1887
Rapid communication Open Access
Like 0

Abstract

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3–23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.11.2000266
2020-03-19
2024-09-17
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.11.2000266
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/11/eurosurv-25-11-4.html?itemId=/content/10.2807/1560-7917.ES.2020.25.11.2000266&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Novel Coronavirus (2019-nCoV) Situation report - 1. Geneva: WHO, 21 Jan 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf
  2. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3).  https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045  PMID: 31992387 
  3. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.  https://doi.org/10.1038/s41586-020-2008-3  PMID: 32015508 
  4. Korzyukov Y, Hetzel U, Kipar A, Vapalahti O, Hepojoki J. Generation of anti-boa immunoglobulin antibodies for serodiagnostic applications, and their use to detect anti-reptarenavirus antibodies in boa constrictor. PLoS One. 2016;11(6):e0158417.  https://doi.org/10.1371/journal.pone.0158417  PMID: 27355360 
  5. Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998;36(2):539-42.  https://doi.org/10.1128/JCM.36.2.539-542.1998  PMID: 9466772 
  6. Ziegler T, Matikainen S, Rönkkö E, Osterlund P, Sillanpää M, Sirén J, et al. Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol. 2005;79(21):13800-5.  https://doi.org/10.1128/JVI.79.21.13800-13805.2005  PMID: 16227300 
  7. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020;25(5).  https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062  PMID: 32046819 
  8. European Centre for Disease Prevention and Control (ECDC). Novel coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK – sixth update. Stockholm: ECDC, 12 Mar 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-novel-coronavirus-disease-2019-covid-19-pandemic-increased
  9. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121-3.  https://doi.org/10.1093/bioinformatics/bty407  PMID: 29790939 
  10. World Health Organization (WHO). Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. ISBN 978-92-4-000097-1. Geneva: WHO; 17 Jan 2020. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiOw-i44ZLoAhWWFcAKHZmJCIoQFjAAegQIBBAB&url=https%3A%2F%2Fapps.who.int%2Firis%2Frest%2Fbitstreams%2F1266309%2Fretrieve&usg=AOvVaw1YNVgNwua9Dpj5c-PSD5c8
  11. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9.  https://doi.org/10.1080/22221751.2020.1729071  PMID: 32065057 
  12. Bai SL, Wang JY, Zhou YQ, Yu DS, Gao XM, Li LL, et al. [Analysis of the first cluster of cases in a family of novel coronavirus pneumonia in Gansu Province]. Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(0):E005. Chinese. PMID: 32064855 
  13. Chen X, Zhou B, Li M, Liang X, Wang H, Yang G, et al. Serology of severe acute respiratory syndrome: implications for surveillance and outcome. J Infect Dis. 2004;189(7):1158-63.  https://doi.org/10.1086/380397  PMID: 15031782 
  14. Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J Med Virol. 2020;92(5):512-7.  https://doi.org/10.1002/jmv.25715  PMID: 32073157 
  15. Woo PC, Lau SK, Wong BH, Chan KH, Hui WT, Kwan GS, et al. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol. 2004;42(12):5885-8.  https://doi.org/10.1128/JCM.42.12.5885-5888.2004  PMID: 15583332 
  16. Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-72.  https://doi.org/10.1016/S0140-6736(03)13412-5  PMID: 12781535 
  17. Chen L, Xiong J, Bao L, Yuan S. Convalescent plasma as a potential therapy for COVID-19. The Lancet Infectious Diseases. Available online 27 February 2020.Forthcoming.  https://doi.org/10.1016/S1473-3099(20)30141-9 
  18. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease. Pre-print. 2019medRxiv 2020.03.02.20030189.
  19. Al Kahlout RA, Nasrallah GK, Farag EA, Wang L, Lattwein E, Müller MA, et al. Comparative serological study for the prevalence of anti-MERS coronavirus antibodies in high- and low-risk groups in Qatar. J Immunol Res. 2019;2019:1386740.  https://doi.org/10.1155/2019/1386740  PMID: 30906787 
  20. Leung GM, Lim WW, Ho LM, Lam TH, Ghani AC, Donnelly CA, et al. Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups. Epidemiol Infect. 2006;134(2):211-21.  https://doi.org/10.1017/S0950268805004826  PMID: 16490123 
  21. Che XY, Qiu LW, Liao ZY, Wang YD, Wen K, Pan YX, et al. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis. 2005;191(12):2033-7.  https://doi.org/10.1086/430355  PMID: 15897988 
  22. Dijkman R, Jebbink MF, El Idrissi NB, Pyrc K, Müller MA, Kuijpers TW, et al. Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol. 2008;46(7):2368-73.  https://doi.org/10.1128/JCM.00533-08  PMID: 18495857 
  23. Wu XD, Shang B, Yang RF, Yu H, Ma ZH, Shen X, et al. The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells. Cell Res. 2004;14(5):400-6.  https://doi.org/10.1038/sj.cr.7290240  PMID: 15450134 
/content/10.2807/1560-7917.ES.2020.25.11.2000266
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error