Research Open Access
Like 0



SARS-CoV-2 emergence was a threat for armed forces. A COVID-19 outbreak occurred on the French aircraft carrier Charles de Gaulle from mid-March to mid-April 2020.


To understand how the virus was introduced, circulated then stopped circulation, risk factors for infection and severity, and effectiveness of preventive measures.


We considered the entire crew as a cohort and collected personal, clinical, biological, and epidemiological data. We performed viral genome sequencing and searched for SARS-CoV-2 in the environment.


The attack rate was 65% (1,148/1,767); 1,568 (89%) were included. The male:female ratio was 6.9, and median age was 29 years (IQR: 24–36). We examined four clinical profiles: asymptomatic (13.0%), non-specific symptomatic (8.1%), specific symptomatic (76.3%), and severe (i.e. requiring oxygen therapy, 2.6%). Active smoking was not associated with severe COVID-19; age and obesity were risk factors. The instantaneous reproduction rate (R) and viral sequencing suggested several introductions of the virus with 4 of 5 introduced strains from within France, with an acceleration of R when lifting preventive measures. Physical distancing prevented infection (adjusted OR: 0.55; 95% CI: 0.40–0.76). Transmission may have stopped when the proportion of infected personnel was large enough to prevent circulation (65%; 95% CI: 62–68).


Non-specific clinical pictures of COVID-19 delayed detection of the outbreak. The lack of an isolation ward made it difficult to manage transmission; the outbreak spread until a protective threshold was reached. Physical distancing was effective when applied. Early surveillance with adapted prevention measures should prevent such an outbreak.


Article metrics loading...

Loading full text...

Full text loading...



  1. Migliani R, Meynard J-B, Milleliri J-M, Verret C, Rapp C. Histoire de la lutte contre le paludisme dans l’armée française : de l’Algérie à l’Armée d’Orient pendant la Première Guerre mondiale. [History of malaria control in the French armed forces: from Algeria to the Macedonian front during the first World War]. Med Sante Trop. 2014;24(4):349-61. French.  https://doi.org/10.1684/mst.2014.0411  PMID: 25597257 
  2. Piarroux R, Barrais R, Faucher B, Haus R, Piarroux M, Gaudart J, et al. Understanding the cholera epidemic, Haiti. Emerg Infect Dis. 2011;17(7):1161-8.  https://doi.org/10.3201/eid1707.110059  PMID: 21762567 
  3. Michel R, Demoncheaux JP, Créach MA, Rapp C, Simon F, Haus-Cheymol R, et al. Prevention of infectious diseases during military deployments: a review of the French armed forces strategy. Travel Med Infect Dis. 2014;12(4):330-40.  https://doi.org/10.1016/j.tmaid.2014.07.001  PMID: 25052855 
  4. Bernard Stoecklin S, Rolland P, Silue Y, Mailles A, Campese C, Simondon A, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill. 2020;25(6).  https://doi.org/10.2807/1560-7917.ES.2020.25.6.2000094  PMID: 32070465 
  5. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10).  https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180  PMID: 32183930 
  6. Kasper MR, Geibe JR, Sears CL, Riegodedios AJ, Luse T, Von Thun AM, et al. An outbreak of Covid-19 on an aircraft carrier. N Engl J Med. 2020;383(25):2417-26.  https://doi.org/10.1056/NEJMoa2019375  PMID: 33176077 
  7. Guan W-J, Ni Z-Y, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.  https://doi.org/10.1056/NEJMoa2002032  PMID: 32109013 
  8. Xie Y, Wang Z, Liao H, Marley G, Wu D, Tang W. Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):640.  https://doi.org/10.1186/s12879-020-05371-2  PMID: 32867706 
  9. Hariyanto TI, Rizki NA, Kurniawan A. Anosmia/hyposmia is a good predictor of coronavirus disease 2019 (COVID-19) infection: a meta-analysis. Int Arch Otorhinolaryngol. 2021;25(1):e170-4.  https://doi.org/10.1055/s-0040-1719120  PMID: 33552295 
  10. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org
  11. Bylicki O, Paleiron N, Janvier F. An outbreak of Covid-19 on an aircraft carrier. N Engl J Med. 2021;384(10):976-7.  https://doi.org/10.1056/NEJMc2034424  PMID: 33567182 
  12. Gaudart J, Landier J, Huiart L, Legendre E, Lehot L, Bendiane MK, et al. Factors associated with the spatial heterogeneity of the first wave of COVID-19 in France: a nationwide geo-epidemiological study. Lancet Public Health. 2021;6(4):e222-31.  https://doi.org/10.1016/S2468-2667(21)00006-2  PMID: 33556327 
  13. Bielecki M, Züst R, Siegrist D, Meyerhofer D, Crameri GAG, Stanga Z, et al. Social distancing alters the clinical course of COVID-19 in young adults: a comparative cohort study. Clin Infect Dis. 2021;72(4):598-603.  https://doi.org/10.1093/cid/ciaa889  PMID: 32594121 
  14. Payne DC, Smith-Jeffcoat SE, Nowak G, Chukwuma U, Geibe JR, Hawkins RJ, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep. 2020;69(23):714-21.  https://doi.org/10.15585/mmwr.mm6923e4  PMID: 32525850 
  15. Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020;52(5):737-41.  https://doi.org/10.1016/j.immuni.2020.04.012  PMID: 32433946 
  16. Harder T, Külper-Schiek W, Reda S, Treskova-Schwarzbach M, Koch J, Vygen-Bonnet S, et al. Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis, 1 January to 25 August 2021. Euro Surveill. 2021;26(41):2100920.  https://doi.org/10.2807/1560-7917.ES.2021.26.41.2100920  PMID: 34651577 
  17. Alvarado GR, Pierson BC, Teemer ES, Gama HJ, Cole RD, Jang SS. Symptom characterization and outcomes of sailors in isolation after a COVID-19 outbreak on a US aircraft carrier. JAMA Netw Open. 2020;3(10):e2020981.  https://doi.org/10.1001/jamanetworkopen.2020.20981  PMID: 33001200 
  18. de Laval F, Grosset-Janin A, Delon F, Allonneau A, Tong C, Letois F, et al. Lessons learned from the investigation of a COVID-19 cluster in Creil, France: effectiveness of targeting symptomatic cases and conducting contact tracing around them. BMC Infect Dis. 2021;21(1):457.  https://doi.org/10.1186/s12879-021-06166-9  PMID: 34011278 
  19. Durand GA, de Laval F, de Bonet d’Oléon A, Le Flem FX, Morin Y, Badaut C, et al. COVID-19 outbreak among French firefighters, Marseille, France, 2020. Euro Surveill. 2021;26(41):2001676.  https://doi.org/10.2807/1560-7917.ES.2021.26.41.2001676  PMID: 34651571 
  20. Expert Taskforce for the COVID-19 Cruise Ship Outbreak. Epidemiology of COVID-19 outbreak on cruise ship quarantined at Yokohama, Japan, February 2020. Emerg Infect Dis. 2020;26(11):2591-7.  https://doi.org/10.3201/eid2611.201165  PMID: 32822290 
  21. Yamagishi T, Kamiya H, Kakimoto K, Suzuki M, Wakita T. Descriptive study of COVID-19 outbreak among passengers and crew on Diamond Princess cruise ship, Yokohama Port, Japan, 20 January to 9 February 2020. Euro Surveill. 2020;25(23):2000272.  https://doi.org/10.2807/1560-7917.ES.2020.25.23.2000272  PMID: 32553062 
  22. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020;17(9):e1003346.  https://doi.org/10.1371/journal.pmed.1003346  PMID: 32960881 
  23. Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021;49(1):15-28.  https://doi.org/10.1007/s15010-020-01509-1  PMID: 32860214 
  24. Patanavanich R, Glantz SA. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob Res. 2020;22(9):1653-6.  https://doi.org/10.1093/ntr/ntaa082  PMID: 32399563 
  25. Prinelli F, Bianchi F, Drago G, Ruggieri S, Sojic A, Jesuthasan N, et al. Association between smoking and SARS-CoV-2 Infection: cross-sectional study of the EPICOVID19 internet-based survey. JMIR Public Health Surveill. 2021;7(4):e27091.  https://doi.org/10.2196/27091  PMID: 33668011 
  26. Qureshi AI, Baskett WI, Huang W, Lobanova I, Hasan Naqvi S, Shyu C-R. Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing. Clin Infect Dis. 2022;74(2):294-300.  https://doi.org/10.1093/cid/ciab345  PMID: 33895814 
  27. Xie J, Zhong R, Wang W, Chen O, Zou Y. COVID-19 and smoking: what evidence needs our attention? Front Physiol. 2021;12:603850.  https://doi.org/10.3389/fphys.2021.603850  PMID: 33815131 
  28. Usman MS, Siddiqi TJ, Khan MS, Patel UK, Shahid I, Ahmed J, et al. Is there a smoker’s paradox in COVID-19? BMJ Evid Based Med. 2021;26(6):279-84.  https://doi.org/10.1136/bmjebm-2020-111492  PMID: 32788164 
  29. Morgan OW, Aguilera X, Ammon A, Amuasi J, Fall IS, Frieden T, et al. Disease surveillance for the COVID-19 era: time for bold changes. Lancet. 2021;397(10292):2317-9.  https://doi.org/10.1016/S0140-6736(21)01096-5  PMID: 34000258 
  30. Caserio-Schönemann C, Meynard JB. Ten years experience of syndromic surveillance for civil and military public health, France, 2004-2014. Euro Surveill. 2015;20(19):35-8.  https://doi.org/10.2807/1560-7917.ES2015.20.19.21126  PMID: 25990360 
  31. Ahmed W, Bertsch PM, Angel N, Bibby K, Bivins A, Dierens L, et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J Travel Med. 2020;27(5):taaa116.  https://doi.org/10.1093/jtm/taaa116  PMID: 32662867 
  32. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397(10287):1819-29.  https://doi.org/10.1016/S0140-6736(21)00947-8  PMID: 33964222 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error