Research Open Access
Like 0



Influenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.


To evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.


We conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.


Compared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.


Nanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Article metrics loading...

Loading full text...

Full text loading...



  1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56(1):152-79.  https://doi.org/10.1128/MR.56.1.152-179.1992  PMID: 1579108 
  2. Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49-53.  https://doi.org/10.1016/j.vaccine.2008.07.039  PMID: 19230160 
  3. Webby RJ, Webster RG. Are we ready for pandemic influenza? Science. 2003;302(5650):1519-22.  https://doi.org/10.1126/science.1090350  PMID: 14645836 
  4. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al. , Global Seasonal Influenza-associated Mortality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018;391(10127):1285-300.  https://doi.org/10.1016/S0140-6736(17)33293-2  PMID: 29248255 
  5. Reid AH, Taubenberger JK. The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol. 2003;84(9):2285-92.  https://doi.org/10.1099/vir.0.19302-0  PMID: 12917448 
  6. The Lancet Infectious Diseases. How to be ready for the next influenza pandemic. Lancet Infect Dis. 2018;18(7):697.  https://doi.org/10.1016/S1473-3099(18)30364-5  PMID: 29976515 
  7. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228-32.  https://doi.org/10.1038/nature16996  PMID: 26840485 
  8. Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science. 2019;363(6422):74-7.  https://doi.org/10.1126/science.aau9343  PMID: 30606844 
  9. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12(6):1261-76.  https://doi.org/10.1038/nprot.2017.066  PMID: 28538739 
  10. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015;7(1):99.  https://doi.org/10.1186/s13073-015-0220-9  PMID: 26416663 
  11. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019;37(7):783-92.  https://doi.org/10.1038/s41587-019-0156-5  PMID: 31235920 
  12. Xu Y, Lewandowski K, Jeffery K, Downs LO, Foster D, Sanderson ND, et al. Nanopore metagenomic sequencing to investigate nosocomial transmission of human metapneumovirus from a unique genetic group among haematology patients in the United Kingdom. J Infect. 2020;80(5):571-7.  https://doi.org/10.1016/j.jinf.2020.02.003  PMID: 32092386 
  13. Lewandowski K, Xu Y, Pullan ST, Lumley SF, Foster D, Sanderson N, et al. Metagenomic Nanopore sequencing of influenza virus direct from clinical respiratory samples. J Clin Microbiol. 2019;58(1):e00963-19.  https://doi.org/10.1128/JCM.00963-19  PMID: 31666364 
  14. Sanderson ND, Street TL, Foster D, Swann J, Atkins BL, Brent AJ, et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics. 2018;19(1):714.  https://doi.org/10.1186/s12864-018-5094-y  PMID: 30261842 
  15. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26(12):1721-9.  https://doi.org/10.1101/gr.210641.116  PMID: 27852649 
  16. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-100.  https://doi.org/10.1093/bioinformatics/bty191  PMID: 29750242 
  17. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12(8):733-5.  https://doi.org/10.1038/nmeth.3444  PMID: 26076426 
  18. Van Poelvoorde LAE, Saelens X, Thomas I, Roosens NH. Next-Generation Sequencing: An Eye-Opener for the Surveillance of Antiviral Resistance in Influenza. Trends Biotechnol. 2020;38(4):360-7.  https://doi.org/10.1016/j.tibtech.2019.09.009  PMID: 31810633 
  19. Meijer A, Swaan CM, Voerknecht M, Jusic E, van den Brink S, Wijsman LA, et al. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018. Euro Surveill. 2018;23(15):23.  https://doi.org/10.2807/1560-7917.ES.2018.23.15.18-00160  PMID: 29667576 
  20. Wiman Å, Enkirch T, Carnahan A, Böttiger B, Hagey TS, Hagstam P, et al. Novel influenza A(H1N2) seasonal reassortant identified in a patient sample, Sweden, January 2019. Euro Surveill. 2019;24(9):24.  https://doi.org/10.2807/1560-7917.ES.2019.24.9.1900124  PMID: 30862332 
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3.  https://doi.org/10.1093/bioinformatics/btu033  PMID: 24451623 
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7.  https://doi.org/10.1093/nar/gkh340  PMID: 15034147 
  23. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  24. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2015. Available from: http://www.R-project.org/
  25. Wang J, Wu Y, Ma C, Fiorin G, Wang J, Pinto LH, et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc Natl Acad Sci USA. 2013;110(4):1315-20.  https://doi.org/10.1073/pnas.1216526110  PMID: 23302696 
  26. Takashita E, Meijer A, Lackenby A, Gubareva L, Rebelo-de-Andrade H, Besselaar T, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013-2014. Antiviral Res. 2015;117:27-38.  https://doi.org/10.1016/j.antiviral.2015.02.003  PMID: 25721488 
  27. Hurt AC, Hardie K, Wilson NJ, Deng Y-M, Osbourn M, Gehrig N, et al. Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza. N Engl J Med. 2011;365(26):2541-2.  https://doi.org/10.1056/NEJMc1111078  PMID: 22204735 
  28. Flannery B, Kondor RJG, Chung JR, Gaglani M, Reis M, Zimmerman RK, et al. Spread of antigenically drifted influenza A (H3N2) viruses and vaccine effectiveness in the United States during the 2018-2019 season. J Infect Dis. 2020;221(1):8-15.  https://doi.org/10.1093/infdis/jiz543  PMID: 31665373 
  29. Xu Y, Lewandowski K, Lumley S, Pullan S, Vipond R, Carroll M, et al. Detection of viral pathogens with multiplex Nanopore MinION sequencing: be careful with cross-talk. Front Microbiol. 2018;9:2225.  https://doi.org/10.3389/fmicb.2018.02225  PMID: 30283430 
  30. Lackenby A, Besselaar TG, Daniels RS, Fry A, Gregory V, Gubareva LV, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antiviral Res. 2018;157:38-46.  https://doi.org/10.1016/j.antiviral.2018.07.001  PMID: 29981793 
  31. Hurt AC, Besselaar TG, Daniels RS, Ermetal B, Fry A, Gubareva L, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014-2015. Antiviral Res. 2016;132:178-85.  https://doi.org/10.1016/j.antiviral.2016.06.001  PMID: 27265623 
  32. World Health Organization. Recommended composition of influenza virus vaccines for use in the 2019-2020 northern hemisphere influenza season. Wkly Epidemiol Rec. 2019;94(12):141-50.
  33. Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, et al. The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol. 2007;24(8):1811-20.  https://doi.org/10.1093/molbev/msm103  PMID: 17522084 
  34. Nelson MI, Simonsen L, Viboud C, Miller MA, Holmes EC. The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology. 2009;388(2):270-8.  https://doi.org/10.1016/j.virol.2009.03.026  PMID: 19394063 
  35. Houlihan CF, Frampton D, Ferns RB, Raffle J, Grant P, Reidy M, et al. Use of whole-genome sequencing in the investigation of a nosocomial influenza virus outbreak. J Infect Dis. 2018;218(9):1485-9.  https://doi.org/10.1093/infdis/jiy335  PMID: 29873767 
  36. Roy S, Hartley J, Dunn H, Williams R, Williams CA, Breuer J. Whole-genome sequencing provides data for stratifying infection prevention and control management of nosocomial influenza A. Clin Infect Dis. 2019;69(10):1649-56.  https://doi.org/10.1093/cid/ciz020  PMID: 30993315 
  37. Myrmel M, Oma V, Khatri M, Hansen HH, Stokstad M, Berg M, et al. Single primer isothermal amplification (SPIA) combined with next generation sequencing provides complete bovine coronavirus genome coverage and higher sequence depth compared to sequence-independent single primer amplification (SISPA). PLoS One. 2017;12(11):e0187780.  https://doi.org/10.1371/journal.pone.0187780  PMID: 29112950 
  38. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-23.  https://doi.org/10.1016/S0140-6736(20)30154-9  PMID: 31986261 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error