1887
Research Open Access
Like 0

Abstract

Background

Analyses of diagnostic performance of SARS-CoV-2 antigen rapid diagnostic tests (AG-RDTs) based on long-term data, population subgroups and many AG-RDT types are scarce.

Aim

We aimed to analyse sensitivity and specificity of AG-RDTs for subgroups based on age, incidence, sample type, reason for test, symptoms, vaccination status and the AG-RDT’s presence on approved lists.

Methods

We included AG-RDT results registered in Czechia’s Information System for Infectious Diseases between August and November 2021. Subpopulations were analysed based on 346,000 test results for which a confirmatory PCR test was recorded ≤ 3 days after the AG-RDT; 38 AG-RDTs with more than 100 PCR-positive and 300 PCR-negative samples were individually evaluated.

Results

Average sensitivity and specificity were 72.4% and 96.7%, respectively. We recorded lower sensitivity for age groups 0–12 (65.5%) and 13–18 years (65.3%). The sensitivity level rose with increasing SARS-CoV-2 incidence from 66.0% to 76.7%. Nasopharyngeal samples had the highest sensitivity and saliva the lowest. Sensitivity for preventive reasons was 63.6% vs 86.1% when testing for suspected infection. Sensitivity was 84.8% when one or more symptoms were reported compared with 57.1% for no symptoms. Vaccination was associated with a 4.2% higher sensitivity. Significantly higher sensitivity levels pertained to AG-RDTs on the World Health Organization Emergency Use List (WHO EUL), European Union Common List and the list of the United Kingdom’s Department of Health and Social Care.

Conclusion

AG-RDTs from approved lists should be considered, especially in situations associated with lower viral load. Results are limited to SARS-CoV-2 delta variant.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.33.2200070
2022-08-18
2022-09-24
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.33.2200070
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/33/eurosurv-27-33-4.html?itemId=/content/10.2807/1560-7917.ES.2022.27.33.2200070&mimeType=html&fmt=ahah

References

  1. Brümmer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021;18(8):e1003735.  https://doi.org/10.1371/journal.pmed.1003735  PMID: 34383750 
  2. Denzler A, Jacobs ML, Witte V, Schnitzler P, Denkinger CM, Knop M. Rapid comparative evaluation of SARS-CoV-2 rapid point-of-care antigen tests. Infection. 2022;1-13.  https://doi.org/10.1007/s15010-022-01810-1  PMID: 35397099 
  3. Royal Statistical Society (RSS). Royal Statistical Society diagnostic tests working group report. London: RSS; 2021. Available from: https://rss.org.uk/policy-campaigns/policy-groups/working-group-on-diagnostic-tests
  4. Peto T, Affron D, Afrough B, Agasu A, Ainsworth M, Allanson A, et al. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine. 2021;36:100924.  https://doi.org/10.1016/j.eclinm.2021.100924  PMID: 34101770 
  5. Fenollar F, Bouam A, Ballouche M, Fuster L, Prudent E, Colson P, et al. Evaluation of the Panbio Covid-19 rapid antigen detection test device for the screening of patients with Covid-19. J Clin Microbiol. 2021;59(2):e02589-20.  https://doi.org/10.1128/JCM.02589-20  PMID: 33139420 
  6. Kretschmer A, Kossow A, Grüne B, Schildgen O, Mathes T, Schildgen V. False positive rapid antigen tests for SARS-CoV-2 in the real-world and their economic burden. J Infect. 2022;84(2):248-88.  https://doi.org/10.1016/j.jinf.2021.08.020  PMID: 34416257 
  7. Czech Ministry of Health (MZCR). COVID‑19: Přehled aktuální situace v ČR. [COVID‑19: Overview of the current situation in Czechia]. Prague: MZCR. [Accessed: 12 Jun 2022]. Czech. Available from: https://onemocneni-aktualne.mzcr.cz/covid-19
  8. Zřízení nového odběrového místa a jeho provoz. [Establishment of a new collection point and its operation]. Prague: Czech Ministry of Health. [Accessed 12 Jun 2022]. Czech. Available from: https://koronavirus.mzcr.cz/wp-content/uploads/2021/07/N%C3%81VOD_Z%C5%99%C3%ADzen%C3%AD-odb%C4%9Brov%C3%A9ho-m%C3%ADsta_new.pdf
  9. Státní zdravotní ústav. Informace pro účastníky - detekce RNA SARS-CoV-2. [Information for participants - SARS-CoV-2 RNA detection]. Prague: State Institute of Health; 2021. Czech. Available from: http://www.szu.cz/pt-m-37-rok-detekce-rna-sars-cov-2
  10. European Commission. EU health preparedness: A common list of COVID-19 rapid antigen tests; Fourteenth update. 2022. [Accessed 12 Jun 2022]. Available from: https://web.archive.org/web/20220611224610/https://ec.europa.eu/health/system/files/2022-05/covid-19_rat_common-list_en.pdf
  11. Joint European Research Centre of the European Commission (JRC). COVID-19 In Vitro Diagnostic Devices and Test Methods Database. Brussels: JRC. [Accessed: 12 Jun 2022]. Available from: https://covid-19-diagnostics.jrc.ec.europa.eu/devices
  12. Czech Ministry of Health (MZCR). COVID-19 v ČR: Otevřené datové sady a sady ke stažení. [COVID‑19: Open datasets for download]. Prague: MZCR. [Accessed: 1 Jun 2022]. Czech. Available from: https://onemocneni-aktualne.mzcr.cz/api/v2/covid-1930.
  13. World Health Organization (WHO). WHO Emergency Use Listing for in vitro diagnostics (IVDs) detecting SARS‐CoV‐2. Geneva: WHO; 2020. [Accessed: 12 Jun 2022]. Available from: https://cdn.who.int/media/docs/default-source/in-vitro-diagnostics/200922-eul-sars-cov2-product-list_94b2eb36-58b6-43c6-be1e-ceedc188f52a.pdf
  14. World Health Organization (WHO). WHO Emergency Use Listing for in vitro diagnostics (IVDs) detecting SARS‐CoV‐2. Geneva: WHO; 2022. [Accessed: 12 Jun 2022]. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/220607_EUL_SARS-CoV-2_product_list.pdf
  15. United Kingdom Health Security Agency (UKHSA). Outcome of the evaluation of rapid diagnostic assays for specific SARS-CoV-2 antigens (lateral flow devices). London: UKHSA; 2022. Available from: https://www.gov.uk/government/publications/assessment-and-procurement-of-coronavirus-covid-19-tests/outcome-of-the-evaluation-of-rapid-diagnostic-assays-for-specific-sars-cov-2-antigens-lateral-flow-devices
  16. Paul Ehrlich Institute (PEI). Comparative evaluation of the sensitivities of SARSCoV-2 antigen rapid tests. Langen: PEI; 2022. [Accessed 12 Jun 2022].Available from: https://web.archive.org/web/20220709023032/https://www.pei.de/SharedDocs/Downloads/DE/newsroom/dossiers/evaluierung-sensitivitaet-sars-cov-2-antigentests.pdf?__blob=publicationFile&v=69
  17. United Kingdom Health Security Agency (UKHSA). Protocol for evaluation of rapid diagnostic assays for specific SARS-CoV-2 antigens (lateral flow devices). London: UKHSA; 2022. [Accessed 12 Jun 2022]. Available from: https://www.gov.uk/government/publications/assessment-and-procurement-of-coronavirus-covid-19-tests/protocol-for-evaluation-of-rapid-diagnostic-assays-for-specific-sars-cov-2-antigens-lateral-flow-devices
  18. Scheiblauer H, Filomena A, Nitsche A, Puyskens A, Corman VM, Drosten C, et al. Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill. 2021;26(44):2100441.  https://doi.org/10.2807/1560-7917.ES.2021.26.44.2100441  PMID: 34738515 
  19. Puyskens A, Krause E, Michel J, Nübling CM, Scheiblauer H, Bourquain D, et al. Establishment of a specimen panel for the decentralised technical evaluation of the sensitivity of 31 rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill. 2021;26(44):2100442.  https://doi.org/10.2807/1560-7917.ES.2021.26.44.2100442  PMID: 34738516 
  20. Cochran WG. Sampling techniques. 3rd edition. New York: John Wiley & Sons; 1977.
  21. Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals. Am Stat. 2001;55(3):182-6.  https://doi.org/10.1198/000313001317097960 
  22. Clopper C, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26(4):404-13.  https://doi.org/10.1093/biomet/26.4.404 
  23. Pearson’s Correlation Coefficient. In: Kirch, W. (eds). Encyclopedia of Public Health. Springer, Dordrecht. 2008.  https://doi.org/10.1007/978-1-4020-5614-7_2569  https://doi.org/10.1007/978-1-4020-5614-7_2569 
  24. L’Huillier AG, Lacour M, Sadiku D, Gadiri MA, De Siebenthal L, Schibler M, et al. Diagnostic accuracy of SARS-CoV-2 rapid antigen detection testing in symptomatic and asymptomatic children in the clinical setting. J Clin Microbiol. 2021;59(9):e0099121.  https://doi.org/10.1128/JCM.00991-21  PMID: 34190574 
  25. Euser S, Aronson S, Manders I, van Lelyveld S, Herpers B, Sinnige J, et al. SARS-CoV-2 viral-load distribution reveals that viral loads increase with age: a retrospective cross-sectional cohort study. Int J Epidemiol. 2022;50(6):1795-803.  https://doi.org/10.1093/ije/dyab145  PMID: 34999848 
  26. European Centre for Disease Prevention and Control (ECDC). Considerations for the use of saliva as sample material for COVID-19 testing. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/considerations-use-saliva-sample-material-covid-19-testing
  27. Uršič T, Kogoj R, Šikonja J, Roškarič D, Jevšnik Virant M, Bogovič P, et al. Performance of nasopharyngeal swab and saliva in detecting Delta and Omicron SARS-CoV-2 variants. J Med Virol. 2022;1-8. PMID: 35642439 
  28. Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med. 2021;27(5):790-2.  https://doi.org/10.1038/s41591-021-01316-7  PMID: 33782619 
  29. Haage V, Ferreira de Oliveira-Filho E, Moreira-Soto A, Kühne A, Fischer C, Sacks JA, et al. Impaired performance of SARS-CoV-2 antigen-detecting rapid diagnostic tests at elevated and low temperatures. J Clin Virol. 2021;138:104796.  https://doi.org/10.1016/j.jcv.2021.104796  PMID: 33773413 
  30. Bekliz M, Perez-Rodriguez F, Puhach O, Adea K, Melancia SM, Baggio S, et al. Sensitivity of SARS-CoV-2 antigen-detecting rapid tests for Omicron variant. medRxiv. 2021;12.18.21268018. Preprint.  https://doi.org/10.1101/2021.12.18.21268018  https://doi.org/10.1101/2021.12.18.21268018 
  31. Statens Serum Institut (SSI). Testing of SARS-CoV-2 rapid antigen tests detection of variants (Delta and Omicron BA.1 and BA.2) – 05.05.2022. Copenhagen: SSI; 2022. Available from: https://en.ssi.dk/-/media/arkiv/subsites/covid19/diagnostik/afprvning-af-sars-cov-2-antigentests-for-pvisning-af-varianter.pdf?la=en
/content/10.2807/1560-7917.ES.2022.27.33.2200070
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error