1887
Research Open Access
Like 0

Abstract

Background

The successful pneumococcal clone Spain9V-ST156 (PMEN3) is usually associated with vaccine serotypes 9V and 14.

Aim

Our objective was to analyse the increase of a serotype 11A variant of PMEN3 as cause of invasive pneumococcal disease (IPD) in Spain and its spread in south-western Europe.

Methods

We conducted a prospective multicentre study of adult IPD in Spain (2008–16). Furthermore, a subset of 61 penicillin-resistant serotype 11A isolates from France, Italy, Portugal and Spain were subjected to whole genome sequencing (WGS) and compared with 238 genomes from the European Nucleotide Archive (ENA).

Results

Although the incidence of serotype 11A in IPD was stable, a clonal shift was detected from CC62 (penicillin-susceptible) to CC156 (penicillin-resistant). By WGS, three major 11A-CC156 lineages were identified, linked to ST156 (n = 5 isolates; France, Italy and Portugal), ST166 (n = 4 isolates; France and Portugal) and ST838/6521 (n = 52 isolates; France, Portugal and Spain). Acquisition of the 11A capsule allowed to escape vaccine effect. AP200 (11A-ST62) was the donor for ST156 and ST838/6521 but not for ST166. In-depth analysis of ST838/6521 lineage showed two multi-fragment recombination events including four and seven fragments from an 11A-ST62 and an NT-ST344 representative, respectively.

Conclusion

The increase in penicillin-resistant serotype 11A IPD in Spain was linked to the spread of a vaccine escape PMEN3 recombinant clone. Several recombination events were observed in PMEN3 acquiring an 11A capsule. The most successful 11A-PMEN3 lineage spreading in south-western Europe appeared after two multi-fragment recombination events with representatives of two major pneumococcal clones (11A-ST62 and NT-ST344).

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.16.1900457
2020-04-23
2024-09-17
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.16.1900457
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/16/eurosurv-25-16-6.html?itemId=/content/10.2807/1560-7917.ES.2020.25.16.1900457&mimeType=html&fmt=ahah

References

  1. Càmara J, Marimón JM, Cercenado E, Larrosa N, Quesada MD, Fontanals D, et al. Decrease of invasive pneumococcal disease (IPD) in adults after introduction of pneumococcal 13-valent conjugate vaccine in Spain. PLoS One. 2017;12(4):e0175224.  https://doi.org/10.1371/journal.pone.0175224  PMID: 28384325 
  2. Grau I, Ardanuy C, Cubero M, Benitez MA, Liñares J, Pallares R. Declining mortality from adult pneumococcal infections linked to children’s vaccination. J Infect. 2016;72(4):439-49.  https://doi.org/10.1016/j.jinf.2016.01.011  PMID: 26868606 
  3. Càmara J, Ardanuy C. Pneumococcal disease and conjugate vaccines. Enferm Infecc Microbiol Clin. 2018;36(10):605-6.  https://doi.org/10.1016/j.eimc.2018.07.012  PMID: 30220517 
  4. Golden AR, Adam HJ, Karlowsky JA, Baxter M, Nichol KA, Martin I, et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: the SAVE study, 2011-15. J Antimicrob Chemother. 2018;73(7) suppl_7;vii20-31.  https://doi.org/10.1093/jac/dky157  PMID: 29982573 
  5. Sá-Leão R, Pinto F, Aguiar S, Nunes S, Carriço JA, Frazão N, et al. Analysis of invasiveness of pneumococcal serotypes and clones circulating in Portugal before widespread use of conjugate vaccines reveals heterogeneous behavior of clones expressing the same serotype. J Clin Microbiol. 2011;49(4):1369-75.  https://doi.org/10.1128/JCM.01763-10  PMID: 21270219 
  6. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother. 2014;58(11):6484-9.  https://doi.org/10.1128/AAC.03344-14  PMID: 25136018 
  7. Lindstrand A, Galanis I, Darenberg J, Morfeldt E, Naucler P, Blennow M, et al. Unaltered pneumococcal carriage prevalence due to expansion of non-vaccine types of low invasive potential 8years after vaccine introduction in Stockholm, Sweden. Vaccine. 2016;34(38):4565-71.  https://doi.org/10.1016/j.vaccine.2016.07.031  PMID: 27473304 
  8. Hanage WP, Kaijalainen TH, Syrjänen RK, Auranen K, Leinonen M, Mäkelä PH, et al. Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect Immun. 2005;73(1):431-5.  https://doi.org/10.1128/IAI.73.1.431-435.2005  PMID: 15618181 
  9. Shoji H, Vázquez-Sánchez DA, Gonzalez-Diaz A, Cubero M, Tubau F, Santos S, et al. Overview of pneumococcal serotypes and genotypes causing diseases in patients with chronic obstructive pulmonary disease in a Spanish hospital between 2013 and 2016. Infect Drug Resist. 2018;11:1387-400.  https://doi.org/10.2147/IDR.S165093  PMID: 30214260 
  10. Aguinagalde L, Corsini B, Domenech A, Domenech M, Cámara J, Ardanuy C, et al. Emergence of amoxicillin-resistant variants of Spain9V-ST156 pneumococci expressing serotype 11A correlates with their ability to evade the host immune response. PLoS One. 2015;10(9):e0137565.  https://doi.org/10.1371/journal.pone.0137565  PMID: 26368279 
  11. Ardanuy C, Fenoll A, Berrón S, Calatayud L, Liñares J. Increase of the M phenotype among erythromycin-resistant Streptococcus pneumoniae isolates from Spain related to the serotype 14 variant of the Spain9V-3 clone. Antimicrob Agents Chemother. 2006;50(9):3162-5.  https://doi.org/10.1128/AAC.00269-06  PMID: 16940119 
  12. González-Díaz A, Càmara J, Ercibengoa M, Cercenado E, Larrosa N, Quesada MD, et al. Emerging non-13-valent pneumococcal conjugate vaccine (PCV13) serotypes causing adult invasive pneumococcal disease in the late-PCV13 period in Spain. Clin Microbiol Infect. 2019;S1198-743X(19)30589-0.  https://doi.org/10.1016/j.cmi.2019.10.034  PMID: 31756452 
  13. Coffey TJ, Daniels M, Enright MC, Spratt BG. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology. 1999;145(Pt 8):2023-31.  https://doi.org/10.1099/13500872-145-8-2023  PMID: 10463168 
  14. Enright MC, Fenoll A, Griffiths D, Spratt BG. The three major Spanish clones of penicillin-resistant Streptococcus pneumoniae are the most common clones recovered in recent cases of meningitis in Spain. J Clin Microbiol. 1999;37(10):3210-6.  https://doi.org/10.1128/JCM.37.10.3210-3216.1999  PMID: 10488179 
  15. Càmara J, Cubero M, Martín-Galiano AJ, García E, Grau I, Nielsen JB, et al. Evolution of the β-lactam-resistant Streptococcus pneumoniae PMEN3 clone over a 30 year period in Barcelona, Spain. J Antimicrob Chemother. 2018;73(11):2941-51.  https://doi.org/10.1093/jac/dky305  PMID: 30165641 
  16. Centers for Disease Control and Prevention (CDC). National Notifiable Diseases Surveillance System (NNDSS). Invasive Pneumococcal Disease (IPD) (Streptococcus pneumoniae). Atlanta: CDC. [Accessed: 2 Apr 2020]. Available from: http://wwwn.cdc.gov/nndss/conditions/invasive-pneumococcal-disease/case-definition/2010/).
  17. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. 2019. [Accessed: 2 Apr 2020]. Available from: http://www.eucast.org.
  18. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233-9.  https://doi.org/10.1128/JCM.33.9.2233-2239.1995  PMID: 7494007 
  19. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998;144(Pt 11):3049-60.  https://doi.org/10.1099/00221287-144-11-3049  PMID: 9846740 
  20. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.  https://doi.org/10.1093/bioinformatics/btu170  PMID: 24695404 
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77.  https://doi.org/10.1089/cmb.2012.0021  PMID: 22506599 
  22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.  https://doi.org/10.1371/journal.pone.0112963  PMID: 25409509 
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.  https://doi.org/10.1093/bioinformatics/btu153  PMID: 24642063 
  24. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566-73.  https://doi.org/10.1093/nar/gkw1004  PMID: 27789705 
  25. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  26. Epping L, van Tonder AJ, Gladstone RA, Bentley SD, Page AJ, Keane JA, et al. SeroBA: rapid high-throughput serotyping of Streptococcus pneumoniae from whole genome sequence data. Microb Genom. 2018;4(7).  https://doi.org/10.1099/mgen.0.000186  PMID: 29870330 
  27. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524.  https://doi.org/10.1186/s13059-014-0524-x  PMID: 25410596 
  28. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172(4):2665-81.  https://doi.org/10.1534/genetics.105.048975  PMID: 16489234 
  29. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. 2016;2(11):e000093.  https://doi.org/10.1099/mgen.0.000093  PMID: 28348833 
  30. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2006;2(3):e31.  https://doi.org/10.1371/journal.pgen.0020031  PMID: 16532061 
  31. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-5.  https://doi.org/10.1093/bioinformatics/btz305  PMID: 31070718 
  32. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394-403.  https://doi.org/10.1101/gr.2289704  PMID: 15231754 
  33. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15.  https://doi.org/10.1093/nar/gku1196  PMID: 25414349 
  34. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2018;34(2):292-3.  https://doi.org/10.1093/bioinformatics/btx610  PMID: 29028899 
  35. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3.  https://doi.org/10.1093/bioinformatics/btv421  PMID: 26198102 
  36. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17(1):1-9.  https://doi.org/10.1186/s13059-016-1108-8 
  37. Centers for Disease Control and Prevention (CDC). Streptococcus Laboratory. minimum inhibitory concentrations (MICs) for β-lactam Antibiotics Predicted by Penicillin Binding Protein Gene Types. Atlanta: CDC. [Accessed: 4 Sep 2019]. Available from: https://www.cdc.gov/streplab/pneumococcus/mic.html#
  38. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE Jr, Walker H, et al. Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics. 2017;18(1):621.  https://doi.org/10.1186/s12864-017-4017-7  PMID: 28810827 
  39. Morales M, Ludwig G, Ercibengoa M, Esteva C, Sanchez-Encinales V, Alonso M, et al. Changes in the serotype distribution of Streptococcus pneumoniae causing otitis media after PCV13 introduction in Spain. PLoS One. 2018;13(12):e0209048.  https://doi.org/10.1371/journal.pone.0209048  PMID: 30562385 
  40. Manna S, Ortika BD, Dunne EM, Holt KE, Kama M, Russell FM, et al. A novel genetic variant of Streptococcus pneumoniae serotype 11A discovered in Fiji. Clin Microbiol Infect. 2018;24(4):428.e1-7.  https://doi.org/10.1016/j.cmi.2017.06.031  PMID: 28736074 
  41. Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, Feltwell T, et al. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet. 2013;9(10):e1003868.  https://doi.org/10.1371/journal.pgen.1003868  PMID: 24130509 
  42. Camilli R, Bonnal RJP, Del Grosso M, Iacono M, Corti G, Rizzi E, et al. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol. 2011;11(1):25.  https://doi.org/10.1186/1471-2180-11-25  PMID: 21284853 
  43. Keller LE, Robinson DA, McDaniel LS. Nonencapsulated Streptococcus pneumoniae: Emergence and pathogenesis. MBio. 2016;7(2):e01792.  https://doi.org/10.1128/mBio.01792-15  PMID: 27006456 
  44. Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S, Sá-Leão R, et al. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol. 2014;6(12):3281-94.  https://doi.org/10.1093/gbe/evu263  PMID: 25480686 
  45. Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A, Liñares J, et al. The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success. Genome Biol. 2012;13(11):R103.  https://doi.org/10.1186/gb-2012-13-11-r103  PMID: 23158461 
  46. Cowley LA, Petersen FC, Junges R, Jimson D Jimenez M, Morrison DA, Hanage WP. Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet. 2018;14(6):e1007410.  https://doi.org/10.1371/journal.pgen.1007410  PMID: 29897968 
  47. Moscoso M, García E, López R. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol. 2006;188(22):7785-95.  https://doi.org/10.1128/JB.00673-06  PMID: 16936041 
/content/10.2807/1560-7917.ES.2020.25.16.1900457
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error