1887
Systematic Review Open Access
Like 0

Abstract

Background

Hospital-acquired infections (HAI) caused by spp., especially vancomycin-resistant (VRE), are of rising concern.

Aim

We summarised data on incidence, mortality and proportion of HAI caused by enterococci in the World Health Organization European Region.

Methods

We searched Medline and Embase for articles published between 1 January 2010 and 4 February 2020. Random-effects meta-analyses were performed to obtain pooled estimates.

Results

We included 75 studies. spp. and VRE accounted for 10.9% (95% confidence interval (CI): 8.7–13.4; range: 6.1–17.5) and 1.1% (95% CI: 0.21–2.7; range: 0.39–2.0) of all pathogens isolated from patients with HAI. Hospital wide, the pooled incidence of HAI caused by spp. ranged between 0.7 and 24.8 cases per 1,000 patients (pooled estimate: 6.9; 95% CI: 0.76–19.0). In intensive care units (ICU), pooled incidence of HAI caused by spp. and VRE was 9.6 (95% CI: 6.3–13.5; range: 0.39–36.0) and 2.6 (95% CI: 0.53–5.8; range: 0–9.7). Hospital wide, the pooled vancomycin resistance proportion among spp. HAI isolates was 7.3% (95% CI: 1.5–16.3; range: 2.6–11.5). In ICU, this proportion was 11.5% (95% CI: 4.7–20.1; range: 0–40.0). Among patients with hospital-acquired bloodstream infections with spp., pooled all-cause mortality was 21.9% (95% CI: 15.7–28.9; range: 14.3–32.3); whereas all-cause mortality attributable to VRE was 33.5% (95% CI: 13.0–57.3; range: 14.3–41.3).

Conclusions

Infections caused by spp. are frequently identified among hospital patients and associated with high mortality.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.45.2001628
2021-11-11
2024-04-24
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.45.2001628
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/45/eurosurv-26-45-6.html?itemId=/content/10.2807/1560-7917.ES.2021.26.45.2001628&mimeType=html&fmt=ahah

References

  1. Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading). 2009;155(Pt 6):1749-57.  https://doi.org/10.1099/mic.0.026385-0  PMID: 19383684 
  2. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266-78.  https://doi.org/10.1038/nrmicro2761  PMID: 22421879 
  3. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301.  https://doi.org/10.1017/ice.2016.174  PMID: 27573805 
  4. Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516.  https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516  PMID: 30458912 
  5. Pinholt M, Ostergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2014;20(2):145-51.  https://doi.org/10.1111/1469-0691.12236  PMID: 23647880 
  6. Boncagni F, Francolini R, Nataloni S, Skrami E, Gesuita R, Donati A, et al. Epidemiology and clinical outcome of Healthcare-Associated Infections: a 4-year experience of an Italian ICU. Minerva Anestesiol. 2015;81(7):765-75. PMID: 25582669 
  7. Brady M, Oza A, Cunney R, Burns K. Attributable mortality of hospital-acquired bloodstream infections in Ireland. J Hosp Infect. 2017;96(1):35-41.  https://doi.org/10.1016/j.jhin.2017.02.006  PMID: 28359546 
  8. Caballero-Granado FJ, Becerril B, Cuberos L, Bernabeu M, Cisneros JM, Pachón J. Attributable mortality rate and duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis. 2001;32(4):587-94.  https://doi.org/10.1086/318717  PMID: 11181122 
  9. Kramer TS, Remschmidt C, Werner S, Behnke M, Schwab F, Werner G, et al. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob Resist Infect Control. 2018;7(1):133.  https://doi.org/10.1186/s13756-018-0419-9  PMID: 30459945 
  10. Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7(1):1.  https://doi.org/10.1186/s13756-017-0291-z  PMID: 29312658 
  11. O’Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217-30.  https://doi.org/10.2147/IDR.S54125  PMID: 26244026 
  12. Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421-33.  https://doi.org/10.4161/viru.21282  PMID: 23076243 
  13. Raza T, Ullah SR, Mehmood K, Andleeb S. Vancomycin resistant Enterococci: A brief review. J Pak Med Assoc. 2018;68(5):768-72. PMID: 29885179 
  14. Levine DP. Vancomycin: a history. Clin Infect Dis. 2006;42Suppl 1;S5-12.  https://doi.org/10.1086/491709  PMID: 16323120 
  15. Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. Lancet. 1988;1(8575-6):57-8.  https://doi.org/10.1016/S0140-6736(88)91037-9  PMID: 2891921 
  16. Boyce JM. Vancomycin-resistant enterococcus. Detection, epidemiology, and control measures. Infect Dis Clin North Am. 1997;11(2):367-84.  https://doi.org/10.1016/S0891-5520(05)70361-5  PMID: 9187952 
  17. Markwart R, Willrich N, Haller S, Noll I, Koppe U, Werner G, et al. The rise in vancomycin-resistant Enterococcus faecium in Germany: data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2019;8(1):147.  https://doi.org/10.1186/s13756-019-0594-3  PMID: 31485325 
  18. Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020;9(1):1180-93.  https://doi.org/10.1080/22221751.2020.1769500  PMID: 32498615 
  19. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  20. Schreiber PW, Sax H, Wolfensberger A, Clack L, Kuster SP, Swissnoso. The preventable proportion of healthcare-associated infections 2005-2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(11):1277-95.  https://doi.org/10.1017/ice.2018.183  PMID: 30234463 
  21. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.  https://doi.org/10.1371/journal.pmed.1000097  PMID: 19621072 
  22. Cochrane Community. Covidence. London: Cochrane. [Accessed: 26 Oct 2021]. Available from: https://community.cochrane.org/help/tools-and-software/covidence
  23. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9.  https://doi.org/10.1016/j.jclinepi.2011.11.014  PMID: 22742910 
  24. Schwarzer G. meta: an R package for meta-analysis. R News. 2007;7(3):40-5.
  25. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974-8.  https://doi.org/10.1136/jech-2013-203104  PMID: 23963506 
  26. Avci M, Ozgenc O, Coskuner SA, Olut AI. Hospital acquired infections (HAI) in the elderly: comparison with the younger patients. Arch Gerontol Geriatr. 2012;54(1):247-50.  https://doi.org/10.1016/j.archger.2011.03.014  PMID: 21529974 
  27. Barbato D, Castellani F, Angelozzi A, Isonne C, Baccolini V, Migliara G, et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Ig. 2019;31(5):423-35.  https://doi.org/10.7416/ai.2019.2304  PMID: 31304523 
  28. Blackburn RM, Henderson KL, Minaji M, Muller-Pebody B, Johnson AP, Sharland M. Exploring the epidemiology of hospital-acquired bloodstream infections in children in England (January 2009-March 2010) by linkage of national hospital admissions and microbiological databases. J Pediatric Infect Dis Soc. 2012;1(4):284-92.  https://doi.org/10.1093/jpids/pis084  PMID: 26619421 
  29. Blot K, Hammami N, Blot S, Vogelaers D, Lambert M-L. Increasing burden of Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecium in hospital-acquired bloodstream infections (2000-2014): A national dynamic cohort study. Infect Control Hosp Epidemiol. 2019;40(6):705-9.  https://doi.org/10.1017/ice.2019.59  PMID: 31012402 
  30. Cardoso T, Ribeiro O, Aragão I, Costa-Pereira A, Sarmento A. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections. Acta Med Port. 2013;26(4):377-84. PMID: 24016647 
  31. Ciofi Degli Atti ML, Cuttini M, Ravà L, Ceradini J, Paolini V, Ciliento G, et al. Trend of healthcare-associated infections in children: annual prevalence surveys in a research hospital in Italy, 2007-2010. J Hosp Infect. 2012;80(1):6-12. PMID: 22133896 
  32. De Angelis G, Fiori B, Menchinelli G, D’Inzeo T, Liotti FM, Morandotti GA, et al. Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007-2015). Eur J Clin Microbiol Infect Dis. 2018;37(9):1627-36.  https://doi.org/10.1007/s10096-018-3292-9  PMID: 29948360 
  33. Deptuła A, Trejnowska E, Dubiel G, Wanke-Rytt M, Deptuła M, Hryniewicz W. Healthcare associated bloodstream infections in Polish hospitals: prevalence, epidemiology and microbiology-summary data from the ECDC Point Prevalence Survey of Healthcare Associated Infections 2012-2015. Eur J Clin Microbiol Infect Dis. 2018;37(3):565-70.  https://doi.org/10.1007/s10096-017-3150-1  PMID: 29189981 
  34. Erdem D, Akan B, Kanyilmaz D, Demirelli G, Esingen S, Ornek D, et al. The association between total parenteral nutrition and central line-associated bloodstream infection. Acta Med Mediter. 2015;31:1163-7.
  35. Green N, Johnson AP, Henderson KL, Muller-Pebody B, Thelwall S, Robotham JV, et al. Quantifying the burden of hospital-acquired bloodstream infection in children in England by estimating excess length of hospital stay and mortality using a multistate analysis of linked, routinely collected data. J Pediatric Infect Dis Soc. 2015;4(4):305-12.  https://doi.org/10.1093/jpids/piu073  PMID: 26582869 
  36. Gubbels S, Nielsen J, Voldstedlund M, Kristensen B, Schønheyder HC, Ellermann-Eriksen S, et al. National automated surveillance of hospital-acquired bacteremia in Denmark using a computer algorithm. Infect Control Hosp Epidemiol. 2017;38(5):559-66.  https://doi.org/10.1017/ice.2017.1  PMID: 28274300 
  37. Hopmans TEM, Smid EA, Wille JC, van der Kooi TII, Koek MBG, Vos MC, et al. Trends in prevalence of healthcare-associated infections and antimicrobial use in hospitals in the Netherlands: 10 years of national point-prevalence surveys. J Hosp Infect. 2020;104(2):181-7.  https://doi.org/10.1016/j.jhin.2019.10.005  PMID: 31626863 
  38. Huttunen R, Åttman E, Aittoniemi J, Outinen T, Syrjänen J, Kärki T, et al. Nosocomial bloodstream infections in a Finnish tertiary care hospital: a retrospective cohort study of 2175 episodes during the years 1999-2001 and 2005-2010. Infect Dis (Lond). 2015;47(1):20-6.  https://doi.org/10.3109/00365548.2014.956791  PMID: 25351869 
  39. Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Hospital-wide surveillance of healthcare-associated infections as a source of information about specific hospital needs. A 5-year observation in a multiprofile provincial hospital in the south of Poland. Int J Environ Res Public Health. 2018;15(9):1956.  https://doi.org/10.3390/ijerph15091956  PMID: 30205510 
  40. Kontula KSK, Skogberg K, Ollgren J, Järvinen A, Lyytikäinen O. The outcome and timing of death of 17,767 nosocomial bloodstream infections in acute care hospitals in Finland during 1999-2014. Eur J Clin Microbiol Infect Dis. 2018;37(5):945-52.  https://doi.org/10.1007/s10096-018-3211-0  PMID: 29455272 
  41. Mancini A, Verdini D, La Vigna G, Recanatini C, Lombardi FE, Barocci S. Retrospective analysis of nosocomial infections in an Italian tertiary care hospital. New Microbiol. 2016;39(3):197-205. PMID: 27284985 
  42. Marani A, Napoli C, Berdini S, Montesano M, Ferretti F, Di Ninno F, et al. Point prevalence surveys on healthcare acquired infections in medical and surgical wards of a teaching hospital in Rome. Ann Ig. 2016;28(4):274-81.  https://doi.org/10.7416/ai.2016.2106  PMID: 27479763 
  43. Ott E, Saathoff S, Graf K, Schwab F, Chaberny IF. The prevalence of nosocomial and community acquired infections in a university hospital: an observational study. Dtsch Arztebl Int. 2013;110(31-32):533-40.  https://doi.org/10.3238/arztebl.2013.0533  PMID: 24069074 
  44. Pérerz Lopéz A, Ladhani SN, Breathnach A, Planche T, Heath PT, Sharland M. Trends in paediatric nosocomial bacteraemia in a London tertiary hospital. Acta Paediatr. 2013;102(10):1005-9.  https://doi.org/10.1111/apa.12347  PMID: 23837813 
  45. Pinholt M, Østergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2014;20(2):145-51.  https://doi.org/10.1111/1469-0691.12236  PMID: 23647880 
  46. Raka L, Spahija G, Gashi-Gecaj A, Hamza A, Haxhiu E, Rashiti A, et al. Point prevalence survey of healthcare-associated infections and antimicrobial use in Kosovo hospitals. Infect Dis Rep. 2019;11(1):7975.  https://doi.org/10.4081/idr.2019.7975  PMID: 30996847 
  47. Ryan L, O’Mahony E, Wrenn C, FitzGerald S, Fox U, Boyle B, et al. Epidemiology and molecular typing of VRE bloodstream isolates in an Irish tertiary care hospital. J Antimicrob Chemother. 2015;70(10):2718-24.  https://doi.org/10.1093/jac/dkv185  PMID: 26142479 
  48. Saliba P, Hornero A, Cuervo G, Grau I, Jimenez E, García D, et al. Mortality risk factors among non-ICU patients with nosocomial vascular catheter-related bloodstream infections: a prospective cohort study. J Hosp Infect. 2018;99(1):48-54.  https://doi.org/10.1016/j.jhin.2017.11.002  PMID: 29128346 
  49. Salmanov AG, Vdovychenko SY, Litus OI, Litus VI, Bisyuk YA, Bondarenko TM, et al. Prevalence of health care-associated infections and antimicrobial resistance of the responsible pathogens in Ukraine: Results of a multicenter study (2014-2016). Am J Infect Control. 2019;47(6):e15-20.  https://doi.org/10.1016/j.ajic.2019.03.007  PMID: 31000318 
  50. Sante L, Aguirre-Jaime A, Miguel MA, Ramos MJ, Pedroso Y, Lecuona M. Epidemiological study of secondary bloodstream infections: The forgotten issue. J Infect Public Health. 2019;12(1):37-42.  https://doi.org/10.1016/j.jiph.2018.08.011  PMID: 30266540 
  51. Venturini E, Montagnani C, Benni A, Becciani S, Biermann KP, De Masi S, et al. Central-line associated bloodstream infections in a tertiary care children’s University hospital: a prospective study. BMC Infect Dis. 2016;16(1):725.  https://doi.org/10.1186/s12879-016-2061-6  PMID: 27903240 
  52. Virano S, Scolfaro C, Garazzino S, De Intinis C, Ghisetti V, Raffaldi I, et al. Medical care related laboratory-confirmed bloodstream infections in paediatrics. Infez Med. 2015;23(2):117-24. PMID: 26110291 
  53. Atici S, Soysal A, Kepenekli Kadayifci E, Karaaslan A, Akkoç G, Yakut N, et al. Healthcare-associated infections in a newly opened pediatric intensive care unit in Turkey: Results of four-year surveillance. J Infect Dev Ctries. 2016;10(3):254-9.  https://doi.org/10.3855/jidc.7517  PMID: 27031457 
  54. Atilla A, Doğanay Z, Kefeli Çelik H, Demirağ MD, S Kiliç S. Central line-associated blood stream infections: characteristics and risk factors for mortality over a 5.5-year period. Turk J Med Sci. 2017;47(2):646-52.  https://doi.org/10.3906/sag-1511-29  PMID: 28425261 
  55. Bonnet V, Dupont H, Glorion S, Aupée M, Kipnis E, Gérard JL, et al. Influence of bacterial resistance on mortality in intensive care units: a registry study from 2000 to 2013 (IICU Study). J Hosp Infect. 2019;102(3):317-24.  https://doi.org/10.1016/j.jhin.2019.01.011  PMID: 30659869 
  56. Candevir A, Kurtaran B, Kibar F, Karakoc E, Aksu H, Tasova Y. Invasive device-associated nosocomial infections of a teaching hospital in Turkey; four years’ experience. Turk J Med Sci. 2011;41:(1)137-47.
  57. Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1)33-8.
  58. Culshaw N, Glover G, Whiteley C, Rowland K, Wyncoll D, Jones A, et al. Healthcare-associated bloodstream infections in critically ill patients: descriptive cross-sectional database study evaluating concordance with clinical site isolates. Ann Intensive Care. 2014;4(1):34.  https://doi.org/10.1186/s13613-014-0034-8  PMID: 25593750 
  59. Custovic A, Smajlovic J, Tihic N, Hadzic S, Ahmetagic S, Hadzagic H. Epidemiological monitoring of nosocomial infections caused by acinetobacter baumannii. Med Arh. 2014;68(6):402-6.  https://doi.org/10.5455/medarh.2014.68.402-406  PMID: 25648217 
  60. De Santis V, Gresoiu M, Corona A, Wilson AP, Singer M. Bacteraemia incidence, causative organisms and resistance patterns, antibiotic strategies and outcomes in a single university hospital ICU: continuing improvement between 2000 and 2013. J Antimicrob Chemother. 2015;70(1):273-8.  https://doi.org/10.1093/jac/dku338  PMID: 25190722 
  61. Deptuła A, Trejnowska E, Dubiel G, Żukowski M, Misiewska-Kaczur A, Ozorowski T, et al. Prevalence of healthcare-associated infections in Polish adult intensive care units: summary data from the ECDC European Point Prevalence Survey of Hospital-associated Infections and Antimicrobial Use in Poland 2012-2014. J Hosp Infect. 2017;96(2):145-50.  https://doi.org/10.1016/j.jhin.2016.12.020  PMID: 28173962 
  62. Djordjevic Z, Jankovic S, Gajovic O, Djonovic N, Folic N, Bukumiric Z. Hospital infections in a neurological intensive care unit: incidence, causative agents and risk factors. J Infect Dev Ctries. 2012;6(11):798-805.  https://doi.org/10.3855/jidc.2659  PMID: 23277505 
  63. Erayman I, Erdi M, Kalkan E, Karatas Y, Kaya B, Keskin F, et al. Evaluation of nosocomial infections and related risk factors in a neurosurgery intensive care unit. Int J Clin Exp Med. 2016;9:(4):7334-8.
  64. Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch Arztebl Int. 2011;108(6):87-93.  https://doi.org/10.3238/arztebl.2011.0087  PMID: 21373275 
  65. Inan A, Ozgültekin A, Akcay SS, Engin DO, Turan G, Ceran N, et al. Alterations in bacterial spectrum and increasing resistance rates in isolated microorganisms from device-associated infections in an intensive care unit of a teaching hospital in Istanbul (2004-2010). Jpn J Infect Dis. 2012;65(2):146-51. PMID: 22446122 
  66. Iordanou S, Middleton N, Papathanassoglou E, Raftopoulos V. Surveillance of device associated infections and mortality in a major intensive care unit in the Republic of Cyprus. BMC Infect Dis. 2017;17(1):607.  https://doi.org/10.1186/s12879-017-2704-2  PMID: 28877671 
  67. Kepenekli E, Soysal A, Yalindag-Ozturk N, Ozgur O, Ozcan I, Devrim I, et al. Healthcare-associated infections in pediatric intensive care units in Turkey: a national point-prevalence survey. Jpn J Infect Dis. 2015;68(5):381-6.  https://doi.org/10.7883/yoken.JJID.2014.385  PMID: 25791987 
  68. Kołpa M, Wałaszek M, Gniadek A, Wolak Z, Dobroś W. Incidence, microbiological profile and risk factors of healthcare-associated infections in intensive care units: A 10 year observation in a provincial hospital in southern Poland. Int J Environ Res Public Health. 2018;15(1):112.  https://doi.org/10.3390/ijerph15010112  PMID: 29324651 
  69. Kostakoğlu U, Saylan S, Karataş M, İskender S, Aksoy F, Yılmaz G. Cost analysis and evaluation of nosocomial infections in intensive care units. Turk J Med Sci. 2016;46(5):1385-92.  https://doi.org/10.3906/sag-1504-106  PMID: 27966302 
  70. Kouni S, Tsolia M, Roilides E, Dimitriou G, Tsiodras S, Skoutelis A, et al. Establishing nationally representative central line-associated bloodstream infection surveillance data for paediatric patients in Greece. J Hosp Infect. 2019;101(1):53-9.  https://doi.org/10.1016/j.jhin.2018.07.032  PMID: 30059747 
  71. Djuric O, Markovic-Denic L, Jovanovic B, Bumbasirevic V. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol Immunol Hung. 2019;66(3):307-25.  https://doi.org/10.1556/030.66.2019.007  PMID: 30786727 
  72. Öncül O, Öksüz S, Acar A, Ülkür E, Turhan V, Uygur F, et al. Nosocomial infection characteristics in a burn intensive care unit: analysis of an eleven-year active surveillance. Burns. 2014;40(5):835-41.  https://doi.org/10.1016/j.burns.2013.11.003  PMID: 24296064 
  73. Ong DS, Bonten MJ, Safdari K, Spitoni C, Frencken JF, Witteveen E, et al. Epidemiology, management, and risk-adjusted mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis. 2015;61(9):1413-20.  https://doi.org/10.1093/cid/civ560  PMID: 26179013 
  74. Orsi GB, Giuliano S, Franchi C, Ciorba V, Protano C, Giordano A, et al. Changed epidemiology of ICU acquired bloodstream infections over 12 years in an Italian teaching hospital. Minerva Anestesiol. 2015;81(9):980-8. PMID: 25411769 
  75. Salmanov A, Litus V, Vdovychenko S, Litus O, Davtian L, Ubogov S, et al. Healthcare-associated infections in intensive care units. Wiad Lek. 2019;72(5) 5 cz 2;963-9.  https://doi.org/10.36740/WLek201905201  PMID: 31175725 
  76. Schwab F, Geffers C, Behnke M, Gastmeier P. ICU mortality following ICU-acquired primary bloodstream infections according to the type of pathogen: A prospective cohort study in 937 Germany ICUs (2006-2015). PLoS One. 2018;13(3):e0194210.  https://doi.org/10.1371/journal.pone.0194210  PMID: 29518133 
  77. Süner A, Karaoğlan I, Mete AO, Namiduru M, Boşnak V, Baydar I. Assessment of bloodstream infections and risk factors in an intensive care unit. Turk J Med Sci. 2015;45(6):1243-50.  https://doi.org/10.3906/sag-1303-41  PMID: 26775377 
  78. Sutcu M, Akturk H, Acar M, Salman N, Aydın D, Akgun Karapınar B, et al. Impact of vancomycin-resistant enterococci colonization in critically ill pediatric patients. Am J Infect Control. 2016;44(5):515-9.  https://doi.org/10.1016/j.ajic.2015.11.026  PMID: 26781220 
  79. Tomaszewski D, Rybicki Z, Duszyńska W. The Polish Prevalence of Infection in Intensive Care (PPIC): A one-day point prevalence multicenter study. Adv Clin Exp Med. 2019;28(7):907-12.  https://doi.org/10.17219/acem/94147  PMID: 30986000 
  80. Viderman D, Brotfain E, Khamzina Y, Kapanova G, Zhumadilov A, Poddighe D. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan. J Glob Antimicrob Resist. 2019;17:35-8.  https://doi.org/10.1016/j.jgar.2018.11.010  PMID: 30448518 
  81. Viderman D, Khamzina Y, Kaligozhin Z, Khudaibergenova M, Zhumadilov A, Crape B, et al. An observational case study of hospital associated infections in a critical care unit in Astana, Kazakhstan. Antimicrob Resist Infect Control. 2018;7(1):57.  https://doi.org/10.1186/s13756-018-0350-0  PMID: 29713464 
  82. Wałaszek M, Różańska A, Bulanda M, Wojkowska-Mach JAlarming results of nosocomial bloodstream infections surveillance in Polish intensive care units. Przegl Epidemiol. 2018;72(1):33-44. PMID: 29667378 
  83. Walaszek M, Rozanska A, Bulanda M, Wojkowska-Mach J. Epidemiology of healthcare-associated infections in Polish intensive care. A multicenter study based on active surveillance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(3):190-7.  https://doi.org/10.5507/bp.2018.006  PMID: 29795542 
  84. Yetkin F, Yakupogullari Y, Kuzucu C, Ersoy Y, Otlu B, Colak C, et al. Pathogens of intensive care unit-acquired infections and their antimicrobial resistance: a 9-year analysis of data from a university hospital. Jundishapur J Microbiol. 2018;11(10):e67716.  https://doi.org/10.5812/jjm.67716 
  85. Yoğun Ç, Ünitesindeki B, Enfeksiyonlarının H, Celiloglu C, Tolunay O, Sucu A, et al. Assessment of healthcare-associated infections in the pediatric intensive care unit. J Pediatr Inf.2017;11(3):113-8.  https://doi.org/10.5578/ced.201733 
  86. Baier C, Pirr S, Ziesing S, Ebadi E, Hansen G, Bohnhorst B, et al. Prospective surveillance of bacterial colonization and primary sepsis: findings of a tertiary neonatal intensive and intermediate care unit. J Hosp Infect. 2019;102(3):325-31.  https://doi.org/10.1016/j.jhin.2019.01.021  PMID: 30716339 
  87. Bolat F, Uslu S, Bolat G, Comert S, Can E, Bulbul A, et al. Healthcare-associated infections in a Neonatal Intensive Care Unit in Turkey. Indian Pediatr. 2012;49(12):951-7.  https://doi.org/10.1007/s13312-012-0249-4  PMID: 22791673 
  88. Crivaro V, Bogdanović L, Bagattini M, Iula VD, Catania M, Raimondi F, et al. Surveillance of healthcare-associated infections in a neonatal intensive care unit in Italy during 2006-2010. BMC Infect Dis. 2015;15(1):152.  https://doi.org/10.1186/s12879-015-0909-9  PMID: 25885702 
  89. Cura C, Ozen M, Akaslan Kara A, Alkan G, Sesli Cetin E. Health care-associated infection surveillance in a tertiary neonatal intensive care unit: A prospective clinical study after moving to a new building. Am J Infect Control. 2016;44(1):80-4.  https://doi.org/10.1016/j.ajic.2015.07.032  PMID: 26320701 
  90. Djordjevic ZM, Markovic-Denic L, Folic MM, Igrutinovic Z, Jankovic SM. Health care-acquired infections in neonatal intensive care units: risk factors and etiology. Am J Infect Control. 2015;43(1):86-8.  https://doi.org/10.1016/j.ajic.2014.10.005  PMID: 25564130 
  91. Sadowska-Krawczenko I, Jankowska A, Kurylak A. Healthcare-associated infections in a neonatal intensive care unit. Arch Med Sci. 2012;8(5):854-8.  https://doi.org/10.5114/aoms.2012.31412  PMID: 23185195 
  92. Verstraete E, Boelens J, De Coen K, Claeys G, Vogelaers D, Vanhaesebrouck P, et al. Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992-2011): trends in incidence, pathogens, and mortality. Infect Control Hosp Epidemiol. 2014;35(5):511-8.  https://doi.org/10.1086/675836  PMID: 24709719 
  93. Yalaz M, Altun-Köroğlu O, Ulusoy B, Yildiz B, Akisu M, Vardar F, et al. Evaluation of device-associated infections in a neonatal intensive care unit. Turk J Pediatr. 2012;54(2):128-35. PMID: 22734298 
  94. Guembe M, Pérez-Granda MJ, Capdevila JA, Barberán J, Pinilla B, Martín-Rabadán P, et al. Nationwide study on peripheral-venous-catheter-associated-bloodstream infections in internal medicine departments. J Hosp Infect. 2017;97(3):260-6.  https://doi.org/10.1016/j.jhin.2017.07.008  PMID: 28716670 
  95. Karadağ Geçgel S, Demircan N. The epidemiology of pathogen microorganisms in hospital acquired infections. Int J Clin Exp Med. 2016;9:(11):22310-6.
  96. Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Epidemiology of surgical site infections and non-surgical infections in neurosurgical Polish patients—Substantial changes in 2003-2017. Int J Environ Res Public Health. 2019;16(6):911.  https://doi.org/10.3390/ijerph16060911  PMID: 30871283 
  97. Kuzdan C, Soysal A, Culha G, Altinkanat G, Soyletir G, Bakir M. Three-year study of health care-associated infections in a Turkish pediatric ward. J Infect Dev Ctries. 2014;8(11):1415-20.  https://doi.org/10.3855/jidc.3931  PMID: 25390054 
  98. Tsitsopoulos PP, Iosifidis E, Antachopoulos C, Anestis DM, Karantani E, Karyoti A, et al. Nosocomial bloodstream infections in neurosurgery: a 10-year analysis in a center with high antimicrobial drug-resistance prevalence. Acta Neurochir (Wien). 2016;158(9):1647-54.  https://doi.org/10.1007/s00701-016-2890-5  PMID: 27452903 
  99. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128-40.  https://doi.org/10.1016/0196-6553(88)90053-3  PMID: 2841893 
  100. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-32.  https://doi.org/10.1016/j.ajic.2008.03.002  PMID: 18538699 
  101. Ott E, Saathoff S, Graf K, Schwab F, Chaberny IF. The prevalence of nosocomial and community acquired infections in a university hospital: an observational study. Dtsch Arztebl Int. 2013;110(31-32):533-40.  https://doi.org/10.3238/arztebl.2013.0533  PMID: 24069074 
  102. Russo PL, Stewardson AJ, Cheng AC, Bucknall T, Mitchell BG. The prevalence of healthcare associated infections among adult inpatients at nineteen large Australian acute-care public hospitals: a point prevalence survey. Antimicrob Resist Infect Control. 2019;8(1):114.  https://doi.org/10.1186/s13756-019-0570-y  PMID: 31338161 
  103. Huerta-Gutiérrez R, Braga L, Camacho-Ortiz A, Díaz-Ponce H, García-Mollinedo L, Guzmán-Blanco M, et al. One-day point prevalence of healthcare-associated infections and antimicrobial use in four countries in Latin America. Int J Infect Dis. 2019;86:157-66.  https://doi.org/10.1016/j.ijid.2019.06.016  PMID: 31229613 
  104. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732-44.  https://doi.org/10.1056/NEJMoa1801550  PMID: 30380384 
  105. Chen Y, Zhao JY, Shan X, Han XL, Tian SG, Chen FY, et al. A point-prevalence survey of healthcare-associated infection in fifty-two Chinese hospitals. J Hosp Infect. 2017;95(1):105-11.  https://doi.org/10.1016/j.jhin.2016.08.010  PMID: 28007308 
  106. Centers for Disease Control and Prevention (CDC). 2019 national and state healthcare-associated infections (HAI) progress report. Atlanta: CDC; 2021. [Accessed: 26 Oct 2021]. Available from: https://arpsp.cdc.gov/profile/national-progress/united-states
  107. Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D, et al. The Prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(6):701-9.  https://doi.org/10.1017/ice.2018.60  PMID: 29655388 
  108. Mendes RE, Castanheira M, Farrell DJ, Flamm RK, Sader HS, Jones RN. Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency. J Antimicrob Chemother. 2016;71(12):3453-8.  https://doi.org/10.1093/jac/dkw319  PMID: 27609052 
  109. Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou E, Gikas A. Prevalence, incidence burden, and clinical impact of healthcare-associated infections and antimicrobial resistance: a national prevalent cohort study in acute care hospitals in Greece. Infect Drug Resist. 2017;10:317-28.  https://doi.org/10.2147/IDR.S147459  PMID: 29066921 
  110. Mancini A, Verdini D, La Vigna G, Recanatini C, Lombardi FE, Barocci S. Retrospective analysis of nosocomial infections in an Italian tertiary care hospital. New Microbiol. 2016;39(3):197-205. PMID: 27284985 
  111. Metsini A, Vazquez M, Sommerstein R, Marschall J, Voide C, Troillet N, et al. Point prevalence of healthcare-associated infections and antibiotic use in three large Swiss acute-care hospitals. Swiss Med Wkly. 2018;148(17-18):w14617. PMID: 29698542 
  112. European Centre for Disease Prevention and Control (EDCD). Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0
  113. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012. Stockholm: ECDC; 2013. Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0
  114. European Centre for Disease Prevention and Control (ECDC). Healthcare-associated infections acquired in intensive care units - Annual Epidemiological Report for 2017. Stockholm: ECDC; 2019. Available from: www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-annual-epidemiological-1
  115. Huang L, Zhang R, Hu Y, Zhou H, Cao J, Lv H, et al. Epidemiology and risk factors of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci infections in Zhejiang China from 2015 to 2017. Antimicrob Resist Infect Control. 2019;8(1):90.  https://doi.org/10.1186/s13756-019-0539-x  PMID: 31164979 
  116. Hu F, Zhu D, Wang F, Wang M. Current status and trends of antibacterial resistance in China. Clin Infect Dis. 2018;67(2) suppl_2;S128-34.  https://doi.org/10.1093/cid/ciy657  PMID: 30423045 
  117. Japan NIS. (JANIS). Annual open report 2018 (all facilities). Tokyo: JANIS; 2019. Available from: https://janis.mhlw.go.jp/english/report/open_report/2018/3/1/ken_Open_Report_Eng_201800_clsi2012.pdf
  118. Kim EJ, Kwak Y, Kim T, Lee MS, Lee S-O, Kim S, et al. Korean national healthcare-associated infections surveillance system, intensive care unit module report: summary of data from July 2017 through June 2018. Korean J of Healthc Assoc Infect Control and Prev.2019;24(2):69.  https://doi.org/10.14192/kjicp.2019.24.2.69 
  119. Taiwan Centers for Disease Control Control (TCfDC). Annual report of nosocomial infections surveillance system 2016. Taipei: TCfDC; 2016. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  120. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2019. Atlanta: CDC; 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  121. Pfaller MA, Cormican M, Flamm RK, Mendes RE, Jones RN. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of Enterococci: results from the SENTRY antimicrobial surveillance program, 1997-2016. Open Forum Infect Dis. 2019;6Suppl 1;S54-62.  https://doi.org/10.1093/ofid/ofy344  PMID: 30895215 
  122. Centers for Disease Control and Prevention (CDC). Antibiotic use in the United States, 2017: progress and opportunities. Atlanta: CDC; 2017. Available from: https://www.cdc.gov/antibiotic-use/stewardship-report/pdf/stewardship-report.pdf
  123. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41.  https://doi.org/10.1016/S0140-6736(10)61458-4  PMID: 21146207 
  124. Ayobami O, Willrich N, Harder T, Okeke IN, Eckmanns T, Markwart R. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect. 2019;8(1):1747-59.  https://doi.org/10.1080/22221751.2019.1698273  PMID: 31805829 
  125. Markwart R, Saito H, Harder T, Tomczyk S, Cassini A, Fleischmann-Struzek C, et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med. 2020;46(8):1536-51.  https://doi.org/10.1007/s00134-020-06106-2  PMID: 32591853 
  126. Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou E, Gikas A. Prevalence, incidence burden, and clinical impact of healthcare-associated infections and antimicrobial resistance: a national prevalent cohort study in acute care hospitals in Greece. Infect Drug Resist. 2017;10:317-28.  https://doi.org/10.2147/IDR.S147459  PMID: 29066921 
  127. Hansen S, Zingg W, Ahmad R, Kyratsis Y, Behnke M, Schwab F, et al. Organization of infection control in European hospitals. J Hosp Infect. 2015;91(4):338-45.  https://doi.org/10.1016/j.jhin.2015.07.011  PMID: 26542950 
  128. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008;13(47):19046.  https://doi.org/10.2807/ese.13.47.19046-en  PMID: 19021959 
  129. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU/EEA, annual epidemiological report for 2018. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2018
  130. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption database (ESAC-Net). Stockholm: ECDC; 2021. [Accessed: 5 Nov 2021]. Available from: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database
  131. Forstner C, Diab-Elschahawi M, Kivaranovic D, Graninger W, Mitteregger D, Macher M, et al. Non-linear significant relationship between use of glycopeptides and isolation of vancomycin-resistant Enterococcus species in a university hospital setting. Antimicrob Resist Infect Control. 2015;4(1):25.  https://doi.org/10.1186/s13756-015-0064-5  PMID: 26078865 
  132. Fridkin SK, Edwards JR, Courval JM, Hill H, Tenover FC, Lawton R, et al. The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann Intern Med. 2001;135(3):175-83.  https://doi.org/10.7326/0003-4819-135-3-200108070-00009  PMID: 11487484 
  133. Dahms RA, Johnson EM, Statz CL, Lee JT, Dunn DL, Beilman GJ. Third-generation cephalosporins and vancomycin as risk factors for postoperative vancomycin-resistant enterococcus infection. Arch Surg. 1998;133(12):1343-6.  https://doi.org/10.1001/archsurg.133.12.1343  PMID: 9865653 
  134. Kritsotakis EI, Christidou A, Roumbelaki M, Tselentis Y, Gikas A. The dynamic relationship between antibiotic use and the incidence of vancomycin-resistant Enterococcus: time-series modelling of 7-year surveillance data in a tertiary-care hospital. Clin Microbiol Infect. 2008;14(8):747-54.  https://doi.org/10.1111/j.1469-0691.2008.02026.x  PMID: 18727798 
  135. Remschmidt C, Behnke M, Kola A, Peña Diaz LA, Rohde AM, Gastmeier P, et al. The effect of antibiotic use on prevalence of nosocomial vancomycin-resistant enterococci- an ecologic study. Antimicrob Resist Infect Control. 2017;6(1):95.  https://doi.org/10.1186/s13756-017-0253-5  PMID: 28924472 
  136. Agudelo Higuita NI, Huycke MM. Enterococcal disease, epidemiology, and implications for treatment. Boston: Massachusetts Eye and Ear Infirmary; 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK190429
/content/10.2807/1560-7917.ES.2021.26.45.2001628
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error