1887
Research Open Access
Like 0

Abstract

Background

Tick-borne diseases have become increasingly common in recent decades and present a health problem in many parts of Europe. Control and prevention of these diseases require a better understanding of vector distribution.

Aim

Our aim was to create a model able to predict the distribution of nymphs in southern Scandinavia and to assess how this relates to risk of human exposure.

Methods

We measured the presence of tick nymphs at 159 stratified random lowland forest and meadow sites in Denmark, Norway and Sweden by dragging 400 m transects from August to September 2016, representing a total distance of 63.6 km. Using climate and remote sensing environmental data and boosted regression tree modelling, we predicted the overall spatial distribution of nymphs in Scandinavia. To assess the potential public health impact, we combined the predicted tick distribution with human density maps to determine the proportion of people at risk.

Results

Our model predicted the spatial distribution of nymphs with a sensitivity of 91% and a specificity of 60%. Temperature was one of the main drivers in the model followed by vegetation cover. Nymphs were restricted to only 17.5% of the modelled area but, respectively, 73.5%, 67.1% and 78.8% of the human populations lived within 5 km of these areas in Denmark, Norway and Sweden.

Conclusion

The model suggests that increasing temperatures in the future may expand tick distribution geographically in northern Europe, but this may only affect a small additional proportion of the human population.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.9.1800101
2019-02-28
2019-06-26
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2019.24.9.1800101
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/9/eurosurv-24-9-5.html?itemId=/content/10.2807/1560-7917.ES.2019.24.9.1800101&mimeType=html&fmt=ahah

References

  1. Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013;43(12-13):1059-77.  https://doi.org/10.1016/j.ijpara.2013.06.009  PMID: 23911308 
  2. Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, et al. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasit Vectors. 2014;7(1):11.  https://doi.org/10.1186/1756-3305-7-11  PMID: 24401487 
  3. Skarphédinsson S, Jensen PM, Kristiansen K. Survey of tickborne infections in Denmark. Emerg Infect Dis. 2005;11(7):1055-61.  https://doi.org/10.3201/eid1107.041265  PMID: 16022780 
  4. Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors. 2012;5(1):8.  https://doi.org/10.1186/1756-3305-5-8  PMID: 22233771 
  5. Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors. 2011;4(1):84.  https://doi.org/10.1186/1756-3305-4-84  PMID: 21595949 
  6. Estrada-Peña A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 2014;108:104-28.  https://doi.org/10.1016/j.antiviral.2014.05.016  PMID: 24925264 
  7. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6(1):1-11.  https://doi.org/10.1186/1756-3305-6-1  PMID: 23281838 
  8. Andreassen A, Jore S, Cuber P, Dudman S, Tengs T, Isaksen K, et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit Vectors. 2012;5(1):177.  https://doi.org/10.1186/1756-3305-5-177  PMID: 22913287 
  9. Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16-8.  https://doi.org/10.1016/S0140-6736(00)05250-8  PMID: 11454371 
  10. Paulsen KM, Pedersen BN, Soleng A, Okbaldet YB, Pettersson JH-O, Dudman SG, et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. APMIS. 2015;123(9):759-64.  https://doi.org/10.1111/apm.12412  PMID: 26126504 
  11. Soleng A, Edgar KS, Paulsen KM, Pedersen BN, Okbaldet YB, Skjetne IEB, et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick Borne Dis. 2018;9(1):97-103.  https://doi.org/10.1016/j.ttbdis.2017.10.002  PMID: 29030314 
  12. Jaenson TGT, Lindgren E. The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis. 2011;2(1):44-9.  https://doi.org/10.1016/j.ttbdis.2010.10.006  PMID: 21771536 
  13. Jaenson TGT, Eisen L, Comstedt P, Mejlon HA, Lindgren E, Bergström S, et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med Vet Entomol. 2009;23(3):226-37.  https://doi.org/10.1111/j.1365-2915.2009.00813.x  PMID: 19712153 
  14. Zeimes CB, Olsson GE, Hjertqvist M, Vanwambeke SO. Shaping zoonosis risk: landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit Vectors. 2014;7(1):370.  https://doi.org/10.1186/1756-3305-7-370  PMID: 25128197 
  15. European Centre for Disease Prevention and Control (ECDC). Country profile: Sweden. Tick-borne encephalitis (TBE). Stockholm: ECDC; 2012. Available from: https://ecdc.europa.eu/en/publications-data/country-profile-sweden-tick-borne-encephalitis-tbe
  16. Fomsgaard A, Christiansen C, Bødker R. First identification of tick-borne encephalitis in Denmark outside of Bornholm, August 2009. Euro Surveill. 2009;14(36):1-2. PMID: 19758543 
  17. Fomsgaard A, Fertner ME, Essbauer S, Nielsen AY, Frey S, Lindblom P, et al. Tick-borne encephalitis virus, Zealand, Denmark, 2011. Emerg Infect Dis. 2013;19(7):1171-3.  https://doi.org/10.3201/eid1907.130092  PMID: 23764123 
  18. Randolph SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond B Biol Sci. 2001;356(1411):1045-56.  https://doi.org/10.1098/rstb.2001.0893  PMID: 11516382 
  19. Hvidsten D, Stordal F, Lager M, Rognerud B, Kristiansen B-E, Matussek A, et al. Borrelia burgdorferi sensu lato-infected Ixodes ricinus collected from vegetation near the Arctic Circle. Ticks Tick Borne Dis. 2015;6(6):768-73.  https://doi.org/10.1016/j.ttbdis.2015.07.002  PMID: 26187417 
  20. Lindström A, Jaenson TGT. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J Med Entomol. 2003;40(4):375-8.  https://doi.org/10.1603/0022-2585-40.4.375  PMID: 14680099 
  21. Landbo AS, Flöng PT. Borrelia burgdorferi infection in Ixodes ricinus from habitats in Denmark. Med Vet Entomol. 1992;6(2):165-7.  https://doi.org/10.1111/j.1365-2915.1992.tb00596.x  PMID: 1421487 
  22. Jensen PM, Hansen H, Frandsen FPer Moestrup Jensen, Hanna Hansen. Spatial risk assessment for Lyme borreliosis in Denmark. Scand J Infect Dis. 2000;32(5):545-50.  https://doi.org/10.1080/003655400458857  PMID: 11055662 
  23. Mehl R. The distribution and host relations of Norwegian ticks (Acari, Ixodides). Fauna Norv Ser B. 1983;31:46-58.
  24. Estrada-Peña A, Farkas R, Jaenson TGT, Koenen F, Madder M, Pascucci I, et al. Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set. Exp Appl Acarol. 2013;59(3):351-66.  https://doi.org/10.1007/s10493-012-9600-7  PMID: 22843316 
  25. Brownstein JS, Holford TR, Fish D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect. 2003;111(9):1152-7.  https://doi.org/10.1289/ehp.6052  PMID: 12842766 
  26. Estrada-Peña A. Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery. J Med Entomol. 1998;35(6):989-95.  https://doi.org/10.1093/jmedent/35.6.989  PMID: 9835691 
  27. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3(1):72.  https://doi.org/10.1186/1756-3305-3-72  PMID: 20712879 
  28. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77(4):802-13.  https://doi.org/10.1111/j.1365-2656.2008.01390.x  PMID: 18397250 
  29. Van Doninck J, De Baets B, Peters J, Hendrickx G, Ducheyne E, Verhoest N. Modelling the spatial distribution of Culicoides imicola: climatic versus remote sensing data. Remote Sens. 2014;6(7):6604-19.  https://doi.org/10.3390/rs6076604 
  30. Ducheyne E, Miranda Chueca MA, Lucientes J, Calvete C, Estrada R, Boender GJ, et al. Abundance modelling of invasive and indigenous Culicoides species in Spain. Geospat Health. 2013;8(1):241-54.  https://doi.org/10.4081/gh.2013.70  PMID: 24258899 
  31. Lühken R, Gethmann JM, Kranz P, Steffenhagen P, Staubach C, Conraths FJ, et al. Comparison of single- and multi-scale models for the prediction of the Culicoides biting midge distribution in Germany. Geospat Health. 2016;11(2):405.  https://doi.org/10.4081/gh.2016.405  PMID: 27245797 
  32. Peters J, De Baets B, Van Doninck J, Calvete C, Lucientes J, De Clercq EM, et al. Absence reduction in entomological surveillance data to improve niche-based distribution models for Culicoides imicola. Prev Vet Med. 2011;100(1):15-28.  https://doi.org/10.1016/j.prevetmed.2011.03.004  PMID: 21496932 
  33. Medley KA. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr. 2010;19(1):122-33.  https://doi.org/10.1111/j.1466-8238.2009.00497.x 
  34. Khatchikian C, Sangermano F, Kendell D, Livdahl T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med Vet Entomol. 2011;25(3):268-75.  https://doi.org/10.1111/j.1365-2915.2010.00935.x  PMID: 21198711 
  35. Furlanello C, Neteler M, Merler S, Menegon S, Fontanari S, Donini A, et al. GIS and the random forest predictor: integration in R for tick-borne disease risk assessment. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003).20-22 Mar 2003. Vienna, Austria. Available from: https://www.r-project.org/conferences/DSC-2003/Proceedings/FurlanelloEtAl.pdf
  36. Springer YP, Jarnevich CS, Barnett DT, Monaghan AJ, Eisen RJ. Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am J Trop Med Hyg. 2015;93(4):875-90.  https://doi.org/10.4269/ajtmh.15-0330  PMID: 26217042 
  37. Adalsteinsson SA, D’Amico V, Shriver WG, Brisson D, Buler JJ. Scale-dependent effects of nonnative plant invasion on host-seeking tick abundance. Peters DPC, editor. Ecosphere. 2016;7(3):e01317.
  38. Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans R Soc Trop Med Hyg. 2015;109(8):503-13.  https://doi.org/10.1093/trstmh/trv050  PMID: 26142451 
  39. Horobik V, Keesing F, Ostfeld RS. Abundance and Borrelia burgdorferi-infection prevalence of nymphal Ixodes scapularis ticks along forest–field edges. EcoHealth. 2006;3(4):262-8.  https://doi.org/10.1007/s10393-006-0065-1 
  40. Jackson LE, Hilborn ED, Thomas JC. Towards landscape design guidelines for reducing Lyme disease risk. Int J Epidemiol. 2006;35(2):315-22.  https://doi.org/10.1093/ije/dyi284  PMID: 16394113 
  41. Glass GE, Schwartz BS, Morgan JM 3rd, Johnson DT, Noy PM, Israel E. Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health. 1995;85(7):944-8.  https://doi.org/10.2105/AJPH.85.7.944  PMID: 7604918 
  42. Eisen RJ, Lane RS, Fritz CL, Eisen L. Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg. 2006;75(4):669-76.  https://doi.org/10.4269/ajtmh.2006.75.669  PMID: 17038692 
  43. MODIS v5: Temporal Fourier Analysis (TFA). Imagery update 2001-12. PALE-Blu Data Portal; 2014. Available from: https://www.edenextdata.com/?q=content/modis-v5-temporal-fourier-analysis-tfa-imagery-update-2001-12
  44. Corine land cover 2006 raster data. Copernicus programme; 2010. Available from: https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster
  45. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2017. Available from: http://www.R-project.org/
  46. Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. New York: Columbia University. [Accessed: 12 Aug 2017. Available from: http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
  47. Bernes C. Biologisk mångfald i Sverige. [Biological diversity in Sweden]. Stockholm: Naturvårdsverket; 2011. Swedish.
  48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965-78.  https://doi.org/10.1002/joc.1276 
  49. Food and Agriculture Organization (FAO), International Institute for Applied Systems Analysis (IIASA), ISRIC-World Soil Information, Institute of Soil Science, Chinese Academy of Sciences, Joint Research Centre of the European Commission. Harmonized world soil database v 1.2. Rome: FAO and Laxenburg: IIASA; 2009.
/content/10.2807/1560-7917.ES.2019.24.9.1800101
Loading

Data & Media loading...

Supplementary data

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error