Surveillance Open Access
Like 0



Carbapenemase-producing are increasing worldwide. In recent years, an increase in OXA-244-producing isolates has been seen in the national surveillance of carbapenemase-producing organisms in Denmark.


Molecular characterisation and epidemiological investigation of OXA-244-producing isolates from January 2016 to August 2019.


For the epidemiological investigation, data from the Danish National Patient Registry and the Danish register of civil registration were used together with data from phone interviews with patients. Isolates were characterised by analysing whole genome sequences for resistance genes, MLST and core genome MLST (cgMLST).


In total, 24 OXA-244-producing isolates were obtained from 23 patients. Among the 23 patients, 13 reported travelling before detection of the isolates, with seven having visited countries in Northern Africa. Fifteen isolates also carried an extended-spectrum beta-lactamase gene and one had a plasmid-encoded AmpC gene. The most common detected sequence type (ST) was ST38, followed by ST69, ST167, ST10, ST361 and ST3268. Three clonal clusters were detected by cgMLST, but none of these clusters seemed to reflect nosocomial transmission in Denmark.


Import of OXA-244 isolates from travelling abroad seems likely for the majority of cases. Community sources were also possible, as many of the patients had no history of hospitalisation and many of the isolates belonged to STs that are present in the community. It was not possible to point at a single country or a community source as risk factor for acquiring OXA-244-producing .


Article metrics loading...

Loading full text...

Full text loading...



  1. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB) - structure and function. J Enzyme Inhib Med Chem. 2017;32(1):917-9.  https://doi.org/10.1080/14756366.2017.1344235  PMID: 28719998 
  2. Oteo J, Hernández JM, Espasa M, Fleites A, Sáez D, Bautista V, et al. Emergence of OXA-48-producing Klebsiella pneumoniae and the novel carbapenemases OXA-244 and OXA-245 in Spain. J Antimicrob Chemother. 2013;68(2):317-21.  https://doi.org/10.1093/jac/dks383  PMID: 23034714 
  3. Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D, Hill R, et al. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother. 2017;72(5):1340-9.  https://doi.org/10.1093/jac/dkx012  PMID: 28199647 
  4. Hoyos-Mallecot Y, Naas T, Bonnin RA, Patino R, Glaser P, Fortineau N, et al. OXA-244-producing Escherichia coli isolates, a challenge for clinical microbiology laboratories. Antimicrob Agents Chemother. 2017;61(9):e00818-17.  https://doi.org/10.1128/AAC.00818-17  PMID: 28674064 
  5. Valenza G, Nickel S, Pfeifer Y, Eller C, Krupa E, Lehner-Reindl V, et al. Extended-spectrum-β-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob Agents Chemother. 2014;58(2):1228-30.  https://doi.org/10.1128/AAC.01993-13  PMID: 24295972 
  6. van Hattem JM, Arcilla MS, Bootsma MC, van Genderen PJ, Goorhuis A, Grobusch MP, et al. Prolonged carriage and potential onward transmission of carbapenemase-producing Enterobacteriaceae in Dutch travelers. Future Microbiol. 2016;11(7):857-64.  https://doi.org/10.2217/fmb.16.18  PMID: 27357522 
  7. Tafoukt R, Touati A, Leangapichart T, Bakour S, Rolain J-M. Characterization of OXA-48-like-producing Enterobacteriaceae isolated from river water in Algeria. Water Res. 2017;120:185-9.  https://doi.org/10.1016/j.watres.2017.04.073  PMID: 28486169 
  8. Diab M, Hamze M, Bonnet R, Saras E, Madec J-Y, Haenni M. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet Microbiol. 2018;217:97-103.  https://doi.org/10.1016/j.vetmic.2018.03.007  PMID: 29615264 
  9. Potron A, Poirel L, Dortet L, Nordmann P. Characterisation of OXA-244, a chromosomally-encoded OXA-48-like β-lactamase from Escherichia coli. Int J Antimicrob Agents. 2016;47(1):102-3.  https://doi.org/10.1016/j.ijantimicag.2015.10.015  PMID: 26655033 
  10. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: increase in OXA-244-producing Escherichia coli in the European Union/European Economic Area and the UK since 2013. Stockholm: ECDC; 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-increase-oxa-244-producing-escherichia-coli-eu-eea
  11. National Food Institute, Technical University of Denmark, Statens Serum Institut. DANMAP 2018 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Lyngby, Copenhagen: National Food Institute, Statens Serum Institut; 2019.Available from: https://www.danmap.org/-/media/arkiv/projekt-sites/danmap/danmap-reports/danmap-2018/danmap_2018.pdf?la=en
  12. Sundhedsstyrelsen. [Danish Health Authority]. Vejledning om forebyggelse af spredning af CPO. [Guidance on preventing the spread of CPO]. Copenhagen: Sundhedsstyrelsen; 2018. Danish. Available from: https://www.sst.dk/-/media/Udgivelser/2018/CPO/Vejledning-om-forebyggelse-af-spredning-af-CPO.ashx?la=da&hash=060943943A71EA7E2AA6B51C229577B87E5937A3
  13. Wang M, Hansen DS, Littauer P, Schumacher H, Hammerum A. Undersøgelse for Carbapenemase Producerende Organismer (CPO) bærertilstand - en metodevejledning. [Carbapenemase Producing Organism (CPO) Carrier Condition Study - A Method Guide]. Copenhagen: Dansk Selskab for Klinisk Mikrobiologi [Danish Society for Clinical Microbiology]; 2016. Danish. Available from: https://dskm.dk/wp-content/uploads/2016/10/Unders%c3%b8gelse-for-Carbapenemase-Producerende-Organismer-okt-2016.pdf
  14. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance version 1.0. Växjö: EUCAST; 2013. Available from: http://www.eucast.org/resistance_mechanisms/
  15. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance version 2.0. Växjö: EUCAST; 2017. Available from: http://www.eucast.org/resistance_mechanisms/
  16. Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449-90.  https://doi.org/10.2147/CLEP.S91125  PMID: 26604824 
  17. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  18. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136-51.  https://doi.org/10.1111/j.1365-2958.2006.05172.x  PMID: 16689791 
  19. Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E, Guigon G, et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics. 2008;9(1):560.  https://doi.org/10.1186/1471-2164-9-560  PMID: 19036134 
  20. Lázaro-Perona F, Ramos JC, Sotillo A, Mingorance J, García-Rodríguez J, Ruiz-Carrascoso G, et al. Intestinal persistence of a plasmid harbouring the OXA-48 carbapenemase gene after hospital discharge. J Hosp Infect. 2019;101(2):175-8.  https://doi.org/10.1016/j.jhin.2018.07.004  PMID: 30017896 
  21. Nigg A, Brilhante M, Dazio V, Clément M, Collaud A, Gobeli Brawand S, et al. Shedding of OXA-181 carbapenemase-producing Escherichia coli from companion animals after hospitalisation in Switzerland: an outbreak in 2018. Euro Surveill. 2019;24(39):1900071.  https://doi.org/10.2807/1560-7917.ES.2019.24.39.1900071  PMID: 31576806 
  22. Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24(12):1241-50.  https://doi.org/10.1016/j.cmi.2018.04.004  PMID: 29654871 
  23. Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen K, et al. Sharing more than friendship - transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill. 2018;23(27):1700497.  https://doi.org/10.2807/1560-7917.ES.2018.23.27.1700497  PMID: 29991384 
  24. Tarlton NJ, Moritz C, Adams-Sapper S, Riley LW. Genotypic analysis of uropathogenic Escherichia coli to understand factors that impact the prevalence of β-lactam-resistant urinary tract infections in a community. J Glob Antimicrob Resist. 2019;19:173-80.  https://doi.org/10.1016/j.jgar.2019.03.002  PMID: 30872040 
  25. Hornsey M, Betts JW, Mehat JW, Wareham DW, van Vliet AHM, Woodward MJ, et al. Characterization of a colistin-resistant Avian Pathogenic Escherichia coli ST69 isolate recovered from a broiler chicken in Germany. J Med Microbiol. 2019;68(1):111-4.  https://doi.org/10.1099/jmm.0.000882  PMID: 30475200 
  26. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev. 2019;32(3):e00135-18.  https://doi.org/10.1128/CMR.00135-18  PMID: 31189557 
  27. Xu L, Wang P, Cheng J, Qin S, Xie W. Characterization of a novel blaNDM-5-harboring IncFII plasmid and an mcr-1-bearing IncI2 plasmid in a single Escherichia coli ST167 clinical isolate. Infect Drug Resist. 2019;12:511-9.  https://doi.org/10.2147/IDR.S192998  PMID: 30881056 
  28. Yang P, Xie Y, Feng P, Zong Z. blaNDM-5 carried by an IncX3 plasmid in Escherichia coli sequence type 167. Antimicrob Agents Chemother. 2014;58(12):7548-52.  https://doi.org/10.1128/AAC.03911-14  PMID: 25246393 
  29. Zeng X, Chi X, Ho BT, Moon D, Lambert C, Hall RJ, et al. Comparative genome analysis of an extensively drug-resistant isolate of avian sequence type 167 Escherichia coli strain Sanji with novel In Silico serotype O89b:H9. mSystems. 2019;4(1):e00242-18.  https://doi.org/10.1128/mSystems.00242-18  PMID: 30834329 
  30. Atterby C, Börjesson S, Ny S, Järhult JD, Byfors S, Bonnedahl J. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans? PLoS One. 2017;12(12):e0190380.  https://doi.org/10.1371/journal.pone.0190380  PMID: 29284053 
  31. Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol. 2017;200:151-6.  https://doi.org/10.1016/j.vetmic.2016.08.010  PMID: 27566885 
  32. Zogg AL, Zurfluh K, Schmitt S, Nüesch-Inderbinen M, Stephan R. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet Microbiol. 2018;216:79-84.  https://doi.org/10.1016/j.vetmic.2018.02.011  PMID: 29519530 
  33. Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D, Woodford N. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol. 2016;65(6):538-46.  https://doi.org/10.1099/jmm.0.000248  PMID: 26982715 
  34. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33(1):e00102-19.  https://doi.org/10.1128/CMR.00102-19  PMID: 31722889 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error