Research Open Access
Like 0



Given its high economic and societal cost, policymakers might be reluctant to implement a large-scale lockdown in case of coronavirus disease (COVID-19) epidemic rebound. They may consider it as a last resort option if alternative control measures fail to reduce transmission.


We developed a modelling framework to ascertain the use of lockdown to ensure intensive care unit (ICU) capacity does not exceed a peak target defined by policymakers.


We used a deterministic compartmental model describing transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the trajectories of COVID-19 patients in healthcare settings, accounting for age-specific mixing patterns and an increasing probability of severe outcomes with age. The framework is illustrated in the context of metropolitan France.


The daily incidence of ICU admissions and the number of occupied ICU beds are the most robust indicators to decide when a lockdown should be triggered. When the doubling time of hospitalisations estimated before lockdown is between 8 and 20 days, lockdown should be enforced when ICU admissions reach 3.0–3.7 and 7.8–9.5 per million for peak targets of 62 and 154 ICU beds per million (4,000 and 10,000 beds for metropolitan France), respectively. When implemented earlier, the lockdown duration required to get back below a desired level is also shorter.


We provide simple indicators and triggers to decide if and when a last-resort lockdown should be implemented to avoid saturation of ICU. These metrics can support the planning and real-time management of successive COVID-19 pandemic waves.


Article metrics loading...

Loading full text...

Full text loading...



  1. Décret n° 2020-260 du 16 mars 2020 portant réglementation des déplacements dans le cadre de la lutte contre la propagation du virus covid-19. [Decree number 2020-260 of 16 March 2020 regarding to the regulation of travel in the context of the fight against the spread of the covid-19 virus]. JORF. 2020;0066. French. Available from: https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000041738805/2020-03-21
  2. Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208-11.  https://doi.org/10.1126/science.abc3517  PMID: 32404476 
  3. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5(4):529-38.  https://doi.org/10.1038/s41562-021-01079-8  PMID: 33686204 
  4. Andronico A, Tran Kiem C, Paireau J, Succo T, Bosetti P, Lefrancq N, et al. Evaluating the impact of curfews and other measures on SARS-CoV-2 transmission in French Guiana. Nat Commun. 2021;12(1):1634.  https://doi.org/10.1038/s41467-021-21944-4  PMID: 33712596 
  5. Abbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Res. 2020;5:112.  https://doi.org/10.12688/wellcomeopenres.16006.1 
  6. Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C, Debin M, et al. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature. 2021;590(7844):134-9.  https://doi.org/10.1038/s41586-020-03095-6  PMID: 33348340 
  7. Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French connection: the first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS One. 2015;10(7):e0133203.  https://doi.org/10.1371/journal.pone.0133203  PMID: 26176549 
  8. Funk S, Bekker-Nielsen Dunbar M, Pearson CAB, Clifford S, Jarvis C, Robert A. socialmixr: Social mixing matrices for infectious disease modelling. R package version 0.1.8. [Accessed: 1 Jun 2021]. Available from: https://CRAN.R-project.org/package=socialmixr
  9. Lapidus N, Paireau J, Levy-Bruhl D, de Lamballerie X, Severi G, Touvier M, et al. Do not neglect SARS-CoV-2 hospitalization and fatality risks in the middle-aged adult population. Infect Dis Now. 2021;51(4):380-2.  https://doi.org/10.1016/j.idnow.2020.12.007  PMID: 33521775 
  10. Ko JY, Danielson ML, Town M, Derado G, Greenlund KJ, Daily Kirley P, et al. Risk factors for COVID-19-associated hospitalization: COVID-19-associated hospitalization surveillance network and behavioral risk factor surveillance system. Clin Infect Dis. 2020;ciaa1419.  https://doi.org/10.1093/cid/ciaa1419  PMID: 32945846 
  11. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535-44.  https://doi.org/10.1016/S0140-6736(20)31483-5  PMID: 32645347 
  12. Valenti L, Bergna A, Pelusi S, Facciotti F, Lai A, Tarkowski M, et al. SARS-CoV-2 seroprevalence trends in healthy blood donors during the COVID-19 outbreak in Milan. Blood Transfus. 2021;19(3):181-9. PMID: 33539289 
  13. Santé Publique France. COVID-19: point épidémiologique du 9 juillet 2020. [COVID-19: epidemiological update of 9 July 2020]. Paris: Santé Publique France; 2020. French. Available from: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-9-juillet-2020
  14. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266-9.  https://doi.org/10.1038/s41586-021-03470-x  PMID: 33767447 
  15. Gaymard A, Bosetti P, Feri A, Destras G, Enouf V, Andronico A, et al. Early assessment of diffusion and possible expansion of SARS-CoV-2 Lineage 20I/501Y.V1 (B.1.1.7, variant of concern 202012/01) in France, January to March 2021. Euro Surveill. 2021;26(9):2100133.  https://doi.org/10.2807/1560-7917.ES.2021.26.9.2100133  PMID: 33663644 
  16. Tindale LC, Stockdale JE, Coombe M, Garlock ES, Lau WYV, Saraswat M, et al. Evidence for transmission of COVID-19 prior to symptom onset. eLife. 2020;9:e57149.  https://doi.org/10.7554/eLife.57149  PMID: 32568070 
  17. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207.  https://doi.org/10.1056/NEJMoa2001316  PMID: 31995857 
  18. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial interval of COVID-19 among publicly reported confirmed cases. Emerg Infect Dis. 2020;26(6):1341-3.  https://doi.org/10.3201/eid2606.200357  PMID: 32191173 
  19. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(8):911-9.  https://doi.org/10.1016/S1473-3099(20)30287-5  PMID: 32353347 
  20. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 2007;274(1609):599-604.  https://doi.org/10.1098/rspb.2006.3754  PMID: 17476782 
  21. Carrat F, Lamballerie X, Rahib D, Blanché H, Lapidus N, Artaud F, et al. Seroprevalence of SARS-CoV-2 Among Adults in Three Regions of France Following the Lockdown and Associated Risk Factors: A Multicohort Study. SSRN Electronic Journal. 2020.  https://doi.org/http://dx.doi.org/10.2139/ssrn.3696820 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error