1887
Research Open Access
Like 0

Abstract

Background

There is a paucity of data on community-based infection (CDI) and how these compare with inpatient CDI.

Aim

To compare data on the populations with CDI in hospitals vs the community across 12 European countries.

Methods

For this point-prevalence study (July–November 2018), testing sites sent residual diagnostic material on sampling days to a coordinating laboratory for CDI testing and PCR ribotyping (n = 3,163). Information on whether CDI testing was requested at the original site was used to identify undiagnosed CDI. We used medical records to identify differences between healthcare settings in patient demographics and risk factors for detection of with or without free toxin.

Results

The CDI positivity rate was 4.4% (country range: 0–16.2) in hospital samples, and 1.3% (country range: 0–2.2%) in community samples. The highest prevalence of toxinotype IIIb (027, 181 and 176) was seen in eastern European countries (56%; 43/77), the region with the lowest testing rate (58%; 164/281). Different predisposing risk factors were observed (use of broad-spectrum penicillins in the community (OR: 8.09 (1.9–35.6), p = 0.01); fluoroquinolones/cephalosporins in hospitals (OR: 2.2 (1.2–4.3), p = 0.01; OR: 2.0 (1.1–3.7), p = 0.02)). Half of community CDI cases were undetected because of absence of clinical suspicion, accounting for three times more undiagnosed adults in the community compared with hospitals (ca 111,000 vs 37,000 cases/year in Europe).

Conclusion

These findings support recommendations for improving diagnosis in patients presenting with diarrhoea in the community, to guide good practice to limit the spread of CDI.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.26.2100704
2022-06-30
2022-08-16
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.26.2100704
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/26/eurosurv-27-26-4.html?itemId=/content/10.2807/1560-7917.ES.2022.27.26.2100704&mimeType=html&fmt=ahah

References

  1. Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. , The Healthcare-Associated Infections Prevalence Study Group. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516.  https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516  PMID: 30458912 
  2. Kwon JH, Olsen MA, Dubberke ER. The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin North Am. 2015;29(1):123-34.  https://doi.org/10.1016/j.idc.2014.11.003  PMID: 25677706 
  3. Davies K, Lawrence J, Berry C, Davis G, Yu H, Cai B, et al. Risk factors for primary Clostridium difficile infection; results from the observational study of risk factors for Clostridium difficile infection in hospitalized patients with infective diarrhea (ORCHID). Front Public Health. 2020;8:293.  https://doi.org/10.3389/fpubh.2020.00293  PMID: 32766196 
  4. Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(s1) Suppl 1;S12-8.  https://doi.org/10.1086/521863  PMID: 18177217 
  5. Rodríguez-Pardo D, Almirante B, Bartolomé RM, Pomar V, Mirelis B, Navarro F, et al. , Barcelona Clostridium difficile Study Group. Epidemiology of Clostridium difficile infection and risk factors for unfavorable clinical outcomes: results of a hospital-based study in Barcelona, Spain. J Clin Microbiol. 2013;51(5):1465-73.  https://doi.org/10.1128/JCM.03352-12  PMID: 23447638 
  6. Abou Chakra CN, Pepin J, Sirard S, Valiquette L. Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PLoS One. 2014;9(6):e98400.  https://doi.org/10.1371/journal.pone.0098400  PMID: 24897375 
  7. Marra F, Ng K. Controversies around epidemiology, diagnosis and treatments of Clostridium difficile infection. Drugs. 2015;75(10):1095-118.  https://doi.org/10.1007/s40265-015-0422-x  PMID: 26113167 
  8. Ofori E, Ramai D, Dhawan M, Mustafa F, Gasperino J, Reddy M. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect. 2018;99(4):436-42.  https://doi.org/10.1016/j.jhin.2018.01.015  PMID: 29410012 
  9. Deshpande A, Pasupuleti V, Thota P, Pant C, Rolston DDK, Sferra TJ, et al. Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68(9):1951-61.  https://doi.org/10.1093/jac/dkt129  PMID: 23620467 
  10. Crobach MJT, Notermans DW, Harmanus C, Sanders IMJG, De Greeff SC, Kuijper EJ. Community-Onset Clostridioides Difficile Infection in Hospitalized Patients in The Netherlands. Open Forum Infect Dis. 2019;6(12):ofz501.  https://doi.org/10.1093/ofid/ofz501  PMID: 31844637 
  11. Khanna S, Pardi DS, Aronson SL, Kammer PP, Orenstein R, St Sauver JL, et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107(1):89-95.  https://doi.org/10.1038/ajg.2011.398  PMID: 22108454 
  12. Hensgens MP, Dekkers OM, Demeulemeester A, Buiting AGM, Bloembergen P, van Benthem BHB, et al. Diarrhoea in general practice: when should a Clostridium difficile infection be considered? Results of a nested case-control study. Clin Microbiol Infect. 2014;20(12):O1067-74.  https://doi.org/10.1111/1469-0691.12758  PMID: 25040463 
  13. Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008;62(2):388-96.  https://doi.org/10.1093/jac/dkn163  PMID: 18434341 
  14. Barbut F, Day N, Bouée S, Youssouf A, Grandvoinnet L, Lalande V, et al. Toxigenic Clostridium difficile carriage in general practice: results of a laboratory-based cohort study. Clin Microbiol Infect. 2019;25(5):588-94.  https://doi.org/10.1016/j.cmi.2018.12.024  PMID: 30616013 
  15. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, et al. Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis. 2014;14(12):1208-19.  https://doi.org/10.1016/S1473-3099(14)70991-0  PMID: 25455988 
  16. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(Suppl 2):S88-92.  https://doi.org/10.1093/cid/cis335  PMID: 22752870 
  17. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23(3):529-49.  https://doi.org/10.1128/CMR.00082-09  PMID: 20610822 
  18. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, EUCLID study group. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21(29):30294.  https://doi.org/10.2807/1560-7917.ES.2016.21.29.30294  PMID: 27470194 
  19. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109-13.  https://doi.org/10.1038/ng.2478  PMID: 23222960 
  20. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008;47(9):1162-70.  https://doi.org/10.1086/592257  PMID: 18808358 
  21. Fawley WN, Davies KA, Morris T, Parnell P, Howe R, Wilcox MH, Clostridium difficile Ribotyping Network (CDRN) Working Group. Enhanced surveillance of Clostridium difficile infection occurring outside hospital, England, 2011 to 2013. Euro Surveill. 2016;21(29):30295.  https://doi.org/10.2807/1560-7917.ES.2016.21.29.30295  PMID: 27487436 
  22. Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, et al. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22(Suppl 4):S63-81.  https://doi.org/10.1016/j.cmi.2016.03.010  PMID: 27460910 
  23. Planche T, Wilcox M. Reference assays for Clostridium difficile infection: one or two gold standards? J Clin Pathol. 2011;64(1):1-5.  https://doi.org/10.1136/jcp.2010.080135  PMID: 21118850 
  24. Banz A, Lantz A, Riou B, Foussadier A, Miller M, Davies K, et al. Sensitivity of single-molecule array assays for detection of Clostridium difficile toxins in comparison to conventional laboratory testing algorithms. J Clin Microbiol. 2018;56(8):e00452-18.  https://doi.org/10.1128/JCM.00452-18  PMID: 29898996 
  25. Freeman J, Wilcox MH. The effects of storage conditions on viability of Clostridium difficile vegetative cells and spores and toxin activity in human faeces. J Clin Pathol. 2003;56(2):126-8.  https://doi.org/10.1136/jcp.56.2.126  PMID: 12560391 
  26. Bouza E, Peláez T, Alonso R, Catalán P, Muñoz P, Créixems MR. "Second-look" cytotoxicity: an evaluation of culture plus cytotoxin assay of Clostridium difficile isolates in the laboratory diagnosis of CDAD. J Hosp Infect. 2001;48(3):233-7.  https://doi.org/10.1053/jhin.2001.1000  PMID: 11439012 
  27. Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.  https://doi.org/10.1371/journal.pone.0118150  PMID: 25679978 
  28. Stubbs SL, Brazier JS, O’Neill GL, Duerden BI. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37(2):461-3.  https://doi.org/10.1128/JCM.37.2.461-463.1999  PMID: 9889244 
  29. Kachrimanidou M, Baktash A, Metallidis S, Tsachouridou Ο, Netsika F, Dimoglou D, et al. An outbreak of Clostridioides difficile infections due to a 027-like PCR ribotype 181 in a rehabilitation centre: Epidemiological and microbiological characteristics. Anaerobe. 2020;65:102252.  https://doi.org/10.1016/j.anaerobe.2020.102252  PMID: 32781108 
  30. Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, Morris KA, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 2013;13(11):936-45.  https://doi.org/10.1016/S1473-3099(13)70200-7  PMID: 24007915 
/content/10.2807/1560-7917.ES.2022.27.26.2100704
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error