome multilocus sequence typing (cgMLST) and compare the results to genome mapping.

Methods

We included Chester isolates from 51 cases of salmonellosis between 2000 and 2016. Paired-end sequencing (2 × 250 bp) was performed on Illumina MiSeq. Genetic relatedness by cgMLST for subsp. including 3,002 genes and seven housekeeping genes, was compared by reference genome mapping with CSI Phylogeny version 1.4 and conventional MLST.

Results

Confirmed travel history was available for 80% of included cases, to Europe (n = 13), Asia (n = 12) and Africa (n = 16). Isolates were distributed into four phylogenetic clusters corresponding to geographical regions. Sequence type (ST) ST411 and a single-locus variant ST5260 (n = 17) were primarily acquired in southern Europe, ST1954 (n = 15) in Africa, ST343 (n = 11) and ST2063 (n = 8) primarily in Asia. Part of the European cluster was further divided into a Greek (n = 10) and a Cypriot (n = 4) cluster. All isolates in the African cluster displayed resistance to ≥ 1 class of antimicrobials, while resistance was rare in the other clusters.

Conclusion

Whole genome sequencing of Chester in Norway showed four geographically distinct clusters, with a possible outbreak occurring during summer 2016 related to Greece. We recommend public health institutes to implement cgMLST-based real-time surveillance for early and accurate detection of future outbreaks and further development of cluster cut-offs.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.4.1800186
2019-01-24
2019-02-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2019.24.4.1800186
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/4/eurosurv-24-4-7.html?itemId=/content/10.2807/1560-7917.ES.2019.24.4.1800186&mimeType=html&fmt=ahah

References

  1. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal. 2017;15(12):5077.
  2. Fonteneau L, Jourdan Da Silva N, Fabre L, Ashton P, Torpdahl M, Müller L, et al. Multinational outbreak of travel-related Salmonella Chester infections in Europe, summers 2014 and 2015. Euro Surveill. 2017;22(7):30463.  https://doi.org/10.2807/1560-7917.ES.2017.22.7.30463  PMID: 28230522 
  3. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015;13(12):4329.
  4. Taylor J, Galanis E, Wilcott L, Hoang L, Stone J, Ekkert J, et al. An outbreak of salmonella chester infection in Canada: rare serotype, uncommon exposure, and unusual population demographic facilitate rapid identification of food vehicle. J Food Prot. 2012;75(4):738-42.  https://doi.org/10.4315/0362-028X.JFP-11-408  PMID: 22488063 
  5. Centers for Disease Control and Prevention (CDC). Multistate outbreak of salmonella chester infections associated with frozen meals -- 18 states, 2010. MMWR Morb Mortal Wkly Rep. 2013;62(48):979-82. PMID: 24304829 
  6. Guo Z, Su Ch, Huang J, Niu J. A food-borne outbreak of gastroenteritis caused by different Salmonella serotypes in 2 universities in Xiamen, Fujian, China, in 2012. Jpn J Infect Dis. 2015;68(3):187-91.  https://doi.org/10.7883/yoken.JJID.2014.235  PMID: 25672350 
  7. O’Grady KA, Krause V. An outbreak of salmonellosis linked to a marine turtle. Southeast Asian J Trop Med Public Health. 1999;30(2):324-7. PMID: 10774704 
  8. OzFoodNet Working Group. Burden and causes of foodborne disease in Australia: Annual report of the OzFoodNet network, 2005. Commun Dis Intell Q Rep. 2006;30(3):278-300. PMID: 17120483 
  9. Eurobarometer F. 392. Preferences of Europeans toward tourism. Brussels: European Commission; 2014. Available from: http://ec.europa.eu/commfrontoffice/publicopinion/flash/fl_392_en.pdf
  10. Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. Paris: Institut Pasteur; 2007. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.231.3561&rep=rep1&type=pdf
  11. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol. 2015;53(5):1685-92.  https://doi.org/10.1128/JCM.00323-15  PMID: 25762776 
  12. Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14(4):e1007261.  https://doi.org/10.1371/journal.pgen.1007261  PMID: 29621240 
  13. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One. 2014;9(8):e104984.  https://doi.org/10.1371/journal.pone.0104984  PMID: 25110940 
  14. Ahrenfeldt J, Skaarup C, Hasman H, Pedersen AG, Aarestrup FM, Lund O. Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods. BMC Genomics. 2017;18(1):19.  https://doi.org/10.1186/s12864-016-3407-6  PMID: 28056767 
  15. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-26. PMID: 8336541 
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9.  https://doi.org/10.1093/molbev/mst197  PMID: 24132122 
  17. Hunter PR. Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol. 1990;28(9):1903-5. PMID: 2229371 
  18. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1. Växjö: EUCAST; 2017. Available from: http://www.eucast.org.
  19. NORM/NORM-VET. 2016. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromso/Oslo: University Hospital of North Norway and Norwegian Veterinary Institute; 2017. Available from: https://unn.no/Documents/Kompetansetjenester,%20-sentre%20og%20fagr%C3%A5d/NORM%20-%20Norsk%20overv%C3%A5kingssystem%20for%20antibiotikaresistens%20hos%20mikrober/Rapporter/NORM%20NORM-VET%202016.pdf
  20. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895-903.  https://doi.org/10.1128/AAC.02412-14  PMID: 24777092 
  21. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  22. Bekal S, Berry C, Reimer AR, Van Domselaar G, Beaudry G, Fournier E, et al. Usefulness of high-quality core genome single-nucleotide variant analysis for subtyping the highly clonal and the most prevalent Salmonella enterica serovar Heidelberg clone in the context of outbreak investigations. J Clin Microbiol. 2016;54(2):289-95.  https://doi.org/10.1128/JCM.02200-15  PMID: 26582830 
  23. Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One. 2014;9(2):e87991.  https://doi.org/10.1371/journal.pone.0087991  PMID: 24505344 
  24. Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol. 2018;274:1-11.  https://doi.org/10.1016/j.ijfoodmicro.2018.02.023  PMID: 29574242 
  25. Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, Allerberger F, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol. 2015;53(9):2869-76.  https://doi.org/10.1128/JCM.01193-15  PMID: 26135865 
  26. de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, et al. Core genome multilocus sequence typing scheme for high- resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53(12):3788-97.  https://doi.org/10.1128/JCM.01946-15  PMID: 26400782 
  27. MacDonald E, White R, Mexia R, Bruun T, Kapperud G, Brandal LT, et al. The role of domestic reservoirs in domestically acquired Salmonella infections in Norway: epidemiology of salmonellosis, 2000-2015, and results of a national prospective case-control study, 2010-2012. Epidemiol Infect. 2018;15:1-8.  https://doi.org/10.1017/S0950268818002911  PMID: 30428947 
  28. Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect. 2018;24(4):350-4.  https://doi.org/10.1016/j.cmi.2017.12.016  PMID: 29309930 
  29. Saltykova A, Wuyts V, Mattheus W, Bertrand S, Roosens NHC, Marchal K, et al. Comparison of SNP-based subtyping workflows for bacterial isolates using WGS data, applied to Salmonella enterica serotype Typhimurium and serotype 1,4,[5],12:i. PLoS One. 2018;13(2):e0192504.  https://doi.org/10.1371/journal.pone.0192504  PMID: 29408896 
  30. Horwitz MA, Pollard RA, Merson MH, Martin SM. A large outbreak of foodborne salmonellosis on the Navajo Nation Indian Reservation, epidemiology and secondary transmission. Am J Public Health. 1977;67(11):1071-6.  https://doi.org/10.2105/AJPH.67.11.1071  PMID: 911019 
  31. Sirinavin S, Garner P. Antibiotics for treating salmonella gut infections. Cochrane Database Syst Rev. 2000; (2):CD001167. PMID: 10796610 
  32. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA. 2015;112(18):5649-54.  https://doi.org/10.1073/pnas.1503141112  PMID: 25792457 
  33. Kagambèga A, Lienemann T, Aulu L, Traoré AS, Barro N, Siitonen A, et al. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiol. 2013;13(1):253.  https://doi.org/10.1186/1471-2180-13-253  PMID: 24215206 
  34. Shilangale RP, Di Giannatale E, Chimwamurombe PM, Kaaya GP. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia. Vet Ital. 2012;48(2):125-32. PMID: 22718330 
  35. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(6):2227-38.  https://doi.org/10.1128/AAC.01707-08  PMID: 19307361 
/content/10.2807/1560-7917.ES.2019.24.4.1800186
Loading

Data & Media loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error