1887
Surveillance Open Access
Like 0

Abstract

Background

Invasive infections caused by have high clinical and epidemiological relevance. It is therefore important to monitor the trends using suitable methods.

Aim

The study aimed to describe the trends of bloodstream infections (BSI) caused by meticillin-resistant (MRSA) and meticillin-susceptible (MSSA) in the European Union (EU) and the European Economic Area (EEA).

Methods

Annual data on BSI from 2005 to 2018 were obtained from the European Antimicrobial Resistance Surveillance Network (EARS-Net). Trends of BSI were assessed at the EU/EEA level by adjusting for blood culture set rate (number of blood culture sets per 1,000 days of hospitalisation) and stratification by patient characteristics.

Results

Considering a fixed cohort of laboratories consistently reporting data over the entire study period, MRSA percentages among BSI decreased from 30.2% in 2005 to 16.3% in 2018. Concurrently, the total number of BSI caused by increased by 57%, MSSA BSI increased by 84% and MRSA BSI decreased by 31%. All these trends were statistically significant (p < 0.001).

Conclusions

The results indicate an increasing health burden of MSSA BSI in the EU/EEA despite a significant decrease in the MRSA percentage. These findings highlight the importance of monitoring antimicrobial resistance trends by assessing not only resistance percentages but also the incidence of infections. Further research is needed on the factors associated with the observed trends and on their attributable risk.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.46.2002094
2021-11-18
2021-12-08
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.46.2002094
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/46/eurosurv-26-46-3.html?itemId=/content/10.2807/1560-7917.ES.2021.26.46.2002094&mimeType=html&fmt=ahah

References

  1. European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  3. Cecchini M, Slawomirski L, Langer J. Antimicrobial resistance in G7 countries and beyond: economic issues, policies and options for action. Paris: Organisation for Economic Co-operation and Development; 2015. Available from: https://www.oecd.org/els/health-systems/Antimicrobial-Resistance-in-G7-Countries-and-Beyond.pdf
  4. European Centre for Disease Prevention and Control (ECDC). Surveillance atlas of infectious diseases. Stockholm; ECDC. [Accessed: 27 Apr 2020]. Available from: https://atlas.ecdc.europa.eu/public/index.aspx
  5. Boyce JM, White RL, Spruill EY. Impact of methicillin-resistant Staphylococcus aureus on the incidence of nosocomial staphylococcal infections. J Infect Dis. 1983;148(4):763.  https://doi.org/10.1093/infdis/148.4.763  PMID: 6631065 
  6. Mostofsky E, Lipsitch M, Regev-Yochay G. Is methicillin-resistant Staphylococcus aureus replacing methicillin-susceptible S. aureus? J Antimicrob Chemother. 2011;66(10):2199-214.  https://doi.org/10.1093/jac/dkr278  PMID: 21737459 
  7. de Kraker ME, Jarlier V, Monen JC, Heuer OE, van de Sande N, Grundmann H. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect. 2013;19(9):860-8.  https://doi.org/10.1111/1469-0691.12028  PMID: 23039210 
  8. Jarlier V, Trystram D, Brun-Buisson C, Fournier S, Carbonne A, Marty L, et al. Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program. Arch Intern Med. 2010;170(6):552-9.  https://doi.org/10.1001/archinternmed.2010.32  PMID: 20308642 
  9. Klein EY, Mojica N, Jiang W, Cosgrove SE, Septimus E, Morgan DJ, et al. Trends in methicillin-resistant staphylococcus aureus hospitalizations in the United States, 2010-2014. Clin Infect Dis. 2017;65(11):1921-3.  https://doi.org/10.1093/cid/cix640  PMID: 29020322 
  10. Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, Epson E, et al. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections - United States. MMWR Morb Mortal Wkly Rep. 2019;68(9):214-9.  https://doi.org/10.15585/mmwr.mm6809e1  PMID: 30845118 
  11. Newitt S, Myles PR, Birkin JA, Maskell V, Slack RC, Nguyen-Van-Tam JS, et al. Impact of infection control interventions on rates of Staphylococcus aureus bacteraemia in National Health Service acute hospitals, East Midlands, UK, using interrupted time-series analysis. J Hosp Infect. 2015;90(1):28-37.  https://doi.org/10.1016/j.jhin.2014.12.016  PMID: 25659447 
  12. European Centre for Disease Prevention and Control (ECDC). TESSy – The European Surveillance System – Antimicrobial resistance (AMR) reporting protocol 2019 – European Antimicrobial Resistance Surveillance Network (EARS-Net) surveillance data for 2018. Stockholm: ECDC; 2019.
  13. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance – Version 2.0. Växjö, EUCAST; 2017. Available from: http:// www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf
  14. European Centre for Disease Prevention and Control (ECDC). External quality assessment (EQA) of performance of laboratories participating in the European Antimicrobial Resistance Surveillance Network (EARS-Net), 2018. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/external-quality-assessment-laboratory-performance-european-antimicrobial-0
  15. Rhee C, Klompas M. Sepsis trends: increasing incidence and decreasing mortality, or changing denominator? J Thorac Dis. 2020;12(S1) Suppl 1;S89-100.  https://doi.org/10.21037/jtd.2019.12.51  PMID: 32148931 
  16. European Commission. Eurostat. Database: Population and demography. Brussels: Eurostat. [Accessed: 27 Apr 2020]. Available from: https://ec.europa.eu/eurostat/web/population-demography/demography-population-stock-balance/database
  17. Thorlacius-Ussing L, Sandholdt H, Larsen AR, Petersen A, Benfield T. Age-dependent increase in incidence of Staphylococcus aureus bacteremia, Denmark, 2008-2015. Emerg Infect Dis. 2019;25(5).  https://doi.org/10.3201/eid2505.181733  PMID: 31002300 
  18. Asgeirsson H, Gudlaugsson O, Kristinsson KG, Heiddal S, Kristjansson M. Staphylococcus aureus bacteraemia in Iceland, 1995-2008: changing incidence and mortality. Clin Microbiol Infect. 2011;17(4):513-8.  https://doi.org/10.1111/j.1469-0691.2010.03265.x  PMID: 20491831 
  19. Asgeirsson H, Thalme A, Weiland O. Staphylococcus aureus bacteraemia and endocarditis - epidemiology and outcome: a review. Infect Dis (Lond). 2018;50(3):175-92.  https://doi.org/10.1080/23744235.2017.1392039  PMID: 29105519 
  20. Jokinen E, Laine J, Huttunen R, Lyytikäinen O, Vuento R, Vuopio J, et al. Trends in incidence and resistance patterns of Staphylococcus aureus bacteremia. Infect Dis (Lond). 2018;50(1):52-8.  https://doi.org/10.1080/23744235.2017.1405276  PMID: 29161942 
  21. Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A, Chlebowicz M, et al. The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill. 2014;19(49):20987.  https://doi.org/10.2807/1560-7917.ES2014.19.49.20987  PMID: 25523972 
  22. Koeck M, Como-Sabetti K, Boxrud D, Dobbins G, Glennen A, Anacker M, et al. Burdens of invasive methicillin-susceptible and methicillin-resistant Staphylococcus aureus disease, Minnesota, USA. Emerg Infect Dis. 2019;25(1):171-4.  https://doi.org/10.3201/eid2501.181146  PMID: 30561319 
  23. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203-18.  https://doi.org/10.1038/s41579-018-0147-4  PMID: 30737488 
  24. Uhlemann AC, McAdam PR, Sullivan SB, Knox JR, Khiabanian H, Rabadan R, et al. Evolutionary dynamics of pandemic methicillin-sensitive Staphylococcus aureus ST398 and its international spread via routes of human migration. MBio. 2017;8(1):e01375-16.  https://doi.org/10.1128/mBio.01375-16  PMID: 28096484 
  25. David MZ, Boyle-Vavra S, Zychowski DL, Daum RS. Methicillin-susceptible Staphylococcus aureus as a predominantly healthcare-associated pathogen: a possible reversal of roles? PLoS One. 2011;6(4):e18217.  https://doi.org/10.1371/journal.pone.0018217  PMID: 21533238 
  26. Kavanagh KT. Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control. 2019;8(1):103.  https://doi.org/10.1186/s13756-019-0550-2  PMID: 31244994 
  27. Laupland KB. Are we missing the Staphylococcus aureus bacteraemia forest for the MRSA trees? Infect Dis (Lond). 2018;50(1):59-61.  https://doi.org/10.1080/23744235.2017.1405277  PMID: 29161941 
/content/10.2807/1560-7917.ES.2021.26.46.2002094
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error