Rapid communication Open Access
Like 1


Analysis of sequencing data for 143 - and -positive isolates from 13 European national collections and the public domain resulted in the identification of 15 previously undetected multi-country transmission clusters. For 10 clusters, cases had prior travel/hospitalisation history in countries outside of the European Union including Egypt, Iran, Morocco, Russia, Serbia, Tunisia and Turkey. These findings highlight the benefit of European whole genome sequencing-based surveillance and data sharing for control of antimicrobial resistance.


Article metrics loading...

Loading full text...

Full text loading...



  1. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Outbreak of carbapenemase-producing (NDM-1 and OXA-48) and colistin-resistant Klebsiella pneumoniae ST307, north-east Germany, 2019. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Klebsiella-pneumoniae-resistance-Germany-risk-assessment.pdf
  2. Haller S, Kramer R, Becker K, Bohnert JA, Eckmanns T, Hans JB, et al. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Euro Surveill. 2019;24(50):1900734.  https://doi.org/10.2807/1560-7917.ES.2019.24.50.1900734  PMID: 31847948 
  3. Kumar N, Raven KE, Blane B, Leek D, Brown NM, Bragin E, et al. Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes. J Antimicrob Chemother. 2020;75(5):1117-22.  https://doi.org/10.1093/jac/dkz570  PMID: 32025709 
  4. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Heidelberg: EMBL. [Accessed: 7 May 2020]. Available from: https://itol.embl.de/
  5. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  6. Kleborate v0·3·0. San Francisco: GitHub. [Accessed: 16 Dec 2019]. Available from: https://github.com/katholt/Kleborate
  7. European Nucleotide Archive. Study: PRJEB35890. European study on Klebsiella pneumoniae carrying both NDM-1 and OXA-48. Hinxton: The European Bioinformatics Institute (EMBL-EBI); 2020. Available from: www.ebi.ac.uk/ena/data/view/PRJEB35890
  8. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Regional outbreak of New Delhi metallo-betalactamase-producing carbapenem-resistant Enterobacteriaceae, Italy, 2018-2019. Stockholm ECDC; 2019. Available from: https://ecdc.europa.eu/sites/portal/files/documents/04-Jun-2019-RRA-Carbapenems%2C%20Enterobacteriaceae-Italy.pdf
  9. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Outbreak of carbapenemase-producing Enterobacterales in Lithuania, 2019. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/AMR-rapid-risk-assessment-outbreak%20-of-carbapenemase-producing-Enterobacterales-Lithuania.pdf
  10. Shamina OV, Kryzhanovskaya OA, Lazareva AV, Alyabieva NM, Polikarpova SV, Karaseva OV, et al. Emergence of the ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia. Int J Antimicrob Agents. 2020;55(2):105850.  https://doi.org/10.1016/j.ijantimicag.2019.11.007  PMID: 31770629 
  11. Barguigua A, El Otmani F, Lakbakbi El Yaagoubi F, Talmi M, Zerouali K, Timinouni M. First report of a Klebsiella pneumoniae strain coproducing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco. APMIS. 2013;121(7):675-7.  https://doi.org/10.1111/apm.12034  PMID: 23278254 
  12. Ben Nasr A, Decré D, Compain F, Genel N, Barguellil F, Arlet G. Emergence of NDM-1 in association with OXA-48 in Klebsiella pneumoniae from Tunisia. Antimicrob Agents Chemother. 2013;57(8):4089-90.  https://doi.org/10.1128/AAC.00536-13  PMID: 23752514 
  13. Solgi H, Giske CG, Badmasti F, Aghamohammad S, Havaei SA, Sabeti S, et al. Emergence of carbapenem resistant Escherichia coli isolates producing blaNDM and blaOXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. Infect Genet Evol. 2017;55:318-23.  https://doi.org/10.1016/j.meegid.2017.10.003  PMID: 28987805 
  14. Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Hara T, Ikeda M, et al. High carbapenem resistance in clinical gram-negative pathogens isolated in Egypt. Microb Drug Resist. 2017;23(7):838-44.  https://doi.org/10.1089/mdr.2015.0339  PMID: 28191865 
  15. Cizmeci Z, Aktas E, Otlu B, Acikgoz O, Ordekci S. Molecular characterization of carbapenem- resistant Enterobacteriaceae yields increasing rates of NDM-1 carbapenemases and colistin resistance in an OXA-48- endemic area. J Chemother. 2017;29(6):344-50.  https://doi.org/10.1080/1120009X.2017.1323149  PMID: 28486840 
  16. Revez J, Espinosa L, Albiger B, Leitmeyer KC, Struelens MJECDC National Microbiology Focal Points and Experts Group. Survey on the use of whole-genome sequencing for infectious diseases surveillance: rapid expansion of European national capacities, 2015-2016. Front Public Health. 2017;5:347.  https://doi.org/10.3389/fpubh.2017.00347  PMID: 29326921 
  17. European Centre for Disease Prevention and Control (ECDC). Monitoring the use of whole-genome sequencing in infectious disease surveillance in Europe 2015–2017. Stockholm: ECDC; 2018. Available from: https://www.ecdc.europa.eu/sites/portal/files/documents/whole-genome-sequencing-infectious-disease-surveillance-Europe-2015-2017.pdf

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error