Research Open Access
Like 0



Population-based studies characterising outcomes of COVID-19 in European settings are limited, and effects of socio-economic status (SES) on outcomes have not been widely investigated.


We describe the epidemiological characteristics of COVID-19 cases, highlighting incidence and mortality rate differences across SES during the first wave in Barcelona, Catalonia, Spain.


This population-based study reports individual-level data of laboratory-confirmed COVID-19 cases diagnosed from 24 February to 4 May 2020, notified to the Public Health Agency of Barcelona and followed until 15 June 2020. We analysed end-of-study vital status and the effects of chronic conditions on mortality using logistic regression. Geocoded addresses were linked to basic health area SES data, estimated using the composed socio-economic index. We estimated age-standardised incidence, hospitalisation, and mortality rates by SES.


Of 15,554 COVID-19-confirmed cases, the majority were women (n = 9,028; 58%), median age was 63 years (interquartile range: 46–83), 8,046 (54%) required hospitalisation, and 2,287 (15%) cases died. Prevalence of chronic conditions varied across SES, and multiple chronic conditions increased risk of death (≥ 3, adjusted odds ratio: 2.3). Age-standardised rates (incidence, hospitalisation, mortality) were highest in the most deprived SES quartile (incidence: 1,011 (95% confidence interval (CI): 975–1,047); hospitalisation: 619 (95% CI: 591–648); mortality: 150 (95% CI: 136–165)) and lowest in the most affluent (incidence: 784 (95% CI: 759–809); hospitalisation: 400 (95% CI: 382–418); mortality: 121 (95% CI: 112–131)).


COVID-19 outcomes varied markedly across SES, underscoring the need to implement effective preventive strategies for vulnerable populations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Spiteri G, Fielding J, Diercke M, Campese C, Enouf V, Gaymard A, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill. 2020;25(9):2000178.  https://doi.org/10.2807/1560-7917.ES.2020.25.9.2000178  PMID: 32156327 
  2. Saez M, Tobias A, Varga D, Barceló MA. Effectiveness of the measures to flatten the epidemic curve of COVID-19. The case of Spain. Sci Total Environ. 2020;727:138761.  https://doi.org/10.1016/j.scitotenv.2020.138761  PMID: 32330703 
  3. Coma E, Mora N, Prats-Uribe A, Fina F, Prieto-Alhambra D, Medina-Peralta M. Excess cases of influenza suggest an earlier start to the coronavirus epidemic in Spain than official figures tell us: an analysis of primary care electronic medical records from over 6 million people from Catalonia. medRxiv. 2020.04.09.20056259. https://doi.org/10.1101/2020.04.09.20056259
  4. Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática. Legislación consolidada: Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. [Consolidated legislation: Royal Decree 463/2020, of March 14, which declares the state of alarm for the management of the health crisis situation caused by COVID-19]. Boletín Oficial del Estado 2020;67. Madrid: Spanish Government. Spanish. Available from: https://www.boe.es/eli/es/rd/2020/03/14/463/con
  5. Ministerio De Sanidad. Orden SND/388/2020, de 3 de mayo, por la que se establecen las condiciones para la apertura al público de determinados comercios y servicios, y la apertura de archivos, así como para la práctica del deporte profesional y federado. [Order SND/388/2020, of May 3, which establishes the conditions for the opening to the public of certain shops and services, and the opening of archives, as well as for the practice of professional and federated sports]. Disposición 4793 del Boletín Oficial del Estado 2020;123. Madrid: Spanish Government. Spanish. Available from: https://www.boe.es/boe/dias/2020/05/03/pdfs/BOE-A-2020-4793.pdf
  6. Baeten R, Spasova, S, Vanhercke B and Coster S. Inequalities in access to healthcare. A study of national policies, European Social Policy Network (ESPN). Brussels: European Commission; 2018. Available from: https://ec.europa.eu/social/main.jsp?catId=738&langId=en&pubId=8152&furtherPubs=yes
  7. Johns Hopkins University (JHU). COVID-19 dashboard by the Center for Systems Science and Engineering at Johns Hopkins University. Baltimore: JHU. [Accessed: 11 May 2020]. Available from: https://coronavirus.jhu.edu/map.html
  8. Krieger N, Gonsalves G, Bassett MT, Hanage W, Krumholz HM. The fierce urgency of now: closing glaring gaps in US surveillance data on COVID-19. Bethesda: Health Affairs; 2020. Available from: https://www.healthaffairs.org/do/10.1377/hblog20200414.238084/full
  9. Borrell C, Ru M, Pasarn MI, Benach J, Kunst AE. (The measurement of inequalities in health). La medición de las desigualdades en salud. Gac Sanit. 2000;14(Supl. 3):20-33. Spanish.
  10. Borrell C, Pons-Vigués M, Morrison J, Díez E. Factors and processes influencing health inequalities in urban areas. J Epidemiol Community Health. 2013;67(5):389-91.  https://doi.org/10.1136/jech-2012-202014  PMID: 23413097 
  11. World Health Organization (WHO). Statement on the second meeting of the International Health IfRegulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Geneva: WHO; 2020. Available from: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
  12. European Centre for Disease Control and Prevention (ECDC). Case definition for coronavirus disease 2019 (COVID-19), as of 29 May 2020. Stockholm: ECDC; 2020. Available from: https://www.ecdc.europa.eu/en/covid-19/surveillance/case-definition
  13. World Health Organization (WHO). Coronavirus disease 2019 (‎COVID-19)‎: situation report 34. Geneva: WHO; 2020. Available from: https://apps.who.int/iris/handle/10665/331220
  14. World Health Organization (WHO). Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Geneva: WHO; 2020. Available from: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117
  15. Generalitat de Catalunya. Procediment d’actuació enfront de casos d’infecció pel nou coronavirus SARS-CoV-2. [Action procedure against cases of infection by new SARS-CoV-2 coronavirus]. Barcelona: Generalitat de Catalunya; 2020. Catalan. Available from: https://canalsalut.gencat.cat/web/.content/_A-Z/C/coronavirus-2019-ncov/material-divulgatiu/procediment-actuacio-coronavirus.pdf
  16. Colls C, Mias M, García-Altés A. [A deprivation index to reform the financing model of primary care in Catalonia (Spain)]. Gac Sanit. 2020;34(1):44-50. Catalan.  https://doi.org/10.1016/j.gaceta.2018.07.015  PMID: 30595339 
  17. World Health Organization (WHO). Coronavirus disease 2019 (‎‎COVID-19)‎‎: situation report 51. Geneva: WHO; 2020. https://apps.who.int/iris/handle/10665/331475
  18. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. , the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-9.  https://doi.org/10.1001/jama.2020.6775  PMID: 32320003 
  19. Yu C, Lei Q, Li W, Wang X, Liu W, Fan X, et al. Clinical characteristics, associated factors, and predicting COVID-19 mortality risk: a retrospective study in Wuhan, China. Am J Prev Med. 2020;59(2):168-75.  https://doi.org/10.1016/j.amepre.2020.05.002  PMID: 32564974 
  20. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535-44.  https://doi.org/10.1016/S0140-6736(20)31483-5  PMID: 32645347 
  21. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42.  https://doi.org/10.1001/jama.2020.2648  PMID: 32091533 
  22. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020;26(4):506-10.  https://doi.org/10.1038/s41591-020-0822-7  PMID: 32284616 
  23. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.  https://doi.org/10.1016/S0140-6736(20)30566-3  PMID: 32171076 
  24. Rutter PD, Mytton OT, Mak M, Donaldson LJ. Socio-economic disparities in mortality due to pandemic influenza in England. Int J Public Health. 2012;57(4):745-50.  https://doi.org/10.1007/s00038-012-0337-1  PMID: 22297400 
  25. Chandrasekhar R, Sloan C, Mitchel E, Ndi D, Alden N, Thomas A, et al. Social determinants of influenza hospitalization in the United States. Influenza Other Respir Viruses. 2017;11(6):479-88.  https://doi.org/10.1111/irv.12483  PMID: 28872776 
  26. Tam K, Yousey-Hindes K, Hadler JL. Influenza-related hospitalization of adults associated with low census tract socioeconomic status and female sex in New Haven County, Connecticut, 2007-2011. Influenza Other Respir Viruses. 2014;8(3):274-81.  https://doi.org/10.1111/irv.12231  PMID: 24382111 
  27. Mamelund SE. Social inequality – a forgotten factor in pandemic influenza preparedness. Tidsskr Nor Laegeforen. 2017;137(12-13):911-3.  https://doi.org/10.4045/tidsskr.17.0273  PMID: 28655260 
  28. Sloan C, Chandrasekhar R, Mitchel E, Schaffner W, Lindegren ML. Socioeconomic disparities and influenza hospitalizations, Tennessee, USA. Emerg Infect Dis. 2015;21(9):1602-10.  https://doi.org/10.3201/eid2109.141861  PMID: 26292106 
  29. Yousey-Hindes KM, Hadler JL. Neighborhood socioeconomic status and influenza hospitalizations among children: New Haven County, Connecticut, 2003-2010. Am J Public Health. 2011;101(9):1785-9.  https://doi.org/10.2105/AJPH.2011.300224  PMID: 21778498 
  30. World Health Organization (WHO). Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva: WHO; 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
  31. Chow N, Fleming-Dutra K, Gierke R, Hall A, Hughes M, Pilishvili T, et al. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(13):382-6.  https://doi.org/10.15585/mmwr.mm6913e2  PMID: 32240123 
  32. Kivimäki M, Batty GD, Pentti J, Shipley MJ, Sipilä PN, Nyberg ST, et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health. 2020;5(3):e140-9.  https://doi.org/10.1016/S2468-2667(19)30248-8  PMID: 32007134 
  33. Pathirana TI, Jackson CA. Socioeconomic status and multimorbidity: a systematic review and meta-analysis. Aust N Z J Public Health. 2018;42(2):186-94.  https://doi.org/10.1111/1753-6405.12762  PMID: 29442409 
  34. Banks J, Marmot M, Oldfield Z, Smith JP. Disease and disadvantage in the United States and in England. JAMA. 2006;295(17):2037-45.  https://doi.org/10.1001/jama.295.17.2037  PMID: 16670412 
  35. Park YJ, Martin EG. Geographic disparities in access to nursing home services: assessing fiscal stress and quality of care. Health Serv Res. 2018;53 Suppl 1(Suppl Suppl 1);2932-51.  https://doi.org/10.1111/1475-6773.12801  PMID: 29131339 
  36. Chen JT, Waterman PD, Krieger N. COVID-19 and the unequal surge in mortality rates in Massachusetts, by city/town and ZIP Code measures of poverty, household crowding, race/ethnicity,and racialized economic segregation. Harvard Center for Population and Development Studies Working Paper Series. 2020;19(2). Available from: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1266/2020/05/20_jtc_pdw_nk_COVID19_MA-excess-mortality_text_tables_figures_final_0509_with-cover-1.pdf
  37. Olson DR, Huynh M, Fine A, Baumgartner J, Castro A, Chan HT, et al. Preliminary estimate of excess mortality during the COVID-19 Outbreak - New York City, March 11-May 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):603-5.  https://doi.org/10.15585/mmwr.mm6919e5  PMID: 32407306 
  38. Michelozzi P, de’Donato F, Scortichini M, De Sario M, Noccioli F, Rossi P, et al. Mortality impacts of the coronavirus disease (COVID-19) outbreak by sex and age: rapid mortality surveillance system, Italy, 1 February to 18 April 2020. Euro Surveill. 2020;25(19):2000620.  https://doi.org/10.2807/1560-7917.ES.2020.25.19.2000620  PMID: 32431289 
  39. McMichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005-11.  https://doi.org/10.1056/NEJMoa2005412  PMID: 32220208 
  40. Danis K, Fonteneau L, Georges S, Daniau C, Bernard-Stoecklin S, Domegan L, et al. High impact of COVID-19 in long-term care facilities, suggestion for monitoring in the EU/EEA, May 2020. Euro Surveill. 2020;25(22):2000956. PMID: 32524949 
  41. Carstairs V. Deprivation indices: their interpretation and use in relation to health. J Epidemiol Community Health. 1995;49(Suppl 2):S3-8.  https://doi.org/10.1136/jech.49.Suppl_2.S3  PMID: 8594130 
  42. Jammer I, Wickboldt N, Sander M, Smith A, Schultz MJ, Pelosi P, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol. 2015;32(2):88-105.  https://doi.org/10.1097/EJA.0000000000000118  PMID: 25058504 
  43. Agència de Salut Pública de Barcelona. Dades diàries de la infecció per coronavirus SARS-CoV-2 (COVID-19) a Barcelona. [Daily data on SARS-CoV-2 coronavirus infection (COVID-19) in Barcelona] Barcelona: Agència de Salut Pública de Barcelona. [Accessed: 2 Jan 2021]. Catalan. Available from: https://aspb.shinyapps.io/COVID19_BCN/#Distribució_per_sexe_i_edat_dels_casos

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error