1887
Research Open Access
Like 0

Abstract

Background

Rapid diagnostic tests are commonly used by hospital laboratories in England to detect rotavirus (RV), and results are used to inform clinical management and support national surveillance of the infant rotavirus immunisation programme since 2013. In 2017, the Public Health England (PHE) national reference laboratory for enteric viruses observed that the presence of RV could not be confirmed by PCR in a proportion of RV-positive samples referred for confirmatory detection.

Aim

We aimed to compare the positivity rate of detection methods used by hospital laboratories with the PHE confirmatory test rate.

Methods

Rotavirus specimens testing positive at local hospital laboratories were re-tested at the PHE national reference laboratory using a PCR test. Confirmatory results were compared to original results from the PHE laboratory information management system.

Results

Hospital laboratories screened 70.1% (2,608/3,721) of RV samples using immunochromatographic assay (IC) or rapid tests, 15.5% (578/3,721) using enzyme immunoassays (EIA) and 14.4% (535/3,721) using PCR. Overall, 1,011/3,721 (27.2%) locally RV-positive samples referred to PHE in 2016 and 2017 failed RV detection using the PHE reference laboratory PCR test. Confirmation rates were 66.9% (1,746/2,608) for the IC tests, 87.4% (505/578) for the EIA and 86.4% (465/535) for the PCR assays. Seasonal confirmation rate discrepancies were also evident for IC tests.

Conclusions

This report highlights high false positive rates with the most commonly used RV screening tests and emphasises the importance of implementing verified confirmatory tests for RV detections. This has implications for clinical diagnosis and national surveillance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.43.1900375
2020-10-29
2021-11-29
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.43.1900375
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/43/eurosurv-25-43-2.html?itemId=/content/10.2807/1560-7917.ES.2020.25.43.1900375&mimeType=html&fmt=ahah

References

  1. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization–Coordinated Global Rotavirus Surveillance Network. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000-2013. Clin Infect Dis. 2016;62(Suppl 2):S96-105.  https://doi.org/10.1093/cid/civ1013 
  2. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, et al. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012;61(1):69-77.  https://doi.org/10.1136/gut.2011.238386 
  3. Harris JP, Jit M, Cooper D, Edmunds WJ. Evaluating rotavirus vaccination in England and Wales. Part I. Estimating the burden of disease. Vaccine. 2007;25(20):3962-70.  https://doi.org/10.1016/j.vaccine.2007.02.072 
  4. Atchison CJ, Stowe J, Andrews N, Collins S, Allen DJ, Nawaz S, et al. Rapid Declines in Age Group-Specific Rotavirus Infection and Acute Gastroenteritis Among Vaccinated and Unvaccinated Individuals Within 1 Year of Rotavirus Vaccine Introduction in England and Wales. J Infect Dis. 2016;213(2):243-9.  https://doi.org/10.1093/infdis/jiv398 
  5. Marlow R, Muir P, Vipond B, Lyttle M, Trotter C, Finn A. Assessing the impacts of the first year of rotavirus vaccination in the United Kingdom. Euro Surveill. 2015;20(48):30077.  https://doi.org/10.2807/1560-7917.ES.2015.20.48.30077 
  6. Thomas SL, Walker JL, Fenty J, Atkins KE, Elliot AJ, Hughes HE, et al. Impact of the national rotavirus vaccination programme on acute gastroenteritis in England and associated costs averted. Vaccine. 2017;35(4):680-6.  https://doi.org/10.1016/j.vaccine.2016.11.057 
  7. Zeller M, Rahman M, Heylen E, De Coster S, De Vos S, Arijs I, et al. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine. 2010;28(47):7507-13.  https://doi.org/10.1016/j.vaccine.2010.09.004 
  8. Tate JE, Panozzo CA, Payne DC, Patel MM, Cortese MM, Fowlkes AL, et al. Decline and change in seasonality of US rotavirus activity after the introduction of rotavirus vaccine. Pediatrics. 2009;124(2):465-71.  https://doi.org/10.1542/peds.2008-3528 
  9. Tate JE, Patel MM, Steele AD, Gentsch JR, Payne DC, Cortese MM, et al. Global impact of rotavirus vaccines. Expert Rev Vaccines. 2010;9(4):395-407.  https://doi.org/10.1586/erv.10.17 
  10. World Health Organization (WHO). Manual of rotavirus detection and characterization methods. Geneva: WHO; 2009. Available from: https://apps.who.int/iris/bitstream/handle/10665/70122/WHO_IVB_08.17_eng.pdf;jsessionid=28249D098F26CE65FA1A88D21987A63B?sequence=1
  11. Iturriza Gómara M, Wong C, Blome S, Desselberger U, Gray J. Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J Virol. 2002;76(13):6596-601.  https://doi.org/10.1128/JVI.76.13.6596-6601.2002 
  12. Iturriza Gómara M, Wong C, Blome S, Desselberger U, Gray J. Rotavirus subgroup characterisation by restriction endonuclease digestion of a cDNA fragment of the VP6 gene. J Virol Methods. 2002;105(1):99-103.  https://doi.org/10.1016/S0166-0934(02)00087-3 
  13. Freeman MM, Kerin T, Hull J, McCaustland K, Gentsch J. Enhancement of detection and quantification of rotavirus in stool using a modified real-time RT-PCR assay. J Med Virol. 2008;80(8):1489-96.  https://doi.org/10.1002/jmv.21228 
  14. National Health Service (England and Wales). The Health Service (Control of Patient Information) Regulations 2002. The National Archives; 23 May 2002. Available from: https://www.legislation.gov.uk/uksi/2002/1438/made
  15. Gautam R, Lyde F, Esona MD, Quaye O, Bowen MD. Comparison of PremierRotaclone, ProSpecT and RIDASCREEN rotavirus enzyme immunoassay kits for detection of rotavirus antigen in stool specimens. J Clin Virol. 2013;58(1):292-4.  https://doi.org/10.1016/j.jcv.2013.06.022 
  16. Lagare A, Moumouni A, Kaplon J, Langendorf C, Pothier P, Grais RF, et al. Diagnostic accuracy of VIKIA® Rota-Adeno and Premier™ Rotaclone® tests for the detection of rotavirus in Niger. BMC Res Notes. 2017;10(1):505.  https://doi.org/10.1186/s13104-017-2832-1 
  17. Khamrin P, Tran DN, Chan-it W, Thongprachum A, Okitsu S, Maneekarn N, et al. Comparison of the rapid methods for screening of group a rotavirus in stool samples. J Trop Pediatr. 2011;57(5):375-7.  https://doi.org/10.1093/tropej/fmq101 
  18. Kaplon J, Fremy C, Pillet S, Mendes Martins L, Ambert-Balay K, Aho SL, et al. Diagnostic Accuracy of Seven Commercial Assays for Rapid Detection of Group A Rotavirus Antigens. J Clin Microbiol. 2015;53(11):3670-3.  https://doi.org/10.1128/JCM.01984-15 
  19. Ye S, Roczo-Farkas S, Whiley DM, Lambert SB, Robson J, Heney C, et al. Evidence of false-positive results in a commercially available rotavirus assay in the vaccine era, Australia, 2011 to 2012. Euro Surveill. 2013;18(21):20483.
  20. Lopez-Lacort M, Collado S, Díez-Gandía A, Díez-Domingo J. Rotavirus, vaccine failure or diagnostic error? Vaccine. 2016;34(48):5912-5.  https://doi.org/10.1016/j.vaccine.2016.10.032 
  21. Brandt CD, Kim HW, Rodriguez WJ, Thomas L, Yolken RH, Arrobio JO, et al. Comparison of direct electron microscopy, immune electron microscopy, and rotavirus enzyme-linked immunosorbent assay for detection of gastroenteritis viruses in children. J Clin Microbiol. 1981;13(5):976-81.  https://doi.org/10.1128/JCM.13.5.976-981.1981 
/content/10.2807/1560-7917.ES.2020.25.43.1900375
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error