Research Open Access
Like 0



Prescribing of systemic antibiotics in general and of cephalosporins in particular in German paediatric outpatients has previously been reported to be higher than in other European countries.


Our objective was to assess recent trends in antibiotic prescribing in German children.


This study was conducted as consecutive annual cross-sectional analyses and included all children aged 0–14 years (n = 9,389,183 in 2018) covered by statutory health insurance in Germany. Annual antibiotic prescription rates from 2010 to 2018 were calculated for the age groups 0–1, 2–5, 6–9 and 10–14 years. Poisson regression was used to estimate trends of prescription rates by age group and antibiotic subgroup.


Overall, the age-standardised antibiotic prescription rate decreased significantly by 43% from 746 prescriptions per 1,000 persons in 2010 to 428 per 1,000 in 2018 (p < 0.001). Reductions were most pronounced in the age groups 0–1 year (−50%) and 2–5 years (−44%). The age group 2–5 years exhibited the highest prescription rate with 683 per 1,000 in 2018 (0–1 year: 320/1,000; 6–9 years: 417/1,000; 10–14 years: 273/1,000). Cephalosporins (second and third generation) accounted for 32% of prescribed antibiotics.


Marked reductions in antibiotic prescribing during the last decade indicate a change towards more judicious paediatric prescribing habits. Compared with other European countries, however, prescribing of second- and third-generation cephalosporins remains high in Germany, suggesting frequent first-line use of these substances for common respiratory infections. Considerable regional variations underline the need for regionally targeted interventions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet. 2007;369(9560):482-90.  https://doi.org/10.1016/S0140-6736(07)60235-9  PMID: 17292768 
  2. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14(1):13.  https://doi.org/10.1186/1471-2334-14-13  PMID: 24405683 
  3. van Gageldonk-Lafeber AB, Heijnen M-LA, Bartelds AIM, Peters MF, van der Plas SM, Wilbrink B. A case-control study of acute respiratory tract infection in general practice patients in The Netherlands. Clin Infect Dis. 2005;41(4):490-7.  https://doi.org/10.1086/431982  PMID: 16028157 
  4. Arroll B. Antibiotics for upper respiratory tract infections: an overview of Cochrane reviews. Respir Med. 2005;99(3):255-61.  https://doi.org/10.1016/j.rmed.2004.11.004  PMID: 15733498 
  5. Clavenna A, Bonati M. Differences in antibiotic prescribing in paediatric outpatients. Arch Dis Child. 2011;96(6):590-5.  https://doi.org/10.1136/adc.2010.183541  PMID: 21233078 
  6. Holstiege J, Schink T, Molokhia M, Mazzaglia G, Innocenti F, Oteri A, et al. Systemic antibiotic prescribing to paediatric outpatients in 5 European countries: a population-based cohort study. BMC Pediatr. 2014;14(1):174.  https://doi.org/10.1186/1471-2431-14-174  PMID: 24997585 
  7. National Institute for Health and Clinical Excellence. Respiratory tract infections – antibiotic prescribing. Prescribing of antibiotics for self-limiting respiratory tract infections in adults and children in primary care. London: NHS; 2008. Available from: https://www.nice.org.uk/guidance/cg69/evidence/full-guideline-196853293
  8. Kassenärztliche Bundesvereinigung (KBV). Rationale Antibiotikatherapie bei Infektionen der oberen Atemwege. [Rational antibiotic therapy for upper respiratory tract infections]. Wirkstoff AKTUELL. 2012;1:1-16. German. Available from: https://www.kbv.de/media/sp/Antibiotika_Infektionen_obere_Atemwege.pdf
  9. Nakai H, Hagihara M, Kato H, Hirai J, Nishiyama N, Koizumi Y, et al. Prevalence and risk factors of infections caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. J Infect Chemother. 2016;22(5):319-26.  https://doi.org/10.1016/j.jiac.2016.02.004  PMID: 26968486 
  10. Bätzing-Feigenbaum J, Schulz M, Schulz M, Hering R, Kern WV. Outpatient antibiotic prescription. Dtsch Arztebl Int. 2016;113(26):454-9. PMID: 27412990 
  11. Williams K, Thomson D, Seto I, Contopoulos-Ioannidis DG, Ioannidis JP, Curtis S, et al. Standard 6: age groups for pediatric trials. Pediatrics. 2012;129(Suppl 3):S153-60.  https://doi.org/10.1542/peds.2012-0055I  PMID: 22661762 
  12. Bundesministerium für Gesundheit (BMG). Mitglieder und Versicherte der gesetzlichen Krankenversicherung (GKV). Statistik über Versicherte gegliedert nach Status, Alter, Wohnort und Kassenart (Stichtag jeweils zum 1. Juli des Jahres). [Members and insured persons of the statutory health insurance. Statistics on insured persons, by status, age, place of residence and type of health insurance (on 1 July of the respective year)]. Berlin: BMG. [Accessed: 17 May 2019]. German. Available from: https://www.bundesgesundheitsministerium.de/themen/krankenversicherung/zahlen-und-fakten-zur-krankenversicherung/mitglieder-und-versicherte.html
  13. de Jong LAW, van der Linden PD, Roukens MMB, van de Garde EMW, van der Velden AW, Natsch S, et al. Consecutive antibiotic use in the outpatient setting: an extensive, longitudinal descriptive analysis of antibiotic dispensing data in the Netherlands. BMC Infect Dis. 2019;19(1):84.  https://doi.org/10.1186/s12879-019-3732-x  PMID: 30678645 
  14. Neilly MDJ, Guthrie B, Hernandez Santiago V, Vadiveloo T, Donnan PT, Marwick CA. Has primary care antimicrobial use really been increasing? Comparison of changes in different prescribing measures for a complete geographic population 1995-2014. J Antimicrob Chemother. 2017;72(10):2921-30.  https://doi.org/10.1093/jac/dkx220  PMID: 29091203 
  15. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption - Annual epidemiological report for 2017. Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/en/publications-data/antimicrobial-consumption-annual-epidemiological-report-2017
  16. Tyrstrup M, Beckman A, Mölstad S, Engström S, Lannering C, Melander E, et al. Reduction in antibiotic prescribing for respiratory tract infections in Swedish primary care- a retrospective study of electronic patient records. BMC Infect Dis. 2016;16(1):709.  https://doi.org/10.1186/s12879-016-2018-9  PMID: 27887585 
  17. Gradl G, Teichert M, Kieble M, Werning J, Schulz M. Comparing outpatient oral antibiotic use in Germany and the Netherlands from 2012 to 2016. Pharmacoepidemiol Drug Saf. 2018;27(12):1344-55.  https://doi.org/10.1002/pds.4643  PMID: 30264894 
  18. Benko R, Matuz M, Silva A, Ferreira J, Machado MC, Furtado C, et al. Cross-national comparison of paediatric antibiotic use in Norway, Portugal and Hungary. Basic Clin Pharmacol Toxicol. 2019;124(6):722-9.  https://doi.org/10.1111/bcpt.13198  PMID: 30589992 
  19. Statistisches Bundesamt (DESTATIS. Statistiken der Kinder- und Jugendhilfe. Kinder und tätige Personen in Tageseinrichtungen und in öffentlich geförderter Kindertagespflege am 01.03.2017. [Statistics of child and adolescent welfare. Children and staff in daycare facilities and publicly funded daycare on 1 March 2017]. Wiesbaden: DESTATIS; 2017. German. Available from: https://www.destatis.de/GPStatistik/servlets/MCRFileNodeServlet/DEHeft_derivate_00042782/5225402177004_Korr20042018.pdf
  20. European Commission. (EC) Special Eurobarometer 338. Antimicrobial resistance. Brussels: EC; 2009. Available from: https://ec.europa.eu/health/amr/sites/health/files/antimicrobial_resistance/docs/ebs_338_en.pdf
  21. European Commission (EC). Special Eurobarometer 478. Antimicrobial resistance. Brussels: EC; 2018. Available from: https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/ResultDoc/download/DocumentKy/84386
  22. Bundesministerium für Gesundheit (BMG). DART 2020. Antibiotika-Resistenzen bekämpfen zum Wohl von Mensch und Tier. [Combating antibiotic resistance for the benefit of humans and animals]. Berlin: BMG. [Accessed: 13 Jun 2019]. German. Available from: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/Publikationen/Ministerium/Broschueren/BMG_DART_2020_Bericht_dt.pdf
  23. Kassenärztliche Bundesvereinigung (KBV). Modellprojekt RESIST. Antibiotika bewusst anwenden - Resistenzen vermeiden. [Model project RESIST. Use antibiotics prudently - avoid resistance]. Berlin: KBV. [Accessed: 17 May 2019]. German. Available from: https://www.kbv.de/html/resist.php
  24. Rationaler Antibiotikaeinsatz durch Information und Kommunikation (rai). Antibiotikaeinsatz und multiresistente Erreger. [Antibiotic use and multiresistant pathogens]. Berlin: rai. [Accessed: 2 Jan 2020]. German. Available from: http://www.rai-projekt.de/rai/startseite/
  25. Wollny A, Altiner A, Brand T, Garbe K, Kamradt M, Kaufmann-Kolle P, et al. Converting habits of antibiotic use for respiratory tract infections in German primary care - study protocol of the cluster-randomized controlled CHANGE-3 trial. Trials. 2019;20(1):103.  https://doi.org/10.1186/s13063-019-3209-7  PMID: 30728043 
  26. Deutsche Gesellschaft für Allgemein- und Familienmedizin (DEGAM). Halsschmerzen. DEGAM-Leitlinie Nr. 14. [Sore throat. DEGAM Guideline No. 14]. Düsseldorf: DEGAM; 2009. German. Available from: https://www.degam.de/ files/Inhalte/Leitlinien-Inhalte/Dokumente/DEGAM-S3-Leitlinien/Leitlinien-Entwuerfe/053-010_Halsschmerzen/Archiv/LL-14_Langfassung_ZD.pdf
  27. Holstiege J, Garbe E. Systemic antibiotic use among children and adolescents in Germany: a population-based study. Eur J Pediatr. 2013;172(6):787-95.  https://doi.org/10.1007/s00431-013-1958-y  PMID: 23397325 
  28. Robert Koch-Institut (RKI). Impfquoten bei der Schuleingangsuntersuchung in Deutschland 2017. [Vaccination coverage at school entrance examination in Germany 2017]. Epid Bull. 2019;18:147-53. German.
  29. Sigurdsson S, Kristinsson KG, Erlendsdóttir H, Hrafnkelsson B, Haraldsson Á. Decreased incidence of respiratory infections in children after vaccination with ten-valent pneumococcal vaccine. Pediatr Infect Dis J. 2015;34(12):1385-90.  https://doi.org/10.1097/INF.0000000000000899  PMID: 26780024 
  30. Buckley BS, Henschke N, Bergman H, Skidmore B, Klemm EJ, Villanueva G, et al. Impact of vaccination on antibiotic usage: a systematic review and meta-analysis. Clin Microbiol Infect. 2019;25(10):1213-25.  https://doi.org/10.1016/j.cmi.2019.06.030  PMID: 31284031 
  31. Gefenaite G, Bijlsma MJ, Bos HJ, Hak E. Did introduction of pneumococcal vaccines in the Netherlands decrease the need for respiratory antibiotics in children? Analysis of 2002 to 2013 data. Euro Surveill. 2014;19(44):20948.  https://doi.org/10.2807/1560-7917.ES2014.19.44.20948  PMID: 25394256 
  32. Robert Koch-Institut (RKI). Mitteilung der Ständigen Impfkommission am RKI. Wissenschaftliche Begründung der Änderung der Pneumokokken-Impfempfehlung für Säuglinge. [Communication from the Standing Vaccination Committee at the RKI. Scientific justification for changing the pneumococcal vaccination recommendation for infants]. Epid Bull. 2015;36:378-92. German.
  33. Di Mario S, Gagliotti C, Buttazzi R, Cisbani L, Di Girolamo C, Brambilla A, et al. Observational pre-post study showed that a quality improvement project reduced paediatric antibiotic prescribing rates in primary care. Acta Paediatr. 2018;107(10):1805-9.  https://doi.org/10.1111/apa.14381  PMID: 29723913 
  34. Stam J, van Stuijvenberg M, Grüber C, Mosca F, Arslanoglu S, Chirico G, et al. Antibiotic use in infants in the first year of life in five European countries. Acta Paediatr. 2012;101(9):929-34.  https://doi.org/10.1111/j.1651-2227.2012.02728.x  PMID: 22691104 
  35. Butler CC, Hood K, Verheij T, Little P, Melbye H, Nuttall J, et al. Variation in antibiotic prescribing and its impact on recovery in patients with acute cough in primary care: prospective study in 13 countries. BMJ. 2009;338(jun23 2):b2242.  https://doi.org/10.1136/bmj.b2242  PMID: 19549995 
  36. Piovani D, Clavenna A, Cartabia M, Bonati M, Antibiotic Collaborative Group. The regional profile of antibiotic prescriptions in Italian outpatient children. Eur J Clin Pharmacol. 2012;68(6):997-1005.  https://doi.org/10.1007/s00228-011-1204-3  PMID: 22271296 
  37. Pottegård A, Broe A, Aabenhus R, Bjerrum L, Hallas J, Damkier P. Use of antibiotics in children: a Danish nationwide drug utilization study. Pediatr Infect Dis J. 2015;34(2):e16-22.  https://doi.org/10.1097/INF.0000000000000519  PMID: 25144795 
  38. Čižman M, Vrečar V, Starašinič N, Limbek V, Bajec T, Pečar Čad S, et al. Regional variation in antibiotic use in children in Slovenia. J Pediatr Infect Dis. 2014;9(3):139-45.  https://doi.org/10.3233/JPI-140427 
  39. Adams DJ, Eberly MD, Rajnik M, Nylund CM. Risk Factors for Community-Associated Clostridium difficile Infection in Children. J Pediatr. 2017;186:105-9.  https://doi.org/10.1016/j.jpeds.2017.03.032  PMID: 28396027 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error