1887
Research Open Access
Like 0

Abstract

Background

Vibriosis cases in Northern European countries and countries bordering the Baltic Sea increased during heatwaves in 2014 and 2018.

Aim

We describe the epidemiology of vibriosis and the genetic diversity of spp. isolates from Norway, Sweden, Denmark, Finland, Poland and Estonia in 2018, a year with an exceptionally warm summer.

Methods

In a retrospective study, we analysed demographics, geographical distribution, seasonality, causative species and severity of non-travel-related vibriosis cases in 2018. Data sources included surveillance systems, national laboratory notification databases and/or nationwide surveys to public health microbiology laboratories. Moreover, we performed whole genome sequencing and multilocus sequence typing of available isolates from 2014 to 2018 to map their genetic diversity.

Results

In 2018, we identified 445 non-travel-related vibriosis cases in the study countries, considerably more than the median of 126 cases between 2014 and 2017 (range: 87–272). The main reported mode of transmission was exposure to seawater. We observed a species-specific geographical disparity of vibriosis cases across the Nordic-Baltic region. Severe vibriosis was associated with infections caused by (adjOR: 17.2; 95% CI: 3.3–90.5) or (adjOR: 2.1; 95% CI: 1.0–4.5), age ≥ 65 years (65–79 years: adjOR: 3.9; 95% CI: 1.7–8.7; ≥ 80 years: adjOR: 15.5; 95% CI: 4.4–54.3) or acquiring infections during summer (adjOR: 5.1; 95% CI: 2.4–10.9). Although phylogenetic analysis revealed diversity between spp. isolates, two clusters were identified.

Conclusion

Shared sentinel surveillance for vibriosis during summer may be valuable to monitor this emerging public health issue.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.28.2101088
2022-07-14
2022-10-07
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.28.2101088
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/28/eurosurv-27-28-2.html?itemId=/content/10.2807/1560-7917.ES.2022.27.28.2101088&mimeType=html&fmt=ahah

References

  1. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8.  https://doi.org/10.1038/s41572-018-0005-8  PMID: 30002421 
  2. Collin B, Rehnstam-Holm AS. Occurrence and potential pathogenesis of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus on the South Coast of Sweden. FEMS Microbiol Ecol. 2011;78(2):306-13.  https://doi.org/10.1111/j.1574-6941.2011.01157.x  PMID: 21692819 
  3. Kuhnt-Lenz K, Krengel S, Fetscher S, Heer-Sonderhoff A, Solbach W. Sepsis with bullous necrotizing skin lesions due to vibrio vulnificus acquired through recreational activities in the Baltic Sea. Eur J Clin Microbiol Infect Dis. 2004;23(1):49-52.  https://doi.org/10.1007/s10096-003-1056-6  PMID: 14655036 
  4. Frank C, Littman M, Alpers K, Hallauer J. Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. Euro Surveill. 2006;11(8):E060817.1.  PMID: 16966781 
  5. Schirmeister F, Dieckmann R, Bechlars S, Bier N, Faruque SM, Strauch E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur J Clin Microbiol Infect Dis. 2014;33(5):767-78.  https://doi.org/10.1007/s10096-013-2011-9  PMID: 24213848 
  6. Semenza JC, Trinanes J, Lohr W, Sudre B, Löfdahl M, Martinez-Urtaza J, et al. Environmental suitability of Vibrio infections in a warming climate: an early warning system. Environ Health Perspect. 2017;125(10):107004.  https://doi.org/10.1289/EHP2198  PMID: 29017986 
  7. Dalsgaard A, Frimodt-Møller N, Bruun B, Høi L, Larsen JL. Clinical manifestations and molecular epidemiology of Vibrio vulnificus infections in Denmark. Eur J Clin Microbiol Infect Dis. 1996;15(3):227-32.  https://doi.org/10.1007/BF01591359  PMID: 8740858 
  8. Ruppert J, Panzig B, Guertler L, Hinz P, Schwesinger G, Felix SB, et al. Two cases of severe sepsis due to Vibrio vulnificus wound infection acquired in the Baltic Sea. Eur J Clin Microbiol Infect Dis. 2004;23(12):912-5.  https://doi.org/10.1007/s10096-004-1241-2  PMID: 15599654 
  9. Andersson Y, Ekdahl K. Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Euro Surveill. 2006;11(8):E060803.2.  https://doi.org/10.2807/esw.11.31.03013-en  PMID: 16966771 
  10. Lukinmaa S, Mattila K, Lehtinen V, Hakkinen M, Koskela M, Siitonen A. Territorial waters of the Baltic Sea as a source of infections caused by Vibrio cholerae non-O1, non-O139: report of 3 hospitalized cases. Diagn Microbiol Infect Dis. 2006;54(1):1-6.  https://doi.org/10.1016/j.diagmicrobio.2005.06.020  PMID: 16368474 
  11. Baker-Austin C, Trinanes JA, Salmenlinna S, Löfdahl M, Siitonen A, Taylor NG, et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016;22(7):1216-20.  https://doi.org/10.3201/eid2207.151996  PMID: 27314874 
  12. Brehm TT, Berneking L, Sena Martins M, Dupke S, Jacob D, Drechsel O, et al. Heatwave-associated Vibrio infections in Germany, 2018 and 2019. Euro Surveill. 2021;26(41).  https://doi.org/10.2807/1560-7917.ES.2021.26.41.2002041  PMID: 34651572 
  13. Vogel MM, Zscheischler J, Wartenburger R, Dee D, Seneviratne SI. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earths Futur. 2019;7(7):692-703.  https://doi.org/10.1029/2019EF001189  PMID: 31598535 
  14. Kueh MT, Lin CY. The 2018 summer heatwaves over northwestern Europe and its extended-range prediction. Sci Rep. 2020;10(1):19283.  https://doi.org/10.1038/s41598-020-76181-4  PMID: 33159097 
  15. Eurostat. Statistical regions in the European Union and partner countries. NUTS and statistical regions. 2020 edition. Luxembourg: Publications Office of the European Union; 2020. Available from: https://ec.europa.eu/eurostat/documents/3859598/10967554/KS-GQ-20-092-EN-N.pdf/9d57ae79-3ee7-3c14-da3e-34726da385cf
  16. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28-36.  https://doi.org/10.1111/2041-210X.12628 
  17. Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev. 2007;20(1):39-48.  https://doi.org/10.1128/CMR.00025-06  PMID: 17223622 
  18. Baker-Austin C, Trinanes J, Gonzalez-Escalona N, Martinez-Urtaza J. Non-cholera Vibrios: the microbial barometer of climate change. Trends Microbiol. 2017;25(1):76-84.  https://doi.org/10.1016/j.tim.2016.09.008  PMID: 27843109 
  19. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet. 2021;398(10311):1619-62.  https://doi.org/10.1016/S0140-6736(21)01787-6  PMID: 34687662 
  20. Feingold MH, Kumar ML. Otitis media associated with Vibrio alginolyticus in a child with pressure-equalizing tubes. Pediatr Infect Dis J. 2004;23(5):475-6.  https://doi.org/10.1097/01.inf.0000126592.19378.30  PMID: 15131479 
  21. Kechker P, Senderovich Y, Ken-Dror S, Laviad-Shitrit S, Arakawa E, Halpern M. Otitis media caused by V. cholerae O100: a case report and review of the literature. Front Microbiol. 2017;8:1619.  https://doi.org/10.3389/fmicb.2017.01619  PMID: 28894440 
  22. Baker-Austin C, Oliver JD. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol. 2018;20(2):423-30.  https://doi.org/10.1111/1462-2920.13955  PMID: 29027375 
  23. Roux FL, Wegner KM, Baker-Austin C, Vezzulli L, Osorio CR, Amaro C, et al. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Front Microbiol. 2015;6:830.  https://doi.org/10.3389/fmicb.2015.00830  PMID: 26322036 
  24. Eiler A, Johansson M, Bertilsson S. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol. 2006;72(9):6004-11.  https://doi.org/10.1128/AEM.00917-06  PMID: 16957222 
  25. Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlars S, Bier N, et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol. 2014;304(7):843-50.  https://doi.org/10.1016/j.ijmm.2014.07.010  PMID: 25129553 
  26. Böer SI, Heinemeyer EA, Luden K, Erler R, Gerdts G, Janssen F, et al. Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German north sea. Microb Ecol. 2013;65(4):1052-67.  https://doi.org/10.1007/s00248-013-0221-4  PMID: 23563708 
  27. Gyraite G, Katarzyte M, Schernewski G. First findings of potentially human pathogenic bacteria Vibrio in the south-eastern Baltic Sea coastal and transitional bathing waters. Mar Pollut Bull. 2019;149:110546.  https://doi.org/10.1016/j.marpolbul.2019.110546  PMID: 31543486 
  28. European Centre for Disease Prevention and Control (ECDC). Vibrio map viewer. Stockholm: ECDC; 2018. Available from: https://www.ecdc.europa.eu/en/publications-data/vibrio-suitability-tool
  29. Chase E, Harwood VJ. Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis. Appl Environ Microbiol. 2011;77(12):4200-7.  https://doi.org/10.1128/AEM.00135-11  PMID: 21515718 
  30. Laverty AL, Primpke S, Lorenz C, Gerdts G, Dobbs FC. Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis on Vibrio spp. and their antibacterial resistance. PLoS One. 2020;15(8):e0237704.  https://doi.org/10.1371/journal.pone.0237704  PMID: 32804963 
  31. Lymperopoulou DS, Dobbs FC. Bacterial diversity in ships’ ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms. Environ Sci Technol. 2017;51(4):1962-72.  https://doi.org/10.1021/acs.est.6b03108  PMID: 28135081 
  32. Fu S, Hao J, Yang Q, Lan R, Wang Y, Ye S, et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: a potential threat to the public health. Sci Rep. 2019;9(1):16303.  https://doi.org/10.1038/s41598-019-52791-5  PMID: 31704994 
  33. Naseer U, Blystad H, Angeloff L, Nygård K, Vold L, Macdonald E. Cluster of septicaemia and necrotizing fasciitis following exposure to high seawater temperatures in southeast Norway, June to August 2018. Int J Infect Dis. 2019;79(Supplement 1):28.  https://doi.org/10.1016/j.ijid.2018.11.083 
  34. Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, et al. Vibrio vulnificus: an environmental and clinical burden. Front Microbiol. 2017;8:997.  https://doi.org/10.3389/fmicb.2017.00997  PMID: 28620366 
  35. Trinanes J, Martinez-Urtaza J. Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study. Lancet Planet Health. 2021;5(7):e426-35.  https://doi.org/10.1016/S2542-5196(21)00169-8  PMID: 34245713 
/content/10.2807/1560-7917.ES.2022.27.28.2101088
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error