1887
Research Open Access
Like 0

Abstract

Background

Tick-borne encephalitis (TBE) virus is a human pathogen that is expanding its endemic zones in Europe, emerging in previously unaffected regions. In Austria, increasing incidence in alpine regions in the west has been countered by a decline in traditional endemic areas to the east of the country.

Aim

To shed light on the cause of this disparity, we compared the temporal changes of human TBE incidences in all federal provinces of Austria with those of Lyme borreliosis (LB), which has the same tick vector and rodent reservoir.

Methods

This comparative analysis was based on the surveillance of hospitalised TBE cases by the National Reference Center for TBE and on the analysis of hospitalised LB cases from hospital discharge records across all of Austria from 2005 to 2018.

Results

The incidences of the two diseases and their annual fluctuations were not geographically concordant. Neither the decline in TBE in the eastern lowlands nor the increase in western alpine regions is paralleled by similar changes in the incidence of LB.

Conclusion

The discrepancy between changes in incidence of TBE and LB support the contributions of virus-specific factors beyond the mere availability of tick vectors and/or human outdoor activity, which are a prerequisite for the transmission of both diseases. A better understanding of parameters controlling human pathogenicity and the maintenance of TBE virus in its natural vector−host cycle will generate further insights into the focal nature of TBE and can potentially improve forecasts of TBE risk on smaller regional scales.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.35.2002108
2021-09-02
2024-04-19
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.35.2002108
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/35/eurosurv-26-35-2.html?itemId=/content/10.2807/1560-7917.ES.2021.26.35.2002108&mimeType=html&fmt=ahah

References

  1. Who publication. Vaccines against tick-borne encephalitis: WHO position paper. Wkly Epidemiol Rec. 2011;86(24):241-56. PMID: 21661276 
  2. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol. 2017;98(1):2-3.  https://doi.org/10.1099/jgv.0.000672  PMID: 28218572 
  3. Dobler G, Tkachev S. General epidemiology of tick-borne encephalitis. TBE–The book. In: Dobler G, Erber W, Bröker M, Schmitt HJ, editors. The TBE Book (3rd edition). Singapore: Global Health Press Pte Ltd; 2020. p. 141-53.
  4. Hombach J, Barrett ADT, Kollaritsch H. Tickborne Encephalitis Vaccines In: Orenstein WA, Offit PA, Edwards KM, editors. Plotkin's Vaccines (Seventh Edition). Amsterdam: Elsevier; 2018. p. 1080-94.e5.
  5. Orlinger KK, Hofmeister Y, Fritz R, Holzer GW, Falkner FG, Unger B, et al. A tick-borne encephalitis virus vaccine based on the European prototype strain induces broadly reactive cross-neutralizing antibodies in humans. J Infect Dis. 2011;203(11):1556-64.  https://doi.org/10.1093/infdis/jir122  PMID: 21592984 
  6. Fritz R, Orlinger KK, Hofmeister Y, Janecki K, Traweger A, Perez-Burgos L, et al. Quantitative comparison of the cross-protection induced by tick-borne encephalitis virus vaccines based on European and Far Eastern virus subtypes. Vaccine. 2012;30(6):1165-9.  https://doi.org/10.1016/j.vaccine.2011.12.013  PMID: 22178103 
  7. Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11(7):669.  https://doi.org/10.3390/v11070669  PMID: 31336624 
  8. Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235(1):138-43.  https://doi.org/10.1006/viro.1997.8622  PMID: 9300045 
  9. Beauté J, Spiteri G, Warns-Petit E, Zeller H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23(45):1800201.  https://doi.org/10.2807/1560-7917.ES.2018.23.45.1800201  PMID: 30424829 
  10. Andersen NS, Larsen SL, Olesen CR, Stiasny K, Kolmos HJ, Jensen PM, et al. Continued expansion of tick-borne pathogens: Tick-borne encephalitis virus complex and Anaplasma phagocytophilum in Denmark. Ticks Tick Borne Dis. 2019;10(1):115-23.  https://doi.org/10.1016/j.ttbdis.2018.09.007  PMID: 30245088 
  11. Vikse R, Paulsen KM, Edgar KS, H-O Pettersson J, Ottesen PS, Okbaldet YB, et al. Geographical distribution and prevalence of tick-borne encephalitis virus in questing Ixodes ricinus ticks and phylogeographic structure of the Ixodes ricinus vector in Norway. Zoonoses Public Health. 2020;67(4):370-81.  https://doi.org/10.1111/zph.12696  PMID: 32112526 
  12. Jaenson TG, Hjertqvist M, Bergström T, Lundkvist A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors. 2012;5(1):184.  https://doi.org/10.1186/1756-3305-5-184  PMID: 22937961 
  13. Smura T, Tonteri E, Jääskeläinen A, von Troil G, Kuivanen S, Huitu O, et al. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg Microbes Infect. 2019;8(1):675-83.  https://doi.org/10.1080/22221751.2019.1612279  PMID: 31084456 
  14. Deviatkin AA, Kholodilov IS, Vakulenko YA, Karganova GG, Lukashev AN. Tick-borne encephalitis virus: an emerging ancient zoonosis? Viruses. 2020;12(2):247.  https://doi.org/10.3390/v12020247  PMID: 32102228 
  15. Dekker M, Laverman GD, de Vries A, Reimerink J, Geeraedts F. Emergence of tick-borne encephalitis (TBE) in the Netherlands. Ticks Tick Borne Dis. 2019;10(1):176-9.  https://doi.org/10.1016/j.ttbdis.2018.10.008  PMID: 30385073 
  16. Holding M, Dowall SD, Medlock JM, Carter DP, Pullan ST, Lewis J, et al. Tick-borne encephalitis virus, United Kingdom. Emerg Infect Dis. 2020;26(1):90-6.  https://doi.org/10.3201/eid2601.191085  PMID: 31661056 
  17. Ostfeld RS, Brunner JL. Climate change and Ixodes tick-borne diseases of humans. Philosophical transactions of the Royal Society of London Series B: Biological sciences. 2015;370(1665):20140051.  https://doi.org/10.1098/rstb.2014.0051 
  18. Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000;267(1454):1741-4.  https://doi.org/10.1098/rspb.2000.1204  PMID: 12233771 
  19. Heinz FX, Stiasny K, Holzmann H, Kundi M, Sixl W, Wenk M, et al. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. Euro Surveill. 2015;20(13):9-16.  https://doi.org/10.2807/1560-7917.ES2015.20.13.21077  PMID: 25860391 
  20. Estrada-Peña A, Ayllón N, de la Fuente J. Impact of climate trends on tick-borne pathogen transmission. Front Physiol. 2012;3:64.  https://doi.org/10.3389/fphys.2012.00064  PMID: 22470348 
  21. de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114.  https://doi.org/10.3389/fcimb.2017.00114  PMID: 28439499 
  22. Sumilo D, Asokliene L, Bormane A, Vasilenko V, Golovljova I, Randolph SE. Climate change cannot explain the upsurge of tick-borne encephalitis in the Baltics. PLoS One. 2007;2(6):e500.  https://doi.org/10.1371/journal.pone.0000500  PMID: 17551580 
  23. Černý J, Lynn G, Hrnková J, Golovchenko M, Rudenko N, Grubhoffer L. Management options for Ixodes ricinus-associated pathogens: a review of prevention strategies. Int J Environ Res Public Health. 2020;17(6):1830.  https://doi.org/10.3390/ijerph17061830  PMID: 32178257 
  24. Amato-Gauci A, Zeller H. Tick-borne encephalitis joins the diseases under surveillance in the European Union. Euro Surveill. 2012;17(42):20299.  https://doi.org/10.2807/ese.17.42.20299-en  PMID: 23098821 
  25. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophys Geosyst. 2009;10(3):n/a.  https://doi.org/10.1029/2008GC002332 
  26. Bogovic P, Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3(5):430-41.  https://doi.org/10.12998/wjcc.v3.i5.430  PMID: 25984517 
  27. Stanek G, Strle F. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol Rev. 2018;42(3):233-58.  https://doi.org/10.1093/femsre/fux047  PMID: 29893904 
  28. Heinz FX, Stiasny K, Holzmann H, Grgic-Vitek M, Kriz B, Essl A, et al. Vaccination and tick-borne encephalitis, central Europe. Emerg Infect Dis. 2013;19(1):69-76.  https://doi.org/10.3201/eid1901.120458  PMID: 23259984 
  29. Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 2007;25(43):7559-67.  https://doi.org/10.1016/j.vaccine.2007.08.024  PMID: 17869389 
  30. Randolph SE, on behalf of the EDEN-TBD sub-project team C. Human activities predominate in determining changing incidence of tick-borne encephalitis in Europe. Euro Surveill. 2010;15(27):24-31.  https://doi.org/10.2807/ese.15.27.19606-en  PMID: 20630144 
  31. Schötta A-M, Wijnveld M, Stockinger H, Stanek G. Approaches for reverse line blot-based detection of microbial pathogens in Ixodes ricinus ticks collected in Austria and impact of the chosen method. Appl Environ Microbiol. 2017;83(13):e00489-17.  https://doi.org/10.1128/AEM.00489-17  PMID: 28455331 
  32. Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379(9814):461-73.  https://doi.org/10.1016/S0140-6736(11)60103-7  PMID: 21903253 
  33. Nah K, Magpantay FMG, Bede-Fazekas Á, Röst G, Trájer AJ, Wu X, et al. Assessing systemic and non-systemic transmission risk of tick-borne encephalitis virus in Hungary. PLoS One. 2019;14(6):e0217206.  https://doi.org/10.1371/journal.pone.0217206  PMID: 31163042 
  34. Lakos A, Schneider F, Nagy A, Mezei E. TBE in Hungary. In: Dobler G, Erber W, Bröker M, Schmitt HJ, editors. The TBE Book (3rd edition). Singapore: Global Health Press Pte Ltd; 2020. p. 225-30.
  35. Schuler M, Zimmermann H, Altpeter E, Heininger U. Epidemiology of tick-borne encephalitis in Switzerland, 2005 to 2011. Euro Surveill. 2014;19(13):20756.  https://doi.org/10.2807/1560-7917.ES2014.19.13.20756  PMID: 24721541 
  36. Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, et al. Tick-borne viruses and biological processes at the tick-host-virus interface. Front Cell Infect Microbiol. 2017;7:339.  https://doi.org/10.3389/fcimb.2017.00339  PMID: 28798904 
  37. Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;22(10):1690-708.  https://doi.org/10.1111/ele.13335  PMID: 31286630 
  38. Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014;42(14):9436-46.  https://doi.org/10.1093/nar/gku657  PMID: 25053841 
  39. Benelli G. Pathogens manipulating tick behavior-through a glass, darkly. Pathogens. 2020;9(8):664.  https://doi.org/10.3390/pathogens9080664  PMID: 32824571 
  40. Samuel GH, Adelman ZN, Myles KM. Antiviral immunity and virus-mediated antagonism in disease vector mosquitoes. Trends Microbiol. 2018;26(5):447-61.  https://doi.org/10.1016/j.tim.2017.12.005  PMID: 29395729 
  41. Rubel F, Brugger K. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick Borne Dis. 2020;11(5):101437.  https://doi.org/10.1016/j.ttbdis.2020.101437  PMID: 32723631 
  42. Rubel F, Brugger K. Operational TBE incidence forecasts for Austria, Germany, and Switzerland 2019-2021. Ticks Tick Borne Dis. 2021;12(1):101579.  https://doi.org/10.1016/j.ttbdis.2020.101579  PMID: 33080518 
  43. Randolph SE. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet Parasitol. 2010;167(2-4):92-4.  https://doi.org/10.1016/j.vetpar.2009.09.011  PMID: 19833440 
  44. Santonja I, Holzmann H. Virusepidemiologische Information Nr. 02/21. FSME 2020. [Information on virus epidemiology number 02/21. FSME 2020]. Wien: Zentrum für Virologie der Med. Universität Wien; 2021. German. Available from: https://www.virologie.meduniwien.ac.at/fileadmin/virologie/files/Epidemiologie/2021/0221.pdf
/content/10.2807/1560-7917.ES.2021.26.35.2002108
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error