1887
Surveillance Open Access
Like 0

Abstract

Background

A wide variety of pathogens can cause disease in humans via consumption of contaminated food. Although food-borne outbreaks only account for a small part of the food-borne disease burden, outbreak surveillance can provide insights about the pathogens, food products implied as vehicle, points of contamination, and the settings in which transmission occurs.

Aim

To describe the characteristics of food-borne outbreaks registered between 2006 and 2019 in the Netherlands.

Methods

All reported outbreaks in which the first case occurred during 2006–19 were analysed. We examined the number of outbreaks, cases and setting by year, aetiology, type of evidence and food commodities.

Results

In total, 5,657 food-borne outbreaks with 27,711 cases were identified. The contaminated food product could be confirmed in 152 outbreaks (2.7%); in 514 outbreaks (9.1%), a pathogen was detected in cases and/or environmental swabs. Norovirus caused most outbreaks (205/666) and most related cases (4,436/9,532), followed by spp. (188 outbreaks; 3,323 cases) and spp. (150 outbreaks; 601 cases). was most often found in outbreaks with a confirmed food vehicle (38/152). Additionally, a connection was seen between some pathogens and food commodities. Public eating places were most often mentioned as a setting where the food implicated in the outbreak was prepared.

Conclusion

Long-term analysis of food-borne outbreaks confirms a persistent occurrence. Control and elimination of food-borne illness is complicated since multiple pathogens can cause illness via a vast array of food products and, in the majority of the outbreaks, the pathogen remains unknown.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.3.2100071
2022-01-20
2024-09-13
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.3.2100071
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/3/eurosurv-27-3-2.html?itemId=/content/10.2807/1560-7917.ES.2022.27.3.2100071&mimeType=html&fmt=ahah

References

  1. Hara-Kudo Y, Takatori K. Contamination level and ingestion dose of foodborne pathogens associated with infections. Epidemiol Infect. 2011;139(10):1505-10.  https://doi.org/10.1017/S095026881000292X  PMID: 21205441 
  2. Todd ECD, Grieg JD. Viruses of foodborne origin: A review. Virus Adaptation and Treatment.2015;7:25-45.  https://doi.org/10.2147/VAAT.S50108 
  3. Carter MJ. Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection. J Appl Microbiol. 2005;98(6):1354-80.  https://doi.org/10.1111/j.1365-2672.2005.02635.x  PMID: 15916649 
  4. Pijnacker R, Friesema IHM, Mughini Gras L, Lagerweij GR, Van Pelt W, Franz E. Disease burden of food-related pathogens in the Netherlands, 2018. Bilthoven: RIVM; 2019. Available from: https://www.rivm.nl/bibliotheek/rapporten/2019-0086.pdf
  5. Havelaar AH, Haagsma JA, Mangen MJ, Kemmeren JM, Verhoef LPB, Vijgen SMC, et al. Disease burden of foodborne pathogens in the Netherlands, 2009. Int J Food Microbiol. 2012;156(3):231-8.  https://doi.org/10.1016/j.ijfoodmicro.2012.03.029  PMID: 22541392 
  6. Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for Foodborne Disease Outbreaks - United States, 2009-2015. MMWR Surveill Summ. 2018;67(10):1-11.  https://doi.org/10.15585/mmwr.ss6710a1  PMID: 30048426 
  7. Ebel ED, Williams MS, Cole D, Travis CC, Klontz KC, Golden NJ, et al. Comparing Characteristics of Sporadic and Outbreak-Associated Foodborne Illnesses, United States, 2004-2011. Emerg Infect Dis. 2016;22(7):1193-200.  https://doi.org/10.3201/eid2207.150833  PMID: 27314510 
  8. Brown LG, Hoover ER, Selman CA, Coleman EW, Schurz Rogers H. Outbreak characteristics associated with identification of contributing factors to foodborne illness outbreaks. Epidemiol Infect. 2017;145(11):2254-62.  https://doi.org/10.1017/S0950268817001406  PMID: 28689510 
  9. Dutch Government. Warenwetbesluit Bereiding en behandeling van levensmiddelen. [Commodities Act Decree Preparation and handling of foodstuffs]. The Hague: Overheid.nl. [Accessed: 10 May 2021]. Dutch. Available from: https://wetten.overheid.nl/BWBR0005758/2019-12-14
  10. European Commission. Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Brussels: European Commission. [Accessed: 10 May 2021]. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073
  11. Friesema I, de Jong A, Hofhuis A, Heck M, van den Kerkhof H, de Jonge R, et al. Large outbreak of Salmonella Thompson related to smoked salmon in the Netherlands, August to December 2012. Euro Surveill. 2014;19(39):20918.  https://doi.org/10.2807/1560-7917.ES2014.19.39.20918  PMID: 25306981 
  12. Van Duynhoven YT, Isken LD, Borgen K, Besselse M, Soethoudt K, Haitsma O, et al. A prolonged outbreak of Salmonella Typhimurium infection related to an uncommon vehicle: hard cheese made from raw milk. Epidemiol Infect. 2009;137(11):1548-57.  https://doi.org/10.1017/S0950268809002337  PMID: 19296867 
  13. Suijkerbuijk AWM, Bouwknegt M, Mangen MJ, de Wit GA, van Pelt W, Bijkerk P, et al. The economic burden of a Salmonella Thompson outbreak caused by smoked salmon in the Netherlands, 2012-2013. Eur J Public Health. 2017;27(2):325-30. PMID: 27836967 
  14. Vlaanderen F, Cuperus T, Keur I, De Rosa M, Rozendaal H, Friesema I, et al. Staat van Zoönosen 2019. [State of Zoonoses 2019]. Bilthoven: RIVM; 2020. Dutch. Available from: https://www.rivm.nl/bibliotheek/rapporten/2020-0130.pdf
  15. Hardstaff JL, Clough HE, Lutje V, McIntyre KM, Harris JP, Garner P, et al. Foodborne and food-handler norovirus outbreaks: a systematic review. Foodborne Pathog Dis. 2018;15(10):589-97.  https://doi.org/10.1089/fpd.2018.2452  PMID: 30109958 
  16. Mughini-Gras L, Enserink R, Friesema I, Heck M, van Duynhoven Y, van Pelt W. Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case-control and source attribution analysis. PLoS One. 2014;9(2):e87933.  https://doi.org/10.1371/journal.pone.0087933  PMID: 24503703 
  17. Gormley FJ, Little CL, Rawal N, Gillespie IA, Lebaigue S, Adak GK. A 17-year review of foodborne outbreaks: describing the continuing decline in England and Wales (1992-2008). Epidemiol Infect. 2011;139(5):688-99.  https://doi.org/10.1017/S0950268810001858  PMID: 20696086 
  18. Franklin N, Hope K, Glasgow K, Glass K. Describing the epidemiology of foodborne outbreaks in New South Wales from 2000 to 2017. Foodborne Pathog Dis. 2020;17(11):701-11.  https://doi.org/10.1089/fpd.2020.2806  PMID: 32397759 
  19. Pebody RG, Ryan MJ, Wall PG. Outbreaks of campylobacter infection: rare events for a common pathogen. Commun Dis Rep CDR Rev. 1997;7(3):R33-7. PMID: 9080726 
  20. Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar AH, Friesema IH, et al. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PLoS One. 2012;7(8):e42599.  https://doi.org/10.1371/journal.pone.0042599  PMID: 22880049 
  21. Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008;32(4):579-606.  https://doi.org/10.1111/j.1574-6976.2008.00112.x  PMID: 18422617 
  22. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med. 2020;2020:4674235.  https://doi.org/10.1155/2020/4674235  PMID: 32684938 
  23. Fisher EL, Otto M, Cheung GYC. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol. 2018;9:436.  https://doi.org/10.3389/fmicb.2018.00436  PMID: 29662470 
  24. Heikinheimo A, Lindström M, Granum PE, Korkeala H. Humans as reservoir for enterotoxin gene--carrying Clostridium perfringens type A. Emerg Infect Dis. 2006;12(11):1724-9.  https://doi.org/10.3201/eid1211.060478  PMID: 17283623 
  25. Rouzeau-Szynalski K, Stollewerk K, Messelhäusser U, Ehling-Schulz M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol. 2020;85:103279.  https://doi.org/10.1016/j.fm.2019.103279  PMID: 31500702 
  26. EFSA Panel on Biological Hazards (BIOHAZ). Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016;14(7):e04524.
  27. Messelhäußer U, Ehling-Schulz M. Bacillus cereus—a multifaceted opportunistic pathogen. Curr Clin Microbiol Rep. 2018;5(2):120-5.  https://doi.org/10.1007/s40588-018-0095-9 
  28. Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol. 2010;5(7):1109-23.  https://doi.org/10.2217/fmb.10.60  PMID: 20632809 
  29. Iulietto MF, Evers EG, National Institute for Public Health and the Environment (RIVM), The Netherlands. Modelling and magnitude estimation of cross-contamination in the kitchen for quantitative microbiological risk assessment (QMRA). EFSA J. 2020;18(Suppl 1):e181106. PMID: 33294045 
  30. Chai SJ, Gu W, O’Connor KA, Richardson LC, Tauxe RV. Incubation periods of enteric illnesses in foodborne outbreaks, United States, 1998-2013. Epidemiol Infect. 2019;147:e285.  https://doi.org/10.1017/S0950268819001651  PMID: 31587689 
  31. Friesema I, Sigmundsdottir G, van der Zwaluw K, Heuvelink A, Schimmer B, de Jager C, et al. An international outbreak of Shiga toxin-producing Escherichia coli O157 infection due to lettuce, September-October 2007. Euro Surveill. 2008;13(50):18-22.  https://doi.org/10.2807/ese.13.50.19065-en  PMID: 19087865 
  32. Bayer C, Bernard H, Prager R, Rabsch W, Hiller P, Malorny B, et al. An outbreak of Salmonella Newport associated with mung bean sprouts in Germany and the Netherlands, October to November 2011. Euro Surveill. 2014;19(1):20665.  https://doi.org/10.2807/1560-7917.ES2014.19.1.20665  PMID: 24434173 
  33. Pijnacker R, Dallman TJ, Tijsma ASL, Hawkins G, Larkin L, Kotila SM, et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: a microbiological and epidemiological study. Lancet Infect Dis. 2019;19(7):778-86.  https://doi.org/10.1016/S1473-3099(19)30047-7  PMID: 31133519 
/content/10.2807/1560-7917.ES.2022.27.3.2100071
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error